
Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Big things are different from small things

�1

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

The life time of HEP software

Software is a long-term commitment

R. Brun

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

�2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How do we cope?

We try to find a way of working that leads to success
• We create a “process” for building systems
• We devise methods of communicating and record keeping: “models”
• We use the best tools & methods we can lay our hands on

And we engage in denial:

�3

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Can’t technology save us?

We’ve built a series of ever-larger tools to handle large code projects:
CVS, SVN, Git for controlling and versioning code
Tools for building “releases” of systems
Tools for “configuration management”

But we struggle against three forces:
•We’re always building bigger & more difficult systems
•We’re always building bigger & more difficult collaborations
•And we’re the same old people

Net effect: We’re always pushing the boundary of what we can do

Stupidity got us into this mess; why can’t it get us out? - Will Rogers

�4

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.qezvgenmz80j

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How we got here:

First, you just wrote a big program

�5

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How we got here:

First, you just wrote a big program
But soon it was so big you wanted help

�6

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How we got here:

First, you just wrote a big program
But soon it was so big you wanted help
So you broke it into pieces/files/modules

�7

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How we got here:

First, you just wrote a big program
But soon it was so big you wanted help
So you broke it into pieces/files/modules
But how do you share work on those?

�8

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How we got here:

First, you just wrote a big program
But soon it was so big you wanted help
So you broke it into pieces/files/modules
But how do you share work on those?

�9

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Revision Control System (RCS)

Maintains a repository of text files
• Allows users to check-out, edit, check-in changed text
• Old code remains available

Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference
Anybody can get a specific set of source code file versions

�10

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Revision Control System (RCS)

Maintains a repository of text files
• Allows users to check-out, edit, check-in changed text
• Old code remains available

Each checked-in change defines a new revision
You can retrieve, ask for differences with any of them

• Revisions can be tagged for easy reference
Anybody can get a specific set of source code file versions

But only one person working on a file at a time!
Problem: This serializes development
Workarounds, but with problems of their own

�11

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Concurrent Versions System (CVS)

As systems & collaborations grow, efficiency goes down
“Version” idea: Track changes from one version to next

Big advantage: checkout is not exclusive
• More than one developer can have the same file checked out
• Developers can control their own use of the code for read, write
• Changes can come from multiple sources
• Tool handles (most) of the conflict resolution

�12

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.qezvgenmz80j

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

And systems still grow

You broke the code into pieces/files/modules
And things got more and more complicated
You needed an organization above the level of the file

�13

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Subversion (svn)

So you broke it into pieces/files/modules
And things got more and more complicated
You needed an organization above the level of the file
Want to be able to collaborate on that:

Subversion (svn) brings tools for doing that

�14

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.wv86sfapdcmf

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Why isn’t that enough?

CVS, SVN lets me “check out” complete source code. Then just compile!
• Works great for small projects

Runs into several levels of scaling problems:

1) Want to attach to external code
• We don’t write everything (though tempted)
• Sometimes don’t get source for external code
• Need some way to connect to specific external libraries:

Both specific product, and a specific version of that product

2) Want to separate code into multiple parts
• So people/institutions can take responsibility for parts
• But software has cross-connections
• Need structure that works for both

And still need to be able to build the code

�15

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Everybody is sharing a single repository
Every commit is immediately visible to everybody else

Development stands on shifting sand
 Detailed records, but little understanding

Workarounds!

 Tags and Branches

 External record keeping tools

 Package Coordinators

Scaling is still an issue

�16

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.wv86sfapdcmf

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Scaling: Handling complicated builds
Multiple “packages” require cross connects while compiling

