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Parallelism in a Modern HEP Data 
Processing Framework
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Outline of This Lecture

§ From sequential to parallel

§ Experiment Frameworks: basic principles, design

§ Laws of parallelism

§ Concurrency Models: task-based parallelism

The Goals:
1) Understand why we need parallelisation
2) Understand the problem domain of physics processing
3) Break down big problems into work items that can be tackled in parallel
4) Be aware of the limitations for parallelisation
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Hitting the Wall(s)

§ Once upon a time, the life of software 
developers was much easier
§ Sequential programming
§ Want your program to run faster? 

Buy yourself a new machine!

§ The fairy tale ended in the early 2000s
§ Processor manufacturers had to 

rethink CPU architectures
§ No more free lunch for software
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The Power Wall

§ Manufacturers could not keep improving processor performance 
by increasing frequency
§ Not at the same rate at least

§ Power consumption and dissipation became limiting factors
§ Higher clock rate could lead to overheating
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The ILP Wall

§ Processors apply multiple 
techniques to optimise the 
execution flow
§ Pipelining
§ Branch prediction
§ Out-of-order execution
§ …

§ Instruction-Level Parallelism 
growth also flattened
§ Hard to squeeze more work 

out of a clock cycle
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The Memory Wall

§ Processor clock rates have been 
increasing faster than memory clock 
rates

§ Latency in memory access is often 
the major performance issue in 
modern software applications

§ Larger and faster cache memories 
help alleviate the problem but do not 
solve it

§ Often the CPU is just waiting for 
data…

CPU-Mem
Gap
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Multi/Many Core to the Rescue

§ Let’s change strategy
§ Grow by combining simpler processing units
§ Moore’s law reinterpreted: number of cores per chip will 

double every two years

How to make the 
most of all these 
resources?
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From Single to Multi/Many core

Irwin-
dale

Wood-
crest

Gaines-
town

Sandy 
Bridge

Haswell Broad-
well

Skylake

Year 2005 2006 2009 2012 2015 2016 2017

Cores 1 2 4 8 18 24 28

Freq
(GHz)

3.8 3.0 3.33 2.3 2.1 2.2 2.5

LL
Cache

L2  
(2MB)

L2 
(4MB)

L3
(8MB)

L3
(20MB)

L3
(45MB)

L3
(60MB)

L3 
(38MB)

Evolution of Intel Xeon processors (https://ark.intel.com)
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Need for Parallelism

§ Change of programming paradigm
§ Need to deal with systems with many parallel threads
§ Improvement in performance comes with exploitation of 

concurrency

§ Will all programmers have to be parallel programmers?
§ Different levels of exposure: explicit vs. implicit parallelism
§ First step is to change the way of thinking!

Parallelism is here to stay
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A Supercomputer

§ Perhaps the most striking example of parallelism
§ top500.org: beyond 10M cores
§ Parallelism intra-node and inter-node
§ Multi/many core, hybrid setups: CPU - GPU
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Parallel Hardware

Accelerators for 
massive parallelism
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How is Parallelism Achieved?

§ Supercomputer design tailored for High-Performance Computing:
§ Homogeneous nodes (+ accelerators)
§ High-bandwidth low-latency networks (InfiniBand, Aries)
§ Parallel distributed file system (Lustre, GPFS)

§ Explicit low-level parallelism dominates
§ MPI for distributing processes, message passing
§ OpenMP inside a node (+ CUDA, OpenCL)
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Parallelisation in HEP

LHC Computing Grid (WLCG)

§ HEP is parallel since more than a 
decade

§ Computations are distributed among 
hierarchically organised data centres 
spread around the globe

§ Tens of billions of LHC events are 
processed per year, running 24/7 365 
days a year

Huge parallel infrastructure!
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Physics Challenges
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Physics Challenges II

§ Due to the beam intensity (�luminosity�) at the LHC multiple proton-proton 
collisions take place at once (pile-up)

§ Pile-up expected to increase further in Run 3 and especially in HL-LHC

§ As a result, memory consumed by experiment�s reconstruction jobs will go 
up, making it hard to run many simultaneous jobs on a single computer
§ Independent jobs do not share memory!

Furthermore:

§ Merging of results of independent  jobs takes significant amount of time

So why not treating every many-core computer in 
the WLCG as a computing centre of its own with 

many independent jobs on it?

Another parallelisation strategy is needed!
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Framework Primer

Source
Output

Module

Digitizer Tracker
NTrack

Filter
Vertexer

Event

PATH keep?

yes

Experiment Software Follows the Idea of a Software Bus

Each experiment has software with about 5 million lines of code 
based on this model
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Framework Primer II

§ Multiple events are being processed sequentially

§ The result is being put into a single output file

§ This keeps only one core busy at a time
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How to Introduce Concurrency

§ The algorithms and their data dependencies form a DAG (directed 
acyclic graph)
§ Schedule the algorithms according to the DAG

§ Sounds more trivial than it is
§ Existing HEP software has many �backdoor� communication 

channels making the DAG non-obvious.
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Real World Example

§ Particular example taken from 

LHCb reconstruction program 

“Brunel”

§ Gives an idea for the potential 

concurrency

§ ATLAS and CMS just don’t fit on 

a slide…
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The DAG Can Get Narrower

Long
serial sections 
spoil speedup!
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Is Parallelisation Worth It?

§ We hit the wall very early – game over and that’s it?

§ Whenever thinking about parallelisation, one should spend 
some thoughts on whether the effort is worth it
§ The total cost of ownership of one additional box might be 

smaller than the design-implementation-maintenance costs

§ What is the performance gain we can expect?

Amdahl’s and Gustafson’s laws can help you there!
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Need for Speed(up)

§ We parallelise because we want to run our application faster

§ Speedup: how much faster does my code run after 
parallelising it?
§ Indicator of scalability

parallel

serial

Time
TimeSpeedup =
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n
pp

Speedup
+-

=
)1(

1

n: number of cores
p: parallel portion

“… the effort expended on achieving high parallel 
processing rates is wasted unless it is accompanied by 
achievements in sequential processing rates of very 
nearly the same magnitude.” - 1967

§ It predicts the maximum 
speedup achievable given a 
problem of fixed size

Amdahl’s Law
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§ Often problem size increases, while serial parts remain constant

§ If problem size increases, so does the opportunity for parallelisation

§ Solve bigger problems in the same amount of time by using more 
resources

nppSpeedup +-=1

“… speedup should be measured by scaling the problem 
on the number of processors, not by fixing the problem 
size.” - 1988

n: number of cores
p: parallel portion

Gustafson’s Law
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Amdahl vs Gustafson

n=1 n=2 n=4 n=1 n=2 n=4

Amdahl Gustafson

Serial
Parallel

Time
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Increase the Problem Size!

Ti
m

e
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Strong and Weak Scaling

Case A
o A human is waiting in front of the 

terminal: strong scaling
o A problem of a fixed size is 

processed by an increasing number 
of processors

o Best modelled with Amdahl’s law

Case B
o Want to get the most done in a 

certain amount of time: weak 
scaling

o Every processor has a specified 
amount of work to do, and then when 
adding processors, we also add work

o Best modelled with Gustafson’s law

Two sides of the same coin!
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Data Parallelism

Definition: parallelism achieved through the application of the same 
transformation to multiple pieces of data

Example of pure data parallelism: multiplication of an array of values 
(ordinary administration for vector units and GPUs!)
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Task Parallelism

Definition: parallelism achieved through the partition of load in small work 
baskets consumed by a pool of resources.

Example of pure task parallelism: calculate mean, binary OR, minimum 
and average of a set of numbers
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Mixed Solutions

Mandate: Build an efficient letter sending system mixing data and task 
parallelism

Start

Fold

Stuff

Seal

Address

Stamp

Mail
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Mixed Solutions

§ For this case:
§ Fixed order of steps
§ Data parallelism is already evident

§ E.g. multiple pages of paper can be folded at the same time

Start Fold Stuff Seal Address Stamp Mail
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Mixed Solutions

§ These operations require different amount of work though

Start Fold Stuff Seal Address Stamp Mail
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What can be executed concurrently?

Some techniques to figure this out:

§ Data decomposition
§ The partition of the data domain

§ Recursive decomposition
§ Divide and conquer

§ Functional decomposition
§ Split according to program functions

§ Task decomposition
§ Split according to logical tasks

Finding Concurrency

DIVIDE 
ET 

IMPERA
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Mixed Data and Task Parallelism

§ Pure task/data parallelism is difficult to achieve in reality
§ Sometimes close enough to real use cases!

