Tools and Techniques Lecture 2
Big things are different from small things (SC

School of Computing

v ..0 T ‘0‘
LL) > .' ' .'
J ‘I\ -t 0t N ‘
lacacns e
“Qkay, Bob! Go! Gol"

1 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

The life time of HEP software

Software is a long-term commitment

LHC
Run 1 | | Run 2 Run 3
LSt 1314 Tev 14 TeV
77ev 8TeV_| ‘Bl colimators eryo a4 okt
project Civil Eng. P1-P§ regions
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
damage.
mm I iminosity — oxpoﬂmu?gndo ,,/——I—‘—1
| /_

experiment upgrade

R. Brun (&
CERN

School of Computing

energ

2037

High
Luminosity
LHC

integrated
luminosit

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

Bob Jacobsen, UC Berkeley

How do we cope?

Tools and Techniques Lecture 2

We try to find a way of working that leads to success

* We create a “process” for building systems

* We devise methods of communicating and record keeping: “models™

* We use the best tools & methods we can lay our hands on

And we engage in denial:

CERN (&

School of Computing

HERE'S WHAT 1
DON'T UNDER-
STAND ...

£

scotiadama©aoloom

www.dilbert.com

F— —
YOU TJUST ASKED ME

TO FOLLOW A
PROCESS THAT HAS
FAILED THIRTY

| TIMES IN A} ROW

AND YOU
KNOW IT.

© 1989 United Feature Syndicate, Inc

Bob Jacobsen, UC Berkeley

‘l‘ﬂfl|'1‘i

AT WHAT POINT
CAN THIS NO
LONGER BE CALLED
“OPTIMISM" 7
/0 WHEN IT
SUCCEEDS?

-

Tools and Techniques Lecture 2

Can’t technology save us?

We’ve built a series of ever-larger tools to handle large code projects:

CVS, SVN, Git for controlling and versioning code
Tools for building “releases’ of systems

Tools for “configuration management”

But we struggle against three forces:
*We’re always building bigger & more difficult systems
*We’re always building bigger & more difficult collaborations

*And we’re the same old people

Net effect: We’re always pushing the boundary of what we can do

Stupidity got us into this mess; why can’t it get us out? - Will Rogers

Bob Jacobsen, UC Berkeley

=X

School of Computing

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.qezvgenmz80j

Tools and Techniques Lecture 2
How we got here: (SC

School of Computing

First, you just wrote a big program

5 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
How we got here: CSC

School of Computing

First, you just wrote a big program
But soon it was so big you wanted help

By
6 Bob Jacobsen, UC Berkeley 4

Tools and Techniques Lecture 2
How we got here: (SC

School of Computing

First, you just wrote a big program
But soon it was so big you wanted help

So you broke it into pieces/files/modules

(] scripts o

[SSEU]]IHIII] Q) |
Name 4 Date Modified Size
» [images Today, 7:31 AM -
T2 jquery-1.6.4.min.js Today, 7:31 AM 94 KB
t jquery-ui-1.8.16.custom.css Today, 7:31 AM 37 KB
2 jquery-ui-1.8.16.custom.min.js Today, 7:31 AM 213 KB
T2 jquery.webforms2.js Today, 7:31 AM 25 KB
7= modernizr-1.7.js Today, 7:31 AM 16 KB
= placeholder-jquery-min.js Today, 7:31 AM 4 KB
2| placeholder-min.js Today, 7:31 AM 4 KB
‘E ui.spinner.css Today, 7:31 AM 4 KB
72 ui.spinner.min.js Today, 7:31 AM 12 KB

7 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
How we got here: (SC

School of Computing

First, you just wrote a big program
But soon it was so big you wanted help
So you broke it into pieces/files/modules

But how do you share work on those?

8 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
How we got here: (SC

School of Computing

First, you just wrote a big program
But soon it was so big you wanted help
So you broke it into pieces/files/modules

But how do you share work on those?

9 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Revision Control System (RCS) (SC

School of Computing

Maintains a repository of text files
 Allows users to check-out, edit, check-in changed text

* Old code remains available
Each checked-in change defines a new revision

You can retrieve, ask for differences with any of them
* Revisions can be tagged for easy reference

Anybody can get a specific set of source code file versions

——

% ~= /]

]
d ﬂfﬂ%
ol u lj s
f—/.?