• Typing the compile command gets boring fast
g++ -c -I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/PixelDigitization"
-I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/SiDigitization"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/InDetSimEvent"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/HitManagement"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestTools"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestPolicy"
-I"/afs/cern.ch/atlas/offline/external/Gaudi/0.14.6.14-pool201/GaudiKernel/v15r7p4"
-I"/afs/cern.ch/sw/lcg/external/clhep/1.8.2.1-atlas/slc3_ia32_gcc323/include"
-I"/afs/cern.ch/sw/lcg/external/Boost/1.31.0/slc3_ia32_gcc323/include/boost-1_31"
-I"/afs/cern.ch/sw/lcg/external/cernlib/2003/slc3_ia32_gcc323/include" -O2 -pthread
-D_GNU_SOURCE -pthread -pipe -ansi -pedantic -W -Wall -Wwrite-strings -Woverloaded-virtual
-Wno-long-long -fPIC -march=pentium -mcpu=pentium -pedantic-errors -ftemplate-depth-25
-ftemplate-depth-99 -DHAVE_ITERATOR -DHAVE_NEW_IOSTREAMS -D_GNU_SOURCE
-o PixelDigitization.o -DEFL_DEBUG=0 -DHAVE_PRETTY_FUNCTION -DHAVE_LONG_LONG
-DHAVE_BOOL -DHAVE_EXPLICIT -DHAVE_MUTABLE -DHAVE_SIGNED -DHAVE_TYPENAME
-DHAVE_NEW_STYLE_CASTS -DHAVE_DYNAMIC_CAST -DHAVE_TYPEID
-DHAVE_ANSI_TEMPLATE_INSTANTIATION -DHAVE_CXX_STDC_HEADERS ’
-DPACKAGE_VERSION="PixelDigitization-00-05-16"' -DNDEBUG -DCLHEP_MAX_MIN_DEFINED
-DCLHEP_ABS_DEFINED -DCLHEP_SQR_DEFINED ../src/PixelDigitization.cxx

Build tools: “make”, “Ant”, etc
• Manually create a “makefile” that forwards include options to the compiler

g++ -IpkgA -IpkgB
• Lets you adapt to various internal structures

g++ -IpkgA -IpkgB/include -IpkgC/headers

• Also lets you add other options to control localization, debugging, etc

�17

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.7ttd7zyix5hi

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Size keeps getting in the way

Small experiment (offline production code only):
• 430 directories (packages)
• 17,000 files
• 7 million lines of source
Some of these are large “for historical reasons”
But that’s true of just about any project

Repository checkout: 13 minutes
Build from scratch: 6 hours

Spread across multiple production machines; never did complete on laptop

“gmake” with one change: about 4-12 minutes to think about dependencies

And everybody will need multiple copies…
Old ones, new ones, …

“But I just want to run the program!”

�18

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Issue arises at large & small level

At the level of developers, needed way to manage this
• Both tools and procedures

We’ll be discussing & exercising typical tools; many exist!
Individual collaborations have their own ways of sharing info

At the collaboration leveled, need procedures to ensure it all works
• “Nightly builds”

Now common in HEP - Gives early feedback on consistency problems

• “Continuous Integration”, including automated testing
Only works when people actually integrate early and often

• Reduces problems, but integration is still a lot of work

�19

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

�20

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

�20

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

�20

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

�20

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

�20

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Two Approaches: (1) Organize people to match the work

Organize the code into “packages” that are separately controlled,
then combined via an automated “release system”

Use tags in the repository to mark “package versions”
“Package Coordinators” are people with the local knowledge

Build tools that record relations between packages, external requirements:
• pull out proper consistent versions,
• combine make files,
• control the build

Complicated tools that need to know a bunch of stuff

Configuration Management Tool (CMT)
• Based on ‘requirements file’ with custom syntax and contests

Lots of others (SCRAM, ETICS, cloud-based tools)
• Optional exercise with CMT because easy to see how it works

�21

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

CMT: a simple release and consistency tool

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy v2r1
use CxxFeatures v2r1 Utilities
use CLHEP v2r1 External

include_dirs $(MAGNETICFIELDROOT)/MagneticField

branches MagneticField doc src test
...