§ Mixing data and task parallelism is the key
§ Many different algorithms applied to a stream of data
§ Items processed in stages where data parallelism is expressed
§ Many items can pass through the pipeline simultaneously
§ Think of items as �collision events� and algorithms as �HEP data 

processing units�!
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Rethinking the Parallel Framework

§ Need to change the problem size
§ Process multiple events concurrently
§ Helps on tails of sequential processing

§ Contradicts a lot of the basic assumptions
in existing code
§ Code prepared to process only one event

at a time in memory
§ But existing code can’t be thrown away easily
§ Need to localise distributed states

§ Major effort ongoing in all LHC experiments
§ Exciting times for curious programmers!
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A Glimpse on Complications

1. The DAG is not known to its entirety
§ Hidden dependencies

2. Shared states are rarely safe
§ �Caches� that do not behave like… well… caches

3. Algorithms are not thread-safe
§ E.g. track reconstruction cannot be run on two events concurrently
§ Making all algorithms thread-safe is an impossible task

4. External libraries are not thread safe
§ But independent parts of the framework access them
§ Not all of the libraries will be thread safe ever!
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Solutions?

We need a smart scheduling environment

1. The DAG has to be �fixed� by changing the existing code

2. Shared states are replaced by task-local data, avoid locks!
§ More in the next lectures

3. If an algorithm requires a non-thread safe resource, it has to 
�reserve� it beforehand
§ No two algorithms using the resource are scheduled at the same

time
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Scheduling Directions

Three ways of coding up a scheduler for the DAG:

§ On demand
Start with the last algorithms in the DAG and invoke 
whatever algorithm is needed on-the-fly.
(backward scheduling)

§ Data driven
Start with the first algorithms in the DAG and start 
new algorithms whenever the necessary inputs are 
there.
(forward scheduling)

§ Global view
Analyse the entire DAG and schedule algorithms 
according to the dependency order (graph 
scheduling)
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A Simplified Example

§ Such a parallel framework is not only theory

§ They already exist for
§ CMS offline software (CMSSW)
§ ATLAS/LHCb framework (Gaudi)

§ Let’s have a look at an example 
workflow
§ A slice of the LHCb reconstruction
§ Only the low level objects of the

vertex locator (VELO)

This part of 
the detector LHCb detector
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The Velo Low-Level Reco DAG
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Take-Away Messages

§ Dealing with parallelism is inevitable
§ Software must exploit parallel hardware
§ But there are different levels of exposure to parallelism

§ High energy physics has a history of parallelisation
§ However at a rather naïve level
§ The next steps require a harder approach

§ Parallelisation can be exploited in multiple ways
§ Data parallelism and task parallelism

§ Amdahl’s and Gustafson’s laws give a handle for scaling 
behaviour

§ There is a clear strategy for parallelising HEP software
§ Use of a task-based approach
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Patterns for Parallel Software 
Development
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Outline of This Lecture

The Goals:
1) Understand a few basic patterns of sequential algorithms
2) Know how to map these onto parallel concepts
3) Understand how these scale
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What is a Pattern?

Software design pattern
General, reusable solution to a commonly

occurring problem in a given context in 
software design

Parallel pattern
Recurring combination of task distribution

and data access that solves a specific
problem in parallel algorithm design
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Serial Control Flow Patterns

§ Before starting with parallelism let’s look at what we know about the 
serial case

§ We will have a look at the following ones:
§ Sequence
§ Selection
§ Iteration

§ These are all simple concepts, but the vocabulary is important!
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Sequence

§ A sequence is an ordered list of tasks/commands to be carried out in a 
given order
§ The exact dependencies of the commands 

do not matter
§ Side-effects do not matter 
§ There is only one task executed at a time
§ The tasks are executed as defined

A

C

B

Input

Output

Note that

The compiler and the CPU may re-order
instructions if they think it optimises runtime
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Selection

§ In a selection
§ The commands a and b

depend on decision of c
§ Always only one of the two 

sides is being executed
C

a

True False

b

The «if» statement

The CPU may apply speculative execution, 
but it always takes care of sanity
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Iteration

§ In an iteration a certain function f is executed 
as long as a certain condition c is true.
§ This is the famous while loop

while ( c ) {
f;

}
C

f

True False
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Iteration II

§ How do condition and function depend on each other?
§ There must be some dependency, otherwise it is an infinite loop

§ Sometimes the dependency is trivial and can be re-formulated as a
for loop (a.k.a. counted loop)

§ In serial code this is mainly just syntactic sugar
§ However, it gives some nice hints to the compiler

i = 0; 
while ( i < n ) {
f;
++i;   

}

for (i = 0; i < n; ++i ) {
f;

}

CERN School of Computing 2019

SW Design in the Many-Cores Era

51

Iteration III

§ The serial iteration pattern might seem trivially parallelisable but…
§ Beware of dependencies!

§ Do multiple iterations depend on each other?
§ Loop-carried dependency

§ Different kinds of dependencies translate to different parallelisation
possibilities
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Iteration IV

§ Any chance of parallelising this?

§ What are the obstacles?
§ i.e. what are the dependencies?

void doIt( int n, double x[], int a[], int b[], int c[] ) {

for (int i = 0; i < n; ++i) {
x[ a[i] ] = x[ a[i] ] * x[ b[i] ] * x[ c[i] ] 

}

}
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Modern Syntax: An Interlude

§ C++ is ever improving with new standards (C++11, C++14, C++17, …)

§ Two (not so) recent additions are:
§ auto var = retrieveSomeObject();
§ for (auto& element : myCollection)

§ auto: do not specify the type, the compiler finds it out at compile time. 
Useful to avoid tedious typing also detrimental for readability of the code!

§ Range-based loops: build a loop with a concise syntax!

?!

Take advantage of this! J
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Parallel Patterns

§ After reminding ourselves about serial control patterns, let’s have a look at 
a few parallel patterns
§ Can help you structure your parallel program

§ The serial iteration pattern has many parallel offsprings
§ Map
§ Partition
§ Reduce
§ Scan

§ Other useful patterns
§ Pipeline
§ Superscalar Sequences
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Map

§ The map is the most trivial parallel extension of the serial iteration
§ Apply the same function f on multiple elements of a collection in parallel
§ We hide the loop!

§ Requirements:
§ No loop-carried dependency
§ Function f is pure, i.e. without side-effects

§ Scaling: n (linear w.r.t. the number of elements in the collection)

A' B' C' D'

A B C D
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Partition

§ The map pattern helps when parallelising on collections

§ However, sometimes it is useful to treat multiple items together
§ E.g. for the combination of multithreading and vectorisation
§ Multi-level parallelism!

§ Partitioning allows for a custom split of the collection into subcollections
or chunks

§ A variant of partitioning is called geometric decomposition
§ Update of a partition needs data from other partitions
§ Might require synchronisation
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Granularity
TimeCore

0

1

0

1

0

1

Too coarse-grain 

Too fine-grain

Tradeoff

Task Overhead

Im
ba

lan
ce
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Reduce

§ A reduction combines the elements of a collection into a single result 
using a combiner function

§ Requirements:
§ No loop-carried dependency apart from the combined result
§ Combiner function is associative

§ Be careful with floating point operations!

§ Having a commutative function is beneficial
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Reduce II

§ Speedup:  n / log n

§ Counters are a typical example for reduction input

§ Before coming to a real example, let’s have a look at modern C++ 
again…

A B C D E F

Result
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Interlude – Lambdas

§ Lambda expressions are anonymous functions and can be assigned to the 
std::function type

§ They can be passed as parameters as if they were regular variables

§ When defined, they can capture a specific set of variables ( or all ) 

§ Once they have been defined, they can be passed to functions like std::for_each or 
TBB's parallel_for

std::function< double (double, double) > f =
[ ] (double a, double b) { return a + b; };

std::cout << f ( 23.0, 24.0 ); 
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Interlude – Lambdas II

§ Using the C++ auto keyword simplifies the syntax, but does not change the behavior
auto f = [ ] ( double a, double b ) { return a + b; };

§ Capture the variable globalOffset as a reference and use it in the computation
auto f = [ &globalOffset ] ( double a, double b ) 

{ return a + b + globalOffset; };

§ Capture all variables defined in the current scope by value
auto f = [ = ] ( double a, double b ) 

{ return a + b + globalOffset; };

§ Can you think of the difference in behavior when using capture-by-value instead of capture-
by-reference?
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Reduce III

int sum = tbb::parallel_reduce(
// The input array, which will be partitioned automatically
tbb::blocked_range<int*>(array, array + size),
// Identity value for the sum reduction
0,
// Lambda that returns the sum of all elements in a partition
[](const tbb::blocked_range<int*>& r, int v) {
for (auto i = r.begin(); i != r.end(); ++i) v += *i;
return v;

},
// Reduction operation that combines the per-partition sums
[](int x, int y) { return x+y; }

);

§ Libraries like Intel’s Threading Building Blocks (TBB) provide already all 
ingredients for standard patterns like reduce:
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Map and Reduce Combined