N—

10 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Revision Control System (RCS) (SC

School of Computing

Maintains a repository of text files
 Allows users to check-out, edit, check-in changed text

* Old code remains available
Each checked-in change defines a new revision

You can retrieve, ask for differences with any of them
* Revisions can be tagged for easy reference

Anybody can get a specific set of source code file versions

——

% ~= /]

= o
U | Locle
Tl

N—

But only one person working on a file at a time!
Problem: This serializes development

Workarounds, but with problems of their own

11 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Concurrent Versions System (CVS) (SC

School of Computing

As systems & collaborations grow, efficiency goes down

““Version” idea: Track changes from one version to next

1 |

Big advantage: checkout is not exclusive
* More than one developer can have the same file checked out
* Developers can control their own use of the code for read, write
* Changes can come from multiple sources

e Tool handles (most) of the conflict resolution

12 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.qezvgenmz80j

Tools and Techniques Lecture 2

And systems still grow

You broke the code into pieces/files/modules
And things got more and more complicated

You needed an organization above the level of the file

Directory Tree

| -— code
| |-- perl

| | I-- clean fasta.pl
| | "-- run glam2.pl
| I-- R

| | |-— gse21350.R

| | |-— gse7275.R

| | "-- gse9589.R

| |-- ruby

| | "-- seg2svm.rb

| "=-= sh

| "-- ens_uniqg.sh
| -— data

13 Bob Jacobsen, UC Berkeley

=

School of Computing

Tools and Techniques Lecture 2
Subversion (svn) (SC

School of Computing

So you broke it into pieces/files/modules

And things got more and more complicated
You needed an organization above the level of the file
Want to be able to collaborate on that:

Subversion (svn) brings tools for doing that

14 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.wv86sfapdcmf

Tools and Techniques Lecture 2
Why isn’t that enough? (SC

School of Computing

CVS, SVN lets me “‘check out” complete source code. Then just compile!

* Works great for small projects
Runs into several levels of scaling problems:

1) Want to attach to external code
* We don’t write everything (though tempted)
* Sometimes don’t get source for external code

* Need some way to connect to specific external libraries:
Both specific product, and a specific version of that product

2) Want to separate code into multiple parts prga
* So people/institutions can take responsibility for parts pkg Bl
e But software has cross-connections

e Need structure that works for both

And still need to be able to build the code

15 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Scaling is still an issue (SC

School of Computing

Everybody is sharing a single repository
Every commit is immediately visible to everybody else

Development stands on shifting sand |
Detailed records, but little understanding I/

Workarounds!

Tags and Branches

External record keeping tools

Package Coordinators

16 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.wv86sfapdcmf

Tools and Techniques Lecture 2
Scaling: Handling complicated builds (SC

School of Computing

Multiple ““packages” require cross connects while compiling

* Typing the compile command gets boring fast

g++ -c -I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/PixelDigitization"
-I"/afs/cern.ch/user/s/scherzer/public/1001/InstallArea/include/SiDigitization"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/InDetSimEvent"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/HitManagement"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestTools"
-I"/afs/cern.ch/atlas/software/dist/10.0.1/InstallArea/include/TestPolicy"
-I"/afs/cern.ch/atlas/offline/external/Gaudi/0.14.6.14-pool201/GaudiKernel/v15r7p4"
-I"/afs/cern.ch/sw/lcg/external/clhep/1.8.2.1-atlas/slc3_ia32_gcc323/include”
-I"/afs/cern.ch/sw/lcg/external/Boost/1.31.0/slc3_ia32_gcc323/include/boost-1_31"
-I"/afs/cern.ch/sw/lcg/external/cernlib/2003/slc3_ia32_gcc323/include" -O2 -pthread
-D_GNU_SOURCE -pthread -pipe -ansi -pedantic -W -Wall -Wwrite-strings -Woverloaded-virtual
-Wno-long-long -fPIC -march=pentium -mcpu=pentium -pedantic-errors -ftemplate-depth-25
-ftemplate-depth-99 -DHAVE_ITERATOR -DHAVE_NEW_IOSTREAMS -D_GNU_SOURCE