Requirements file provides custom language for expressing our needs

Example from C.
Arnault (LAL
and Atlas)

�22

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

“Consistency” scales poorly

Software strongly depends on other software
• Usually managed at the package level

(This can result in lots of packages, as you subdivide over and over)

• Expresses how changes in one piece can drive changes in another

�23

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

�24

4suite

Python

AIDA

blas

Boost

CLHEP2

CLHEP cmaketools

coin3d

coverage

setuptools

CppUnit

cx_oracle

oracle

doxygen

graphviz

expat

fastjet

fftw

Frontier_Client

GCCXMLgenshi

GSL

HepMC

HepPDTipython jsonlapack

lcov

libsvm

libtool

lxml

matplotlib

numpy

minuit

pyanalysis

scipy sympy pyminuit

mock

multiprocessing

mysql

mysql_pythonnose processing py py2neo

ROOT

pydot

pygraphics

pyparsing

sip

pyqt

Qt

pygsi

pytools

sqlalchemy

pyxml stormpytestpylint stomppy

pythia8 xrootd CASTOR dcapgfal srm_ifce

QMtest qwt soqt

sqlite

swig

tbb tcmalloc uuid valgrind vdt

XercesC

xqilla

libunwind

igprof cream dm-util dpm epel FTS gfal2 gridftp_ifce gridsite is_ifce lb lcgdmcommon lcginfosites lfc voms WMS neurobayes neurobayes_expert powheg-box

lhapdf

lhapdfsets

thepeg

herwig++

tauola++

pythia6

agile

photos++

photos

evtgen

rivet

rivet2

yoda yaml_cpp

cython

sherpa

hepmcanalysismctester

hijing starlight

herwig

crmc

hydjettauola jimmy hydjet++ alpgen pyquen COOL CORAL

RELAX

LCGCMT

4suite

Python

AIDA

blas

Boost

CLHEP2

CLHEP cmaketools

coin3d

coverage

setuptools

CppUnit

cx_oracle

oracle

doxygen

graphviz

expat

fastjet

fftw

Frontier_Client

GCCXMLgenshi

GSL

HepMC

HepPDTipython jsonlapack

lcov

libsvm

libtool

lxml

matplotlib

numpy

minuit

pyanalysis

scipy sympy pyminuit

mock

multiprocessing

mysql

mysql_pythonnose processing py py2neo

ROOT

pydot

pygraphics

pyparsing

sip

pyqt

Qt

pygsi

pytools

sqlalchemy

pyxml stormpytestpylint stomppy

pythia8 xrootd CASTOR dcapgfal srm_ifce

QMtest qwt soqt

sqlite

swig

tbb tcmalloc uuid valgrind vdt

XercesC

xqilla

libunwind

igprof cream dm-util dpm epel FTS gfal2 gridftp_ifce gridsite is_ifce lb lcgdmcommon lcginfosites lfc voms WMS neurobayes neurobayes_expert powheg-box

lhapdf

lhapdfsets

thepeg

herwig++

tauola++

pythia6

agile

photos++

photos

evtgen

rivet

rivet2

yoda yaml_cpp

cython

sherpa

hepmcanalysismctester

hijing starlight

herwig

crmc

hydjettauola jimmy hydjet++ alpgen pyquen COOL CORAL

RELAX

LCGCMT

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Change propagates through dependencies

�25

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Change propagates through dependencies

�26

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Change propagates through dependencies

�27

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Changes don’t always stay small

�28

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Another change:

�29

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

�30

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Change management requires people

�31

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Change management requires people

�32

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

2nd approach: People handle consistency, machines build

The repository is where the code should be consistent

Create tools that are focused on helping you do that!

Allow developers to work on their own content until it’s right
• Not every change should go to everybody

Allow developers to collaborate in small groups
• Put together a sub-system

It’s not the file changes that are interesting, it’s the updated system!
• Development becomes a story instead of a series of snapshots
• “Here’s our complete contribution”

Enter Git (not an acronym)

�33

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

At first, Git looks like earlier tools…

You bring out a copy, work on it, and commit
Git repository contains all that history

“Scratchpad” idea lets you control what you commit: Shaping the story

�34

More

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/
https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing to the Master Branch

�35

 Master

 Master

 Master

 Master

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch

�36

WorkBranch

GoodBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch

�37

GoodBranch

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch

�38

GoodBranch

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch

�39

GoodBranch

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch

�40

GoodStuff

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch and Merging to Master

�41

WorkBranch

 Master

 Master

WorkBranch

 Master

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch and Merging to Master

�42

WorkBranch

 Master

WorkBranch

 Master

WorkBranch

 Master

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch and Merging to Master

�43

WorkBranch

 Master

 Master

 Master
WorkBranch

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Merging

Because Git focuses on commits, not on versions, very powerful merging

�44

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Merging

Because Git focuses on commits, not on versions, very powerful merging

�44

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Merging

Because Git focuses on commits, not on versions, very powerful merging

�44

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Multiple repositories with easy transfer of commits between