§ Usually map and reduce go hand in hand:
§ A function being applied to single elements
§ The results are then passed to a combiner function

§ A concrete example:
§ Count the number of times a certain word appears in a text

§ Solution:
§ Partition: Split the text in equally-sized chunks
§ Map: Do the word count
§ Reduce: Add the counts

§ Various map/reduce frameworks at your disposal!
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The Power of Map-Reduce

§ The combination of the Map and Reduce patterns has been extremely successful
in massive distributed data processing

§ A little bit of history…
§ 2004: Google publishes the MapReduce paper

§ 2006: Hadoop is released, inspired by MR

§ Nowadays, MR is behind every click on popular web sites or services

§ Facebook, Twitter, Yahoo, …
§ Analytics to predict user interests, target ads, show recommendations, …  

and many more
§ Robust, fault tolerant

§ Scale to crunch large datasets
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Map-Reduce and Functional Chains

§ Map and reduce were born in functional programming
§ Declare what you want to do, not how
§ No side-effects

§ High-level view, based on two main concepts:
§ Data is organised in collections of elements
§ We apply functions to those elements, possibly in a chain

§ Implemented by frameworks like Spark
§ No need to manage parallelisation, just think about opportunities for

parallelism!

histo = events.map(fillHist).reduce(mergeHist)

CERN School of Computing 2019

SW Design in the Many-Cores Era

66

Map-Reduce and Functional Chains II

Part 
1

Events Events
(partitions)

Part 
2

Histogram
(partitions)

Part 
1

Part 
2

map

map Hreduce

Final
Histogram

§ Implementation responsible for producing a parallel execution plan
§ Where are the data?
§ What resources are available?
§ What optimisations can be applied?
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Scan

§ Scan is another offspring of the iteration pattern with more relaxed 
boundary conditions

§ Requirements:
§ Result of element n depends on n-1
§ Successor function is associative
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A B C D E F G H

A' B' C' D' E' F' G' H'

Scan II

Serial version Parallel version
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Scan III

§ Scan is another offspring of the iteration pattern with more relaxed 
boundary conditions

§ Requirements:
§ Result of element n depends on n-1
§ Successor function is associative

§ Already a non-trivial implementation necessary 

§ Speedup: very limited
§ At most n / log n
§ Number of instructions required is worse (up to x2)
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Pipeline

§ The pipeline pattern is the good old assembly line
§ Work split into a sequence of operations with a 

producer-consumer relationship
§ Work items go from one stage to the next
§ The order of steps is important
§ Different operations on different items are independent
§ Stages can be serial or parallel (accept one or more 

items simultaneously)

§ More complex cases can have a directed acyclic graph 
instead of a purely linear setup

§ The speedup of a pipeline is given by Amdahl�s Law

a

c

b
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Pipeline II

§ Intel’s TBB offers a feature for implementing a pipeline too:

a

c

b

parallel_pipeline( max_number_of_live_tokens, 
make_filter<void,I1> (mode0, a) &
make_filter<I1,I2>  (mode1, b) &
make_filter<I2,void> (mode2, c)

);

parallel
serial_in_order
serial_out_of_order
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Pipeline III
float RootMeanSquare( float* first, float* last, int n ) {

float sum = 0;
parallel_pipeline(16,       

make_filter<void,float*>(
filter::serial_in_order,
[&](flow_control& fc) -> float* {

if ( first < last ) {
return first++;

} else {
fc.stop();
return nullptr;

}
}    

) &
make_filter<float*,float>(

filter::parallel,
[](float* p) { return (*p)*(*p); } 

) &
make_filter<float,void>(

filter::serial_in_order,
[&](float x) { sum += x; }

)
);
return sqrt(sum / n);

}

Step 2 can run in 
parallel with itself

Step 3 is not 
thread-safe

Step 1 handles 
the data stream
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Superscalar Sequences

§ Split work into a number of tasks and define 
their data dependencies

§ Let a task scheduler do the rest

§ Pattern followed by concurrent HEP data 
processing frameworks

§ Assumption of this model is that there are no hidden data dependencies 
and no side-effects unknown to the scheduler
§ Let’s have a look at these assumptions…
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Hidden Data Dependencies

§ Content of the event store depends on the execution order

§ Thread-safe objects don’t help at all

§ It is a pure logic flaw

std::atomic_bool doit(false);

void task1() {
…
if (doit)) {
eventstore.put(fancystuff);

}
}

void task2() {
doit = true;

}

Thread-safe 
boolean variable
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Side Effects

§ Triggered when a computation modifies some shared state outside of its 
local environment
§ e.g. a global variable

§ They are a major obstacle for parallelism
§ Watch out for them when applying your parallel patterns!

§ In general every non thread-safe resource is an issue

§ Remember from previous lectures:
§ Side-effect free resources are the ideal solution
§ If not possible, tell the scheduler about what you need and �reserve�

what is unsafe
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Take-Away Messages

§ There exist design patterns to help you parallelising your 
programs
§ Check if you can reuse them!

§ They all have their origin in serial patterns, but add constraints to 
the operations allowed

§ Map-Reduce is a very successful pattern, used every day for 
distributed processing of large amounts of data

§ High-level features like C++ lambdas, the TBB library or the 
Spark framework make it easier for you to get started with these 
patterns
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Base Concepts of Parallel 
Programming: A Pragmatic 

Approach

Thanks to Danilo Piparo for preparing 
these slides and lecturing them in the 
previous years!
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Outline of This Lecture

§ Concurrency: asynchronous execution and threads

§ Synchronisation: design principles, replication, atomics, 
transactions and locks

The Goals:
1) Become familiar with the basic concepts of parallel programming
through the discussion of concrete examples in C++
2)  Know what is behind the scenes of a task based approach
3)  Be able to start developing parallel applications.
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C++: A Reminder

§ The approach of this lecture is pragmatic.
§ �Forward declarations� to concepts treated later will be used!
§ Concepts are illustrated through concrete examples involving C++ 

constructs.

§ C++ is the programming language of HEP for frameworks, event 
generators, simulation toolkits, analysis and reconstruction applications 
(number crunching code!)
§ Python is also widespread for configuration, analysis and scripting

§ C++: �The power, elegance and simplicity of a hand grenade�
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Object Orientation

C++ allows OO programming.

Now, are objects good?

Almost copied from Tony Albrecht: “Pitfalls of Object Oriented Programming”



CERN School of Computing 2019

SW Design in the Many-Cores Era

81

Object Orientation

C++ allows OO programming.

Now, are objects good?

§ Well, yes

Almost copied from Tony Albrecht: “Pitfalls of Object Oriented Programming”

All of the HEP code 
moved from FORTRAN 
to C++ in the early 90s
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Object Orientation

C++ allows OO programming.

Now, are objects good?

§ Well, yes

§ And no

Almost copied from Tony Albrecht: “Pitfalls of Object Oriented Programming”

All of the HEP code 
moved from FORTRAN 
to C++ in the early 90s
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Object Orientation

C++ allows OO programming.

Now, are objects good?

§ Well, yes

§ And no

Almost copied from Tony Albrecht: “Pitfalls of Object Oriented Programming”

All of the HEP code 
moved from FORTRAN 
to C++ in the early 90s
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Object Orientation

C++ allows OO programming.

Now, are objects good?

§ Well, yes

§ And no

Keyword: Data Oriented Design (re-design?)

Almost copied from Tony Albrecht: “Pitfalls of Object Oriented Programming”

All of the HEP code 
moved from FORTRAN 
to C++ in the early 90s
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C++ Evolves!
§ A committee reviews the C++ standard

§ CERN is part of it!

Widely supported by compilers since some time, e.g.:
• GCC >= 4.8
• Clang >= 3.4
Commercial compilers somewhat lagging behind novelty

Extensive support 
for concurrency!
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C++ Evolves!
§ A committee reviews the C++ standard

§ CERN is part of it!

-std=c++14
switch to activate it
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Concurrency
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Asynchronous Task Execution
§ Problem: a long calculation, the result of which is not 

immediately needed

§ Possible solution: asynchronous execution of the 
calculation, retrieval of the result at a later stage

§ Nuances: result may or may not be needed later depending 
on the control flow steering the application
§ Lazy evaluation?