-0 PixelDigitization.o -DEFL_DEBUG=0 -DHAVE_PRETTY_FUNCTION -DHAVE_LONG_LONG
-DHAVE_BOOL -DHAVE_EXPLICIT -DHAVE_MUTABLE -DHAVE_SIGNED -DHAVE_TYPENAME
-DHAVE_NEW_STYLE_CASTS -DHAVE_DYNAMIC_CAST -DHAVE_TYPEID
-DHAVE_ANSI_TEMPLATE_INSTANTIATION -DHAVE_CXX_STDC_HEADERS"’
-DPACKAGE_VERSION="PixelDigitization-00-05-16"' -DNDEBUG -DCLHEP_MAX_MIN_DEFINED
-DCLHEP_ABS_DEFINED -DCLHEP_SQR_DEFINED ../src/PixelDigitization.cxx

Build tools: ‘“make”, “Ant”, etc
e Manually create a “makefile” that forwards include options to the compiler
g++ -IpkgA -IpkgB
* Lets you adapt to various internal structures
g++ -IpkgA -IpkgB/include -IpkgC/headers

* Also lets you add other options to control localization, debugging, etc

17 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.7ttd7zyix5hi

Tools and Techniques Lecture 2
Size keeps getting in the way (SC

School of Computing

Small experiment (offline production code only):
430 directories (packages)
¢ 17,000 files
7 million lines of source
Some of these are large “for historical reasons”™

But that’s true of just about any project

Repository checkout: 13 minutes

Build from scratch: 6 hours
Spread across multiple production machines; never did complete on laptop

“egmake” with one change: about 4-12 minutes to think about dependencies

And everybody will need multiple copies...

Old ones, new ones, ...

“But I just want to run the program!”

18 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Tools and Techniques Lecture 2

Issue arises at large & small level

CERN (&

School of Computing

At the level of developers, needed way to manage this

* Both tools and procedures
We’ll be discussing & exercising typical tools; many exist!

Individual collaborations have their own ways of sharing info

At the collaboration leveled, need procedures to ensure it all works
 “Nightly builds”

Now common in HEP - Gives early feedback on consistency problems

* “Continuous Integration”, including automated testing
Only works when people actually integrate early and often

* Reduces problems, but integration is still a lot of work

19

5%5 E-mail:

.";':O © 1995 United Feature Syndicate, Inc.{NYC)

HOW LONG WILLIT 3| IT IS LOGICALLY TRY TO

TAKE TO FIX ANY 2| IMPOSSIBLE TO THINK IN THAT CASE,
PROBLEMS WE FIND 3 SCHEOULE FOR THE AS A WELL FIX THE
IN OUR BETA 5| UNKNOWN. MANAGER, PROBLEMS
PRODUCT® - NOT ASAN DEFORE (JE

ENGINEER. FIND THEM.

\
i

a—

Copyright 2 1995 United Feature

Syndicate, |nc.
Redistribution in whole or in part prohibited

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Tools and Techniques Lecture 2 S
CERN

School of Computing

When Boeing wanted to design the 747, they had two choices:
1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

20 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2 S
CERN

School of Computing

When Boeing wanted to design the 747, they had two choices:
1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

20 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2 9
CERN

School of Computing

When Boeing wanted to design the 747, they had two choices:
1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

20 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2 9
CERN

School of Computing

When Boeing wanted to design the 747, they had two choices:
1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

20 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2 9
CERN

School of Computing

When Boeing wanted to design the 747, they had two choices:
1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

20 Bob Jacobsen, UC Berkeley

21

Tools and Techniques Lecture 2
Two Approaches: (1) Organize people to match the work (SC

School of Computing

Organize the code into ‘““packages’ that are separately controlled,
then combined via an automated ‘‘release system”

Use tags in the repository to mark “package versions”

“Package Coordinators” are people with the local knowledge

Build tools that record relations between packages, external requirements:
* pull out proper consistent versions,
e combine make files,

e control the build

Complicated tools that need to know a bunch of stuff

Configuration Management Tool (CMT)

* Based on ‘requirements file’ with custom syntax and contests

Lots of others (SCRAM, ETICS, cloud-based tools)
* Optional exercise with CMT because easy to see how it works

Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Tools and Techniques Lecture 2
CMT: a simple release and consistency tool (SC

School of Computing

Requirements file provides custom language for expressing our needs

Utihties/CxxFeatures
varl
MagneticField .| AtlasPolicy
‘.'21‘1 / "21‘1
External/CLHEP External LHCXX
v2rl v2rl
package MagneticField
author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>
use AtlasPolicy v2rl
Mise CxxFeatures v2rl Utilities
use CLHEP v2rl External
include dirs $(MAGNETICFIELDROOT)/MagneticField Example from C.
Arnault (LAL
branches MagneticField doc src test and Atlas)