�45

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Multiple repositories with easy transfer of commits between

�45

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Multiple repositories with easy transfer of commits between

�45

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Multiple repositories with easy transfer of commits between

�45

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�46

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�46

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�46

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�46

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�46

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�47

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

�48

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch

Branches are key

�49

Author: Vincent Driessen
Original blog post: http://nvie.com/archives/323

Ti
m
e

releasedevelop

Tag

0.1

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch

Branches are key

�50

Ti
m
e

releasedevelop
feature

branches

Feature
for future
release

Tag

0.1

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch
• And another one

Branches are key

�51

Ti
m
e

releasedevelop
feature

branches

Feature
for future
release

Major
feature for

next release

Tag

0.1

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work

�52

Ti
m
e

releasedevelop
feature

branches

Feature
for future
release

Major
feature for

next release

Tag

0.1

Branches are key

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!

Branches are key

�53

Ti
m
e

releasedevelop hotfixes
feature

branches

Feature
for future
release

Major
feature for

next release

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.1

Tag

0.2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across

�54

Ti
m
e

releasedevelop hotfixes
feature

branches

Feature
for future
release

Major
feature for

next release

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Branches are key

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across
• Feature done, merges in

�55

Ti
m
e

releasedevelop hotfixes
feature

branches

Feature
for future
release

Major
feature for

next release

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Branches are key

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across
• Feature done, merges in
• New branch holds release

Branches are key

�56

Ti
m
e

release branches releasedevelop hotfixes
feature

branches

Feature
for future
release

Major
feature for

next release

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Start of
release

branch for
1.0

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Branches are key

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across
• Feature done, merges in
• New branch holds release
• and it’s inevitable fixes

�57

Ti
m
e

release branches releasedevelop hotfixes
feature

branches

Feature
for future
release

Major
feature for

next release

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Only bug
fixes!

Start of
release

branch for
1.0

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Branches are key

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across
• Feature done, merges in
• New branch holds release
• and it’s inevitable fixes
• until merge and release master

�58

Ti
m
e

release branches releasedevelop hotfixes
feature

branches

Feature
for future
release

Tag

1.0

Major
feature for

next release

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Only bug
fixes!

Start of
release

branch for
1.0

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Branches are key

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across
• Feature done, merges in
• New branch holds release
• and it’s inevitable fixes
• until merge and release master.
• Meanwhile, work proceeds

�59

Ti
m
e

release branches releasedevelop hotfixes
feature

branches

Feature
for future
release

Tag

1.0

Major
feature for

next release

From this point on,
“next release” means
the release after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bug fixes from
rel. branch may
be continuously

merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Only bug
fixes!

Start of
release

branch for
1.0

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key

• Develop on a separate branch
• Future Big Feature on branch
• And another one for || work
• Pays off for bug fix!
• Git merge to get fix across
• Feature done, merges in
• New branch holds release
• and it’s inevitable fixes
• until merge and release master.
• Meanwhile, work proceeds
• And the process repeats

Keys: cheap branches,
 reliable merges

Gives understandable story
�60

Ti
m
e

release branches releasedevelop hotfixes
feature

branches

Feature
for future
release

Tag

1.0

Major
feature for

next release

From this point on,
“next release” means
the release after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bug fixes from
rel. branch may
be continuously

merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bug fix in
develop

Only bug
fixes!

Start of
release

branch for
1.0

Start of
release

branch for
2.0

Author: Vincent Driessen
Original blog post: http://nvie.com/archives/323

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Rebase: An Editor for the Story

�61

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Rebase: An Editor for the Story

�61

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Rebase: An Editor for the Story

�61

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Rebase: An Editor for the Story

�61

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

Deleting only gets you so far

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Rebase: An Editor for the Story

�61

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

“Rebase” operation

“Squashing” commits

Deleting only gets you so far

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Rebase: An Editor for the Story

�62

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

“Rebase” operation

Deleting only gets you so far

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

You want me to trust how many people?