Main “line of work”

Long calculation

Time

Among the simplest 
asynchronous 
setups!
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std::async

§ A solution is provided by the standard library natively: std::async
§ #include <future>

§ Execute a function concurrently in a separate thread or on demand 
when the result is needed (lazily)

§ Result is a std::future: a �bridge� between the two locations:
§ std::future �Transports� results and exceptions from thread

to thread

§ In orther words, code to be executed is passed around
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std::async in Action

#include <future>
#include <iostream>

int lenghtyCalculation(){ […] };
void doOtherStuff(){ […] };

int main(){
std::future<int> myAnswer = std::async(lenghtyCalculation);
doOtherStuff();
std::cout << “The result is: ” << myAnswer.get() << std::endl;
}
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std::async in Action

#include <future>
#include <iostream>

int lenghtyCalculation(){ […] };
void doOtherStuff(){ […] };

int main(){
std::future<int> myAnswer = std::async(lenghtyCalculation);
doOtherStuff();
std::cout << “The result is: ” << myAnswer.get() << std::endl;
}

Header for async 
and future

“Launch” the 
calculation

Retreive result

§ std::async can have a second parameter, the “policy”:
§ std::launch::async: execute function in a new separate thread
§ std::launch::deferred: defer call until get() is called (lazy)
§ Default: “async or deferred”, the implementation chooses!
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std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = 
std::async(lenghtyCalculation);

myAnswer.get()
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std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = 
std::async(lenghtyCalculation);

myAnswer.get()

It’s easy after all, isn’t it?
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Well, to be Honest
§ Unfortunately scientifically relevant / potentially lucrative real life use 

cases are complex
§ Cannot be solved simply throwing threads at them J

§ In addition, many existing high-quality non parallel large software 
systems are in production
§ Starting fresh may not be always possible

§ Example: software stack of an LHC experiment
§ Tens of (large) packages integrated
§ O(102) shared libraries
§ Experiment specific code
§ à Millions of nicely working lines of code

Need to think parallel
• Evolve the existing systems
• Be disruptive and think to the future

Unity of opposites J
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Threads
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Let�s switch gears: Threads

§ From the operating system point of view:
§ Process: isolated instance of a program, with its own space in (virtual) 

memory, can have multiple threads
§ Thread: light-weight process within a process, sharing the memory with the 

other threads living in the same process

§ The kernel manages the existing threads, scheduling them to the 
available resources (CPUs)*
§ There can be more threads in a single process than cores in the machine!

* Actually mapping user threads to kernel threads, but this simplification ok in first order!
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Interlude: A Program in Memory
§ Text Segment: code to be 

executed.

§ Initialized Data Segment: 
global variables initialized by 
the programmer.

§ Uninitialized Data Segment: 
This segment contains 
uninitialized global variables. 

§ The stack: The stack is a 
collection of stack frames. It 
grows whenever a new 
function is called. “Thread 
private”.

§ The heap: Dynamic memory 
(e.g. requested with �new�). 

HEP: depth 
of ~50 not 
seldom 
reached
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Interlude: A Program in Memory
§ Text Segment: code to be 

executed.

§ Initialized Data Segment: 
global variables initialized by 
the programmer.

§ Uninitialized Data Segment: 
This segment contains 
uninitialized global variables. 

§ The stack: The stack is a 
collection of stack frames. It 
grows whenever a new 
function is called. “Thread 
private”.

§ The heap: Dynamic memory 
(e.g. requested with �new�). 

HEP: depth 
of ~50 not 
seldom 
reached

Example of allocations:
- On the stack:

int a=12;
myClass myObject;

- On the heap:
int* a_pointer = new int;
myClass myObjetPtr = new myClass();
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Interlude: A Program in Memory
§ Text Segment: code to be 

executed.

§ Initialized Data Segment: 
global variables initialized by 
the programmer.

§ Uninitialized Data Segment: 
This segment contains 
uninitialized global variables. 

§ The stack: The stack is a 
collection of stack frames. It 
grows whenever a new 
function is called. “Thread 
private”.

§ The heap: Dynamic memory 
(e.g. requested with �new�). 

HEP: depth 
of ~50 not 
seldom 
reached

Terminology:
Threads have their own stack, but they share a common heap
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Processes and Threads: Pricetags
Process:

Isolated (different address spaces)

Easy to manage

Communication between them possible but pricey

Price to switch among them

Threads:

Sharing memory (communication is a memory access)

Lower overhead for creation, lower coding effort

Fit well many-cores architectures

Ideal for a task-based programming model
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Threads in C++

§ C++ offers a construct to represent a thread: std::thread

§ Interfaced to the underlying backend provided by the OS – 100% portable:

§ Linux: pthreads
§ Windows: Windows threads

§ …

§ A function (a callable in general) can be executed within a thread 
asynchronously

§ Many more possibilities than the simple std::async execution
§ Full control on the thread!
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Threads example

#include <thread>
#include <iostream>

void f(){std::cout << “Hello Concurrent World!\n”; }

int main(){
std::thread t(f);
t.join();
}
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#include <thread>
#include <iostream>

void f(){std::cout << “Hello Concurrent World!\n”; }

int main(){
std::thread t(f);
t.join();
}

Threads example
Header for 
std::thread

Create and start a thread

Wait for the thread to finish its job

§ In general, it is possible that the thread does not need to be joined
§ A �daemon thread�: the method to use is std::thread::detach()
§ Once detached, the thread cannot be joined anymore!

§ Possible usecases: I/O, monitor filesystems, clean caches…
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A Pitfall with Threads

#include <thread>
#include <iostream>

void f(const std::string& s){std::cout << s; }

void g(){
std::string s(“Hello\n“);
std::thread t(f,s);
t.detach();
}
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#include <thread>
#include <iostream>

void f(const std::string& s){std::cout << s; }

void g(){
std::string s(“Hello\n“);
std::thread t(f,s);
t.detach();
}

A Pitfall with Threads

Parallel programs: variables� lifetime even more important than in sequential 
world
Typical behaviour of the example above:
§ Function g terminates before the lambda: s is a dangling reference!
§ Corruption and segfaults are guaranteed

String s lives in the 
scope of function g

Passed by 
reference
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#include <thread>
#include <iostream>

void f(const std::string s){std::cout << s; }

void g(){
std::string s(“Hello\n“);
std::thread t(f,s);
t.detach();
}

A Pitfall with Threads

§ A possible solution: create a string object and pass it by value

§ But it’s a copy of a string! Yes.

§ The phase-space of design and implementation choices significantly 
expands when introducing concurrency!

Always carefully 
consider ownership!
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#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

std::mutex myMutex;
void printThreadID(int i){
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << "thread num " << i << " - id "

<< std::this_thread::get_id() << std::endl;
};

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID,i);

for (auto& t : myThreads)
t.join(); 

}

A possible prototype backend 
behind task oriented programming! 
A possible prototype backend 
behind task oriented programming! 

A First Abstraction
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#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

std::mutex myMutex;
void printThreadID(int i){
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << "thread num " << i << " - id "

<< std::this_thread::get_id() << std::endl;
};

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID,i);

for (auto& t : myThreads)
t.join(); 

}

A possible prototype backend 
behind task oriented programming! 
A possible prototype backend 
behind task oriented programming! 

A First Abstraction

Be patient for the moment! J

Identify the thread

The first step towards 
automating the management 
of threads in the application!

Limitation: cannot 
retrieve the return value.



CERN School of Computing 2019

SW Design in the Many-Cores Era

109

#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

std::mutex myMutex;
void printThreadID(int i){
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << "thread num " << i << " - id "

<< std::this_thread::get_id() << std::endl;
};

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID,i);

for (auto& t : myThreads)
t.join(); 

}

A possible prototype backend 
behind task oriented programming! 
A possible prototype backend 
behind task oriented programming! 

A First Abstraction

Be patient for a moment! J

Identify the thread

Limitation: cannot 
retrieve the return value.

The first step towards 
automating the management 
of threads in the application!

-> g++ –std=c++14 –lpthread -o myTest myTest.cpp 
-> ./myTest
thread num 0 - id 139708894000896
thread num 5 - id 139708852037376
thread num 3 - id 139708868822784
thread num 2 - id 139708877215488
thread num 4 - id 139708860430080
thread num 8 - id 139708826859264
thread num 1 - id 139708885608192
thread num 7 - id 139708835251968
thread num 6 - id 139708843644672
thread num 9 - id 139708818466560

When dealing with 
concurrency, 
asynchronous 
events are daily 
business!
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The Thread Pool Model
§ Thread pool: ensemble of worker threads which are …

§ Initialised once, consuming work from …

§ .. A work queue …

§ .. to which elements of work (tasks) can be added

Hard to program in an optimised and general way!
(usually provided by 3rd part libraries)

Thread Pool

Task Queue

Completed Tasks

Running task

Free Worker
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Modern Syntax: An Interlude

§ A nice byproduct of the previous examples - three C++ constructs:
§ std::vector<T>::emplace_back(T&&)
§ auto
§ for (auto& element : myCollection)

§ emplace_back: do not construct and then copy/move back in the vector 
(push_back) but construct in place. One copy less!

§ auto: do not specify the type, the compiler finds it out at compile time. 
Useful to avoid tedious typing also detrimental for readability of the code!