22 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Tools and Techniques Lecture 2
“Consistency” scales poorly (SC

School of Computing

External/CLHEP
DetectorDescription |—————" v2rl

/ v2rl
External/Objectivity | External THCXX
/ Database/DB Utilities | Database/DB Schema Xy‘ v2rl N v2rl

- vir var
Event/EventStructure " | 2rl 1l

v2rl External/HepODBMS A
~ \ v2rl \k .
/ Tl AtlasPolicy

- v2rl
/__q\// graphics/ED _ | Utilites/CxxFeatures " 4
—— v2rl v2rl -
EventRawDataw// /
2rl ;
T T Tools/ : s/Age [=
<_ Tools/AgeToCxx _ Too]szge _[Toolics«t L
v2rl v2rl
~ v2rl

T~

geant3 _ | commons
v2rl varl

Software strongly depends on other software

» Usually managed at the package level

(This can result in lots of packages, as you subdivide over and over)

» Expresses how changes in one piece can drive changes in another

23 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2 S
CERN

School of Computing

e

Ihapdfsets

24 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Change propagates through dependencies (SC

School of Computing

25 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Change propagates through dependencies CSC

[h,
. -
[/-

26 Bob Jacobsen, UC Berkeley 4

N

Tools and Techniques Lecture 2
Change propagates through dependencies CSC

[h,
- .
[/-

27 Bob Jacobsen, UC Berkeley 4

N

Tools and Techniques Lecture 2
Changes don’t always stay small CSC

F,
=
[/-

28 Bob Jacobsen, UC Berkeley 4

N

Tools and Techniques Lecture 2
Another change: CSC

School of Computing

29 Bob Jacobsen, UC Berkeley

30

Tools and Techniques Lecture 2

A A4

g(

Bob Jacobsen, UC Berkeley

=X

School of Computing

Tools and Techniques Lecture 2
Change management requires people CSC

School of Computing

oI <]

ka

31 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Change management requires people CSC

School of Computing

32 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
2nd approach: People handle consistency, machines build (SC

School of Computing

The repository is where the code should be consistent
Create tools that are focused on helping you do that!

Allow developers to work on their own content until it’s right
* Not every change should go to everybody
Allow developers to collaborate in small groups

e Put together a sub-system
It’s not the file changes that are interesting, it’s the updated system!

* Development becomes a story instead of a series of snapshots

40wy O

* “Here’s our complete contribution™
Enter Git (not an acronym)

k @M@ R
rge

33 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Tools and Techniques Lecture 2
At first, Git looks like earlier tools... (SC

School of Computing

You bring out a copy, work on it, and commit

Git repository contains all that history

® 00 (] openmrn (branch: master)

| J | master :] [-I-Ir]
/"""_—s View Branch Create Branch

Subject
bug fixes specifig to the FreeRTOS/newlib port to get the dk-Im3s9...
added hook for board specific hardware initialization
updates to freertos/newlib/stellaris port to support stdio, stellaris u...
Updated make structure to automatically find target toolchains insta..
P fixed possible race condition with the transmit logic of the stellaris...
simplified the stellaris CAN driver by using OS message queues. Ad...
ﬂ / added CAN driver for StellarisWare/FreeRTOS/newlib. The make file...
updates to the freertos armv7m port
tweeks in the os abstraction
updated the program entry point for multi-os compatibility
(origintslias_rework Jfirst pass freertos and newlib port for armvZm
reworking of alias handling improved, first cut working
(origint=dd_datsgram Jready to merge in datagrams
added datagram and ident support

.l\"’—__J, initial commit
: Initial commit

QD

133 commits loaded

“Scratchpad” idea lets you control what you commit: Shaping the story

34 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/
https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