How do you give 6,000 people access to a central repository?
A) Don’t! Have them submit patches to Package Coordinators (PBs)

Enough info for reliable commit, but not a lot of context, and no reliable
way to merge back if commit is delayed
How can you share this as a work-in-progress?

�63

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

You want me to trust how many people?

How do you give 6,000 people access to a central repository?
B) Find reliable people and give them access, log all their commits

Solves the context & merge-back problem,
but do you really have 6,000 reliable friends?

�64

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

You want me to trust how many people?

How do you give 6,000 people access to a central repository?
C) Use a distributed repository and “pull requests”

Git-based developers have a full local repository
Commits have full context

“Push” moves all that to target

A “pull request” sends all that to somebody
at the target, who can accept or not

When accepted, the merge is completed & both repositories in sync
(Pull requests rarely rejected outright - usually it’s “fix these things and
resend”)

Strong tools exist to make pull requests easy: CI test results, etc automated

�65

More

Mine Group

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Bob is working on his laptop, and commits another change locally:

�66

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Bob is working on his laptop, and commits another change locally:

He’s ready for that work to be reviewed, and wants to move it to a
repository that’s always online:

�67

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

�68

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

�69

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Once created:
Continuous integration tests are run

Reviews happen
Merge checks are done

And finally, somebody with authorization can click this:

to complete the merge onto the desired branch in the main repository.

�70

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

2nd approach: People handle consistency, machines build

With consistency is managed in the repository, building can be automated

Enter “CMake”

Two phase process:
• (Zeroth: Pull complete, consistent set of code from managed repository)
• First, automatically build localized control files - no judgement needed
• Second, do a platform-specific build using those files

cmake path
make

CMake:
• Scales very well (builds entire Linux distributions, LCGsoft LHC software)
• Well integrated with other tools (Eclipse, Visual Studio, the whole world)
• Powerful capabilities

�71

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

We use version control
outside SVN because it’s
too hard to have lots of
independent, controlled
versions inside SVN.

Git’s “Lots of branches”
 +
 strong & easy merging
 is
 qualitatively different

Are you sure I don’t need a version system for packages?

�72

Project A

Release 1.0
of A&B

A&B dev
branch

Bigger Part
Master
Branch

Project B

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Compare Approaches:

SVN & CMT
• Code in repository
• Unit of organization: Package

Package Coordinator decides:
• Release time & contents
• Dependency rules

• Tools create releases
Resolve dependencies

• At package level
Specify localization

• Build and distribute
Pre-made Makefiles

�73

Git & CMake
• Code in repository
• Unit of organization: Branch

Fractal organization within
• Common time, contents
• Dependency implicit

Cooperate to define release

• Check out and build
Consistent release from branch
CMake handles localization

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Test Frameworks

Performance Profiling

Memory Issues

Code Management

Release Management

Instructions to get started on Indigo (Tools & Techniques E1)

https://indico.cern.ch/event/769356/contributions/3197065/

You’ll work in pairs. Try to find somebody with complementary skills!

Learn about each topic, spend more time on the ones that interest you.

Speed is not the issue: no reward for first done, no complaint about last.

Think about what you’re doing: There are larger lessons to be found!

Exercises

�74

More

https://indico.cern.ch/event/769356/contributions/3197065/
https://indico.cern.ch/event/769356/contributions/3197065/

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Lecture summary

Software engineering is the art of building complex computer systems

It’s ideas and techniques spring from our need to handle size & complexity

As you do your own work & develop your own skills, consider:
• How your effort effects or contributes to things 10X, 100X, 1000X larger
• How you’ll do things different/better when it’s your problem

�75

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Lecture summary

Software engineering is the art of building complex computer systems

It’s ideas and techniques spring from our need to handle size & complexity

As you do your own work & develop your own skills, consider:
• How your effort effects or contributes to things 10X, 100X, 1000X larger
• How you’ll do things different/better when it’s your problem

�75