§ Range based loops: build a loop with a concise syntax!

A modern approach to scientific computation cannot avoid
the usage of the most modern tools!

?!
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Synchronisation:
Good Design, Replication, 
Atomics, Transactions and 

Locks
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The Problem
§ Fastest way to share data: access the same shared memory

§ One of the advantages of threads

§ Parallel memory access: delicate issue - race conditions
§ I.e. behaviour of the system depends on the sequence of events 

which are intrinsically asynchronous

§ Consequences, in order of increasing severity
§ Catastrophic terminations: segfaults, crashes
§ Non-reproducible, intermittent bugs
§ Apparently sane execution but data corruption: e.g. wrong value of a 

variable or of a result

Operative definition: An entity which cannot run w/o issues linked to parallel 
execution is said to be thread-unsafe (the contrary is thread-safe)
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To Be Precise: Data Race

Standard language rules, �1.10/4 and /21:

•Two expression evaluations conflict if one of them modifies
a memory location (1.7) and the other one accesses or 
modifies the same memory location.

•The execution of a program contains a data race if it 
contains two conflicting actions in different threads, at least 
one of which is not atomic, and neither happens before 
the other. Any such data race results in undefined behaviour.
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Simple Example
Concurrency can compromise correctness
§ Two threads: A and B, a variable X (44)
§ A adds 10 to a variable X
§ B subtracts 12 to a variable X
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Why so many strategies?

§ Design, replication, atomics, transactions and locks !

§ There is no silver bullet to solve the issue of “resources 
protection”
§ Complex problematic

§ Case by case investigation needed
§ Better to be aware of several strategies 

§ Best solution: often a tradeoff
§ The lightest in the serial case?
§ The lightest in presence of high contention?
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What is not Thread Safe?
Everything, unless explicitly stated!

In four words: Shared State Among Threads

Examples:

§ Static non const variables

§ STL containers
§ Some operations are thread safe, but useful to assume none is!
§ Very well documented (e.g. http://www.cplusplus.com/reference)

§ Many random number generators (the stateful ones)

§ Calls like: strtok, strerror, asctime, gmtime, ctime …

§ Some math libraries (statics used as cache for speed in serial execution…)

§ Const casts, singletons with state: indication of unsafe policies 

It sounds depressing.  But there are several ways to protect thread unsafe 
resources!
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Const Means Thread Safe

“I do point out that const means immutable and 
absence of race conditions[…]” B. Stroustrup

More a “new convention” rather than a technique.
• True for the STL and all at least C++11 compliant code.
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Functional Programming Style
Operative definition: computation as evaluation of functions the result of 
which depends only on the input values and not the program state.

§ Functions: no side effects, no input modification, return new values

3 examples of functional languages: Haskell, Erlang, Lisp.

C++: building blocks to implement functional programming. E.g.

§ Stl algorithms: map an operation to a list of values.

§ Decompose operations in functions, percolate the information through 
their arguments

Even without becoming purists, functional programming principles 
can avoid lots of headaches typical of parallel programming
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One copy of the data per Thread
§ Sometimes it can be useful to have thread local variables

§ A “private heap” common to all functions executed in one thread

§ Thread Local Storage (TLS)

§ Replicate per thread some information
§ C++ keyword thread_local

§ Analogies with multi-process approach but
§ Does not rely on kernel features (copy-on-write)
§ Can have high granularity

§ E.g.: build “smart-thread-local pointers”
§ Deference: provide the right content for the current thread

§ Not to “one size fits them all” solution
§ Memory usage
§ Overhead of the implementation, also memory allocation strategy

Example:
boost::thread_specific_ptr
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TLS in Action
#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

thread_local unsigned int tlIndex=0;

std::mutex myMutex;
void IncrAndPrint(const char* tName,unsigned int i){
tlIndex+=i;
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << tName << " - Thread loc. Index " << tlIndex 

<< std::endl;
};

int main(){
auto t1 = std::thread(IncrAndPrint,"t1",1);
auto t2 = std::thread(IncrAndPrint,"t2",2);
IncrAndPrint("main",0);
t1.join(); t2.join();

}

One private copy per thread 
will exist

Thread 1, 2 and main thread
(de facto just “threads” for the OS)
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TLS in Action
#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

thread_local unsigned int tlIndex=0;

std::mutex myMutex;
void IncrAndPrint(const char* tName,unsigned int i){
tlIndex+=i;
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << tName << " - Thread loc. Index " << tlIndex 

<< std::endl;
};

int main(){
auto t1 = std::thread(IncrAndPrint,"t1",1);
auto t2 = std::thread(IncrAndPrint,"t2",2);
IncrAndPrint("main",0);
t1.join(); t2.join();

}

One private copy per thread 
will exist

Thread 1, 2 and main thread
(de facto just “threads” for the OS)

Possible output:
main - Thread loc. Index 0
t2 - Thread loc. Index 2
t1 - Thread loc. Index 1

Possible output w/o tls (not correct!):
main - Thread loc. Index 0
t2 - Thread loc. Index 3
t1 - Thread loc. Index 3
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Atomic Operations
§ Building block of thread safety: an atomic operation is an operation 

seen as non-splittable by other threads
§ Other real life examples: database transactions

§ Either entirely successful (subtract from A, add to B) or rolled back

§ C++ offers support for atomic types 

§ #include <atomic>
§ Usage: std::atomic<T>

§ Operations supported natively vary according to T

§ Subtleties present: e.g. cannot instantiate atomic<MyClass> under all 

circumstances (must be trivially copyable)

§ Well behaved with:

§ boolean, integer types. E.g. std::atomic<unsigned long> 
§ Pointer to any type. E.g. std::atomic<MyClass*> 
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Atomic Counter

3 observations:
• Atomics allow highly granular 

resources protection.
• Real life example: incorrect 

reference counting leads to 
double frees!

• Bugs in multithreaded code can 
have extremely subtle effects and 
are in general not-reproducible!

#include <atomic> …

std::atomic<int> gACounter;
int gCounter;

void f(){ //increment both
gCounter++;gACounter++;}

int main(){
std::vector<std::thread> v;
v.reserve(10);

for (int i=0;i<10;++i)
v.emplace_back(std::thread(f));

for (auto& t:v) t.join();

std::cout << "Atomic Counter: "  
<< gACounter << std::endl
<< "Counter: " 
<< gCounter << std::endl; 

}

$ g++ -o atomic atomic.cpp -std=c++14 –lpthread
$ ./atomic
Atomic Counter: 10
Counter: 9
$./atomic
Atomic Counter: 10
Counter: 10
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The Cornerstone of Atomics
§ Compare/exchange operation: fundamental in programming with atomics

§ At the core of implementing lock-free data structures

§ Check the value of the atomic
1) If equal to expected, store into the atomic the value of desired. 

Return true if successful
2) If different from expected, load value of the atomic into it and return 

false

bool std::atomic<T>::compare_exchange_strong (T& expected, T desired);

All of these operations are seen as a single step by all threads:
no race conditions are possible

Usable also with pointer types
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Compare/Exchange Example
§ Problem: build cache in an object, many threads can ask the cached value

§ Example: f angle between x=0 axis and vector initialised only with x, y and z

enum class cacheStates : char { kSet, kSetting, kUnset };

float myVect::phi(){
if(cacheStates::kSet==m_phiCacheStatus.load()) return m_phi;
float stackPhi = myMath::phi(m_x,m_y);

auto expected = kUnset;
if(m_phiCacheStatus.compare_exchange_strong(expected, cacheStates::kSetting)) {

m_phi = stackPhi ;
m_phiCacheStatus.store(cacheStates::kSet);
return m_phi;

}
return stackPhi;}
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enum class cacheStates : char { kSet, kSetting, kUnset };

float myVect::phi(){
if(cacheStates::kSet==m_phiCacheStatus.load()) return m_phi;
float stackPhi = myMath::phi(m_x,m_y);

auto expected = kUnset;
if(m_phiCacheStatus.compare_exchange_strong(expected, cacheStates::kSetting)) {

m_phi = stackPhi ;
m_phiCacheStatus.store(cacheStates::kSet);
return m_phi; 

}
return stackPhi;}

Compare/Exchange Example
§ Problem: build cache in an object, many threads can ask the cached value

§ Example: f angle between x=0 axis and vector initialised only with x, y and z

If already calculated (ask 
atomically), return it!

Otherwise, calculate it

Only 1 thread will make it  
through this barrier!

Set the state to kSet and 
return

Return the calculated cache: you may do the work multiple times (in 
presence of high contention), but you never block!
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Transactional Memory (TM)
Simple example: increment variable x

Steps:
1.Check x “version” and record 
it
2.Increment x, do not actually 
change the value of x
vIs the version of x now the 
same of the one recorded? 
YES: No thread varied the 
value of x during the increment 
operation: commit new value
NO: Roll back to point 1

CPU 0

transaction{
++x;
commit{
x version is v
x version was v
update x
}

}

...

Commit 
successful

CPU 1

…

transaction{
++x;
commit{
x version is v’
x version was v
repeat
}

++x;
commit{
x version is v’
x version was v’
update x
}

}
…

Commit 
successful

Commit  
failed

Pseudo-code

Tim
e

Roll-back and retry if 
needed!

“like a DB”
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Transactional Memory (TM)
§ Software Transactional Memory (STM) already widely available

§ STM can be slow – Useful tool to learn how to protect resources!

§ TM supported by modern CPUs (e.g. Intel Haswell – TSX extensions) 

§ Concept not part of C++ (yet?), but supported at least by GCC compilers. 
Two types of transactions:

§ __transaction_atomic: isolated, may contain only safe code (i.e. possible to roll 
back, no I/O, no volatile variables…)

§ __transaction_relaxed: isolated only from other transactions. Used where atomic 
transaction is not suited (e.g. IO, volatile, atomic memory access).

Atomic transactions can be nested into atomic and relaxed transactions, 
relaxed transactions only in relaxed transactions.

We will focus on atomic transactions only!
CERN School of Computing 2019

SW Design in the Many-Cores Era

130

An STM Concurrent Stack
[ … rest of the implementation … ] 
bool stmQueue::push(const float f){  
bool statusCode = false;
__transaction_atomic {   
if (m_size<m_MaxStackSize){
m_v[m_size]=f;    
m_size++;
statusCode=true;  

}      
}
return statusCode;

}
bool stmQueue::pop(float& f){
bool statusCode = false;
__transaction_atomic { 
if (m_size>0){
m_size--;
f=m_v[m_size];
statusCode=true;

}
} 
return statusCode;

}
[ … rest of the implementation … ] 

One single, non splittable 
block of operations.

Transactions are a powerful way to 
implement synchronisation
• Code simple to understand and 

maintain
• Lock pathologies automatically 

avoided
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Locks and Mutexes

§ Make a section of the code executable by one thread at the time

§ Locks should be avoided, but yet known
§ They are a blocking synchronisation mechanisms
§ They can suffer pathologies
§ … they could be present in existing code: use your common sense 

and a grain of salt!

Terminology:

§ Before the section, the thread is said to acquire a lock on a mutex

§ After that, no other thread can acquire the lock
§ After the section, the thread is said to release the lock
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n
pp

Speedup
+-

=
)1(

1

n: number of cores
p: parallel portion

“… the effort expended on achieving high parallel 
processing rates is wasted unless it is accompanied by 
achievements in sequential processing rates of very 
nearly the same magnitude.” - 1967

§ It predicts the maximum 
speedup achievable given a 
problem of fixed size

Amdahl’s Law
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A first Lock Example

[…]
std::mutex gMutex;
void g(){

std::lock(gMutex);
doWork();
std::unlock(gMutex);
}

[…]

Only one thread at the 
time can access this 
sectionAcquire/release 

lock on the 
mutex
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A first Lock Example

[…]
std::mutex gMutex;
void g(){

std::lock(gMutex);
doWork();
std::unlock(gMutex);
}

[…]

Only one thread at the 
time can access this 
sectionAcquire/release 

lock on the 
mutex

§ Potential issue: doWork() throws an exception

§ The lock is never released: the program will stall forever

§ A possible solution: a scoped lock (seen in the previous slides!)
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Scoped Locks: the Proper Way

[…]
std::mutex gMutex;
void g(){

std::lock_guard<std::mutex> lg(gMutex);
doWork();

}
[…]

Instance of a 
class, locks the 
scope!

§ Construct an object which lives in the scope to be locked

§ C++ provides a class to ease this: std::lock_guard<T>(T&)

§ When the scope is left, the object destroyed and the lock released

§ Application of the RAII idiom (Resource Acquisition Is Initialisation)

§ RAII should be used in modern and performant C++
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Pathologic Behaviours of Locks

Deadlock: Two tasks are waiting for each other to finish in order to proceed. 

§ One task tries to acquire a lock it already acquired and the mutex is not 
recursive

Convoying: A thread holding a lock is interrupted, delayed (by the OS, to 
do some I/O). Other threads wait that it resumes and releases the lock.

Priority inversion: A low priority thread holds a lock and makes a high 
priority one wait.

Lock based entities do not compose: the combination of correct 
components may be ill behaved.
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A deadlock
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Good Practices with Locks

§ Don�t use them if possible

§ … Really, don�t!

§ Hold locks for the smallest amount of time possible

§ Avoid nested locks

§ Avoid calling user/library code you don�t control which holds 
locks

§ Acquire locks in a fixed order
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Take Away Messages
Concurrency:

§ Know the internals behind a task based approach
§ Threads and shared memory

§ Asynchronous execution and non-determinism permeate concurrent 
applications: 

§ Paradigm shift needed to understand and design parallel software solutions

Synchronisation:

§ Try not to be obliged to synchronise: choose the right design

§ Choose atomic types and memory transactions whenever possible
§ Atomic types supported by C++

§ Locks are the last resort:
§ Reduce the critical sections to the bare minimum
§ Hold locks for the smallest time possible
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Understanding, Debugging and 
Profiling a Complex Multithreaded 

Application
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Outline of This Lecture

Before running the application:

1) Elements of static code analysis: Clang

If something goes wrong:

2) Understanding and debugging a multithreaded application with GDB

Now that it works, how fast is it?

3) Elements of performance measurement: igprof

The Goals:
• Understand the relation between performance and correctness
• Master the strategies to be able to analyse, debug and profile
a complex parallel application 

Three logical steps
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Performance and Correctness
§ Correctness comes first: if your program is buggy, 

unreliable, unpredictable, no performance consideration 
makes sense (at all)

§ Performance is then crucial: algorithms translate to real 
machine code, running on real hardware with its own 
features (CPUs, memory hierarchy, accelerators)

A high quality test 
suite must be part of 
every software tool
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Performance and Correctness

§ Correctness and performance: tightly correlated

§ Correctness checked quickly and extensively à
runtime/memory improvements validated more easily
§ Be in condition to label “changes” in the final results 

as “acceptable”, “expected” or “in the wrong direction”
§ Pandora’s box: what is the “right” result? The one we 

had before? The new one? The “reference” one? Not 
trivial at all!

§ Use a grain of salt, be in control of what happens!
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Features of A Good Testsuite
§ It’s easy to run

§ One single command runs all tests

§ Tests can be selected, e.g. with regular expressions

§ It’s automatically ran

§ N times per day

§ Continuously check new code committed by developers

§ Results are easy to interpret

§ E.g. Published on the web

§ Easy to track down problem, e.g. “test # 1206 failed with 
this output”
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Testing and parallel execution

§ Test: minimal program aiming to stress a particular feature 
of the code

§ Parallel code: no predictable order of operations possible

§ The “same” test, execution pattern can be “different”

§ Solution: properly designed tests

§ E.g. Maximising contention to “challenge” stability of the 
software
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Reproducibility
§ E.g. two subsequent runs of the program produce the same 

histograms, identical bin by bin

§ Simple for small setups

§ Can be tricky with 5M lines, ~100 shared libraries

§ Performance optimisations can lead to variations in final 
result (e.g. migration of entries to neighbouring bins)

§ Fundamental to remove all sorts of “noise”

§ Non reproducibility in the sequential case: absence of 
control on the system

§ E.g. uninitialised variables, sloppy seeding of random 
generations, bogus memory access
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Attitude Towards Testing
§ Aim to test-driven development: write tests before code

§ Test features individually one by one

§ For each bug reported/found: create a reproducing test, add 
it to the suite, fix it.

§ If it’s not reproduced the bug does not exist!
§ Don’t live with broken windows: follow up each failure

§ Assume it always points to a serious problem
§ Time invested in writing tests is strategic

§ It always rewards

If a software tool or one of its functionalities is not tested always 
assume it does not work
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The Broken Windows Theory

“[…] Consider a building with a few broken windows. If the 
windows are not repaired, the tendency is for vandals to break 
a few more windows. Eventually, they may even break into the 
building, and if it's unoccupied, perhaps become squatters or 
light fires inside.”

Wilson, James Q. "Broken windows: The police and neighborhood safety James 
Q. Wilson and George L. Kelling." Criminological perspectives: essential 
readings 400 (2003).
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Elements of Static Code 
Analysis
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Static Code Analysis

§ Idea: embed static analysis in testing suites

§ The procedure of analysing the source code before compiling and 
running to automatically find bugs
§ Rise (yet other) fences to protect against mistakes and bugs
§ Easily pluggable in big projects’ build infrastructures
§ E.g. code blocks never executed because of faulty logic in if 

statements, thread unsafe constructs, etc.

§ Several tools available, commercial and open source
§ Reference on the market: Coverity
§ Open source: Clang Static Analyzer
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LLVM and Clang
LLVM
§ Free and open source

§ A compiler infrastructure

§ Frontend [C++,C,...] à Optimizer à Backend [x86, CUDA, ...]

§ http://llvm.org

Clang
§ LLVM frontend for C,C++ and Objective-C

§ A possible alternative to GCC in some respects

§ A lot of users - e.g. Apple, Intel (OpenCL)

§ http://clang.llvm.org

Very powerful technology: e.g. C++ interpreter built on LLVM & Clang, Cling
http://root.cern.ch/drupal/content/cling
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Clang Static Analyser

The static analyser is part of the clang frontend

It offers the possibility to examine the program code on two levels:

§ Analysis of the Abstract Syntax Tree ( AST )

§ Symbolic Execution:
§ Every possible path through the program is explored  and validated 

§ A battery of checks already included: uninitilialised access, dead 
stores, dereferencing null, invalid malloc calls, ...

§ User-defined can be added

§ HTML report created automatically, detailed annotations of the source 

§ scanbuild tool: automatically replace the calls to the compiler in a 
makefile

To fire static analysis: scan-build make

http://clang-analyzer.llvm.org/
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An AST
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Analysis for Thread Unsafety

Clang Static Analyzer: Custom checks can be added in form of a plugin 

written in C++

Checks for thread unsafety were developed by the LHC experiments

§Used in production for Q/A of experiments software

§Useful in general!

Some examples:

§Non const global/local statics

§Use of mutable keyword

§Use of const_cast to remove constness

§Other removals of constness (e.g. explicit cast)

§…

Note the importance
of const correctness
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Web Reports: an Example
FastJet tool taken as guinea pig: used to cluster 
jets by several experiments� software -
http://fastjet.fr/

Example coming from an old version of fastjet!
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Understanding and 
Debugging - GDB
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Debugging

Suppose something is wrong with your application: 

§ It nicely terminates but yields wrong results (worst case scenario!)

§ It crashes

§ It runs forever occupying several CPUs

§ It hangs forever with no CPU usage (e.g. a deadlock)

Effective debugging strategies and tools are the solution

The same techniques are also handy not only in case of problems

§ Suppose that the overall behaviour of a very complex application 
(~MLOC) is to be understood
§ E.g. CMS/Atlas/LHCb/Alice reconstruction
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Debugging Strategies
Write and use programs without bugs?

§ There is no such thing, except in totally trivial cases

§ All programs have and will have bugs

If possible, try not to introduce bugs in the first place!

Debug printouts as ‘poor man’s solution’:

Immediate to everybody: sometimes it’s enough!

/      Hard (impossible) to add printouts in 3rd party libraries

Distract the user from focussing on the debugging itself

Hard to use in a parallel program, encourage Heisen-Bugs influencing 
timing behaviour

Or better: Use a debugger like GDB
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GDB: The GNU Project Debugger

§ Free and open source, available on every Linux box

§ GDB is an interactive command line tool which can “see”:

§ Within a program during its execution

§ A posteriori, what a program was doing when it crashed

§ Works with applications written in C and C++ (among other languages)

§ No recompilation needed (although debugging symbols can be handy)

§ Stop the execution at some specified point

§ Execute line by line, stepping into functions if needed

§ Examine what is happening: e.g. print variable content

§ Thread aware: e.g. Stop threads, switch among them …

http://www.gnu.org/software/gdb/
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Reminder: A Program in Memory
§ Text Segment: code to be 

executed.

§ Initialized Data Segment: 
global variables initialized by 
the programmer.

§ Uninitialized Data Segment: 
This segment contains 
uninitialized global variables. 

§ The stack: The stack is a 
collection of stack frames. It 
grows whenever a new 
function is called.

§ The heap: Dynamic memory 
(e.g. requested with �new�). 

HEP: depth 
of ~50 not 
seldom 
reached
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An Example
#include <iostream>

void display(int x, int *xp) {
std::cout << "In display():\n�

<< " o value of x is " << x 
<< ", address of x is � << &x <<std::endl
<< " o xp points to " << xp 
<< " which holds " <<  *xp <<std::endl; }

int main() {
int a = 42;
int *ap = &a;
std::cout << "In main():\n"

<< " o value of a is "<< a 
<< ", address of a is � << &a << std::endl
<< " o ap points to " << ap 
<< " which holds " << *ap << std::endl;

display(a, ap);
return 0; }

g++ –o myExample myExample.cpp –g

To fire gdb: gdb myexecutable
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An Example
#include <iostream>

void display(int x, int *xp) {
std::cout << "In display():\n�

<< " o value of x is " << x 
<< ", address of x is � << &x <<std::endl
<< " o xp points to " << xp 
<< " which holds " <<  *xp <<std::endl; }

int main() {
int a = 42;
int *ap = &a;
std::cout << "In main():\n"

<< " o value of a is "<< a 
<< ", address of a is � << &a << std::endl
<< " o ap points to " << ap 
<< " which holds " << *ap << std::endl;

display(a, ap);
return 0; }

g++ –o myExample myExample.cpp –g

To fire gdb: gdb myexecutable

$ gdb myExample
[ … Some output … ]
(gdb) run
Starting program: /Users/<whoever>/gdb/myExample 
Reading symbols for shared libraries 
+++............................. done
In main():
o value of a is 5, address of a is 0x7fff5fbff744
o ap points to 0x7fff5fbff744 which holds 5
In display():
o value of x is 5, address of x is 0x7fff5fbff71c
o xp points to 0x7fff5fbff744 which holds 5

Program exited normally.
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Break Points

§ So far so good – you could have done this already without GDB!

§ But, GDB allows you to stop the execution of the application at a certain 
line or function with break points:

(gdb) break 12
Breakpoint 1 at 0x100000c60: file myExample.cpp, line 12.
(gdb) run
Starting program: /Users/<whoever>/gdb/myExample

Breakpoint 1, main () at myExample: 12
12 int *ap = &a;
(gdb) 

The break could have been introduced when a certain function is invoked:
àbreak <function name>
(“break display” in our case)
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And Now?
You can dump the stack with where:
(gdb) where
#0  display (x=42, xp=0x7fff5fbff7c4) at myExample:6
#1  0x0000000100000d2c in main () at myExample.cpp:14

See some of the surrounding code with list:

(gdb) list
1 #include <iostream>
2
3 void display(int x, int *xp) {
4 std::cout << "In display():\n" 
5 << " o value of x is " << x << ", address of x is " << 
&x << std::endl
6 << " o xp points to " << xptr << " which holds " <<  *xp
<< std::endl;
7 }
8 int main() {
9 int a = 42;
10 int *ap = &a;
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Interlude: Debugging Symbols

The compiler does not automatically bring the names of the symbols in 
the executables and libraries, the machine does not need them!

Humans do: include debugging symbols in the compiled binaries.

§ Names of variables, functions, classes, namespaces, …

Debugging symbols, 3 facts to remember:

§ Do not slow down the program!

§ Do not increase its memory footprint!

§ Do make binaries bigger (more disk space needed)!
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Navigating Program Execution
To “navigate” the program execution you can use:

§ step: continue running until control reaches new line. “Step into” functions

§ next: like step but functions are executed without stopping

§ finish: continue until end of current stack frame

§ return <expression>: prematurely exit the stack returning expression. 

§ break: show break points list
• disable <n>: disable break point n
• enable <n>: enable break point n
• delete <n>: delete break point n

•info threads: show threads

•thread <n>: step into thread n
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The Print Statement
#include "time.h"
#include <iostream>
int main(){

int t = clock();
std::cout << t << std::endl;
return 0;

}

print allows you to inspect the 
value of a variable.

(gdb) break 5
Breakpoint 1 at 0x100000d50: file ex12_2.cpp, line 5.
(gdb) run
Starting program: /Users/danilopiparo/gdb/ex12_2 
Reading symbols for shared libraries 
++............................. done

Breakpoint 1, main () at ex12_2.cpp:5
5 std::cout << t << std::endl;
(gdb) print t
$1 = 6637
(gdb) next
6637
6 return 0;
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Interlude 3: Machine Code with GDB

double myFloor(double x){
const int xi = int(x);
return x<0?xi-1:xi;
}

int main(){
myFloor(-3.14);
}

• Looking at the assembly is the 
only way to understand what the 
compiler actually did

• GDB allows to do that easily with 
disass
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Interlude 3: Machine Code with GDB

(gdb) disass /m myFloor
Dump of assembler code for function myFloor(double):
1 double myFloor(double x){
2 const int xi = int(x);
0x00000000004004e0 <+0>: cvttsd2si %xmm0,%eax

3 return x<0?xi-1:xi;
0x00000000004004e4 <+4>: cmpltsd 0x113(%rip),%xmm0 # 0x400600
0x00000000004004ed <+13>: lea -0x1(%rax),%edx
0x00000000004004f0 <+16>: cvtsi2sd %eax,%xmm2
0x00000000004004f4 <+20>: cvtsi2sd %edx,%xmm1
0x00000000004004f8 <+24>: andpd %xmm0,%xmm1
0x00000000004004fc <+28>: andnpd %xmm2,%xmm0
0x0000000000400500 <+32>: orpd %xmm1,%xmm0

4 }
0x0000000000400504 <+36>: retq 

End of assembler dump.
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#include <thread>
#include <vector>
#include <chrono>

void sleep(){
std::this_thread::sleep_for(std::chrono::seconds(100)); };

int main(){
std::vector<std::thread> myThreads;
for (int i=0; i<2; i++) myThreads.emplace_back(std::thread(sleep));
// Line 11
for (auto& t : myThreads) t.join();
}

GDB And Threads

§ GDB allows to inspect the behaviour of the threads of a 
process
§ info threads: display running threads
§ thread <n>: step into a thread
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GDB And Threads
$ gdb ./threadsSleep
[ … some output … ]
Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.
(gdb) break 11

Set a break point at line 11
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GDB And Threads

§ GDB allows to inspect the behaviour of the threads of a 
process
§ info threads: display running threads
§ thr <n>: step into a thread

$ gdb ./threadsSleep
[ … some output … ]
Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.
(gdb) break 11
Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.
(gdb) run
Starting program: /home/dpiparo/CSC/Examples/threadsSleep
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
[New Thread 0x7ffff6fe7700 (LWP 4440)]
[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12
12 for (auto& t : myThreads)

• GDB informs us it found the line at which it will break
• Run the application
• GDB informs us that 2 threads were spawned
• The breakpoint is reached
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GDB And Threads

§ GDB allows to inspect the behaviour of the threads of a 
process
§ info threads: display running threads
§ thr <n>: step into a thread

$ gdb ./threadsSleep
[ … some output … ]
Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.
(gdb) b 11
Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.
(gdb) run
Starting program: /home/dpiparo/CSC/Examples/threadsSleep
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
[New Thread 0x7ffff6fe7700 (LWP 4440)]
[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12
14 for (auto& t : myThreads)
(gdb) info threads
Id Target Id Frame
3 Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82
2 Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82
* 1 Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:14

• Get info about threads
• GDB prints the threads ids and which function is being executed
• The * identifies the thread where the break point was successful
• By default GDB freezes all threads simultaneously at a breakpoint

• “Take a snapshot of the execution status”
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GDB And Threads

§ GDB allows to inspect the behaviour of the threads of a 
process
§ info threads: display running threads
§ thr <n>: step into a thread

$ gdb ./threadsSleep
[ … some output … ]
Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.
(gdb) b 11
Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.
(gdb) run
Starting program: /home/dpiparo/CSC/Examples/threadsSleep
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
[New Thread 0x7ffff6fe7700 (LWP 4440)]
[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12
14 for (auto& t : myThreads)
(gdb) info threads
Id Target Id Frame
3 Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82
2 Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82
•1 Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:12
(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff6fe7700 (LWP 4440))]
#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82
82 ../sysdeps/unix/syscall-template.S: No such file or directory.

• Suppose we are interested in thread 2, let’s switch to it
• GDB informs us we are now in thread 2
• The cryptic messages are due to the fact that we compiled our exe 
with debugging symbols, not all the components it depends on! 
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GDB And Threads

§ GDB allows to inspect the behaviour of the threads of a 
process
§ info threads: display running threads
§ thr <n>: step into a thread

$ gdb ./threadsSleep
[ … some output … ]
Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.
(gdb) b 11
Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.
(gdb) run
Starting program: /home/dpiparo/CSC/Examples/threadsSleep
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
[New Thread 0x7ffff6fe7700 (LWP 4440)]
[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12
14 for (auto& t : myThreads)
(gdb) info threads
Id Target Id Frame
3 Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82
2 Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82
•1 Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:12
(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff6fe7700 (LWP 4440))]
#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82
82 ../sysdeps/unix/syscall-template.S: No such file or directory.
(gdb) where
#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82
#1 0x0000000000400caf in sleep() () at /usr/include/c++/4.8/thread:279
#2 0x00007ffff7b87a10 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#3 0x00007ffff76aae9a in start_thread (arg=0x7ffff6fe7700) at pthread_create.c:308
#4 0x00007ffff73d7ccd in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:112
#5 0x0000000000000000 in ?? ()
(gdb)

• Now let’s print the stack of thread number 2!
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GDB And Threads

§ By default GDB stops all threads simultaneously if a 
breakpoint is reached (so called “stop mode”)

§ It allows also to stop the thread where the breakpoint was 
reached and let the others proceed (“non-stop mode”)
§ De facto the user can bend the runtime behaviour of the 

application to her needs!
# Enable the async interface.
set target-async 1

# Pagination breaks non-stop.
set pagination off

# Finally, turn it on [off]!
set non-stop on [off]

Commands to switch between 
stop and non-stop modes within 
the gdb prompt
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More GDB (Black) Magic

Suppose your program behaves in a weird way now.

§ You can “attach” gdb to a running process (e.g. 300% CPU since 
minutes…)

§ gdb <PID>

Suppose your program crashed after hours of running, leaving you with no 
plots, but a core dump.

§ You can resume it as it was at the moment of the crash

§ gdb program core-file 

Get your pid:
ps aux | grep <Program name>
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Helgrind and DRD
§ Another pair of tools useful for debugging parallel programs

§ Part of the Valgrind suite

§ Allow to catch thread errors at runtime
§ Valgrind –tool=helgrind ./myProgram

§ Detection of potential thread unsafe operations, lock ordering 
problems, …
§ Difference between DRD and Helgrind: detection 

algorithms 

§ Downside: false positives L

§ Complementary tools: address and thread sanitiser offered 
by CLANG and GCC compiler suites.
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High Level Profiling
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A Simple Question

Q: Why should we strive for software performance, 
correctness, efficiency, ultimately throughput?
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For Money!

From “The Wolf of Wall Street”
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Code Optimisation
§ When dealing with large software projects, performance measurement 

is daily business
§ Especially for multithreaded applications: parallel Vs serial case, 

performance of different configurations of the parallel applications …

§ The identification of the hotspots (and their removal) is worth an 
enormous amount of resources

§ But don’t optimise before you know “what”!

§ A plethora of tools available, covering all quantities related to 
performance

§ Focus on a simple and easy to use one: igprof
§ Identify features common to all profilers

§ Igprof answers questions like:
§ What are the symbols that have the longest runtime?
§ What are the symbols that allocate the most memory?

http://igprof.org/
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The Golden Rule of Optimisation

Don�t develop theories, 
measure your program!

It is a capital mistake to theorize before one has data. 
Insensibly one begins to twist facts to suit theories, instead of theories to 
suit facts. Sherlock Holmes
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Igprof
§ Very general tool, free and open source

§ Measure runtime (speed)  and memory of an application
§ Works in the multithreaded case
§ Different metrics available

§ Little or negligible overhead
§ Runtime: 50 MB RSS and ~no runtime overhead 
§ Memory: it depends. For a large HEP application (600 libraries, ~2GB 

of memory, allocations at ~1MHz): 1 GB RSS and 250% runtime

§ Non intrusive
§ No instrumentation needed
§ No Kernel modules needed 
§ Hooking mechanism implemented

Results can be looked at as web or ASCII reports

Today we focus on 

the runtime 

measurements
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Igprof Runtime Profiler

§ Igprof measures the time spent in all the functions in seconds

§ Easy overall view, understand rapidly where the time is spent

§ Two kinds of costs per symbol (typical of ~every profiler):

§ Cumulative cost: time spent in the symbol and callees (i.e. int main() 
has the biggest cumulative cost)

§ Self cost: time spent in the symbol itself 

Both are necessary to find hot spots
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Igprof: An Example of CMS Simulation

Real measurement, not the latest greatest: it does not reflect the current state of the CMS software.
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Igprof: An Example of CMS Simulation

Real measurement, not the latest greatest: it does not reflect the current state of the CMS software.
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Take Away Messages
Dealing with a parallel application is complex:

Use procedures to rise fences to protect against mistakes, like static 
analysis to find bugs in an automatic way

§ Embed such tools in the build infrastructure of your SW

Use tools to inspect, manipulate their behaviour at runtime, like GDB
§ Become familiar with them, multithreaded programs are tough to 

debug

Use tools to measure performance, do not speculate
§ Start from simple yet powerful tools like igprof
§ Choose more complex ones to dive into the details 