35

Tools and Techniques Lecture 2

Committing to the Master Branch

Master
v

>

Master
v

DO

Master

DO DO O

Master
v

DO OO

Bob Jacobsen, UC Berkeley

=X

School of Computing

Tools and Techniques Lecture 2
Committing on a Branch (SC

School of Computing

GoodBranch
v
> >
7z 7
A

WorkBranch

36 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch (SC

School of Computing

GoodBranch
v
> > >
7 7 7
VA4S
WorkBranch

37 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch (SC

School of Computing

GoodBranch
v
> > > >
7 7 7 7
A4S
WorkBranch

38 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch (SC

School of Computing

GoodBranch
v
> > > > >
VA4S
WorkBranch

39 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch (SC

School of Computing

GoodStuff

v
OO OO

L
WorkBranch

40 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch and Merging to Master (SC

School of Computing

Master
v
> >
7z 7
L
WorkBranch
Master
v
> > > > >
A4S
WorkBranch
Master
v
> > > > >
A4S
WorkBranch

41 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch and Merging to Master (SC

School of Computing

Master
v

> > SO > >
L
WorkBranch

Master

SO SO DO

WorkBranch
Master

v
(> >
/\f’ > > \
> > > > >O=—2 0
A4S

WorkBranch

42 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Committing on a Branch and Merging to Master (SC

School of Computing

Master
v

> > SO > >
L
WorkBranch

Master

SO SO DO

/\f" POTRION

SO HOL OO D—DO

WorkBranch

43 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Merging (SC

School of Computing

Because Git focuses on commits, not on versions, very powerful merging

<

e

<

G

44 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Merging (SC

School of Computing

Because Git focuses on commits, not on versions, very powerful merging

44 Bob Jacobsen, UC Berkeley

Merging

Tools and Techniques Lecture 2 9
CERN

School of Computing

Because Git focuses on commits, not on versions, very powerful merging

44

® OO0 (] openmrn (branch: master)
up| | | master : | | 41 |
View Branch Create Branch
Subject Author
o O o P P O T e g G T OO T P P IO S e QT CCToT D v
added support for the freertos.armv7m target to the new_applicatio... Stuart.
created new_application script Stuart.
Merge pull request #1 from Railstars/master Don G
Merge branch 'master' of https://github.com/Railstars/openmrn Railsta
added 64-bit MacOS target and fixed array overrun bug in grid c... Stuart
reverted stellarisware makefile change Stuart
Merge branch 'master' of https://github.com/Railstars/openmrn Stuart
first attempt at a macos port Stuart
Reverted an unnecessary change to the stellarisware makefile;... Railsta
Added an include path for the Stellarisware library so that the Fre... Railsta
Compiles, finally. Ran into an issue with recursive mutex's, think th... Railsta
Changes to accomodate OS X's non-POSIX compliance re: clock_ge... Railsta
fixed typos and grammer mistakes Stuart.
additional documentation and the addition of 3rd party XML and JSO... Stuart.
bug fixes specifig to the FreeRTOS/newlib port to get the dk-Im3s9... Stuart.
maddoad bhaoali faw bhoanvd concife lbhavdisnea :n:ﬁnl:-.nﬁ:n.n_ Chivmuet

133 commits loaded

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Multiple repositories with easy transfer of commits between (SC

School of Computing

45 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Multiple repositories with easy transfer of commits between (SC

School of Computing

45 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Multiple repositories with easy transfer of commits between (SC

School of Computing

45 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Multiple repositories with easy transfer of commits between (SC

f f
‘Ql

45 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
More than just mirroring (SC

School of Computing

46 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
More than just mirroring (SC

School of Computing

s

46 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
More than just mirroring (SC

School of Computing

\

s

46 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
More than just mirroring (SC

School of Computing

-

Vaa)
et
R

\

s

AR

Oe—

-

T

0
Koed

46 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
More than just mirroring (SC

School of Computing

s

L
ﬁ>

46 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2

More than just mirroring

=

- Y

\
\

et

-

Vo

)

&,

O

Oe—

7o

&,
e—Q

O

€«

THISIS GIT: IT TRACKS COLLABORATIVE. LORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

{ COOL. HOU DO WEVSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEH To SINC UP
IF YOU GET ERRORS, SAVE. YOUR WORK
ELSELHERE, DELETE THE PROJECT
AND DOUNLOAD A FRESH COPY.

\
o

Bob Jacobsen, UC Berkeley

CERN (&

School of Computing

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
More than just mirroring (SC

School of Computing

s

L
ﬁ>

48 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

develop release

* Develop on a separate branch

@

Time

Author: Vincent Driessen
Original blog post: http

49 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop release

* Develop on a separate branch mm C{j {D
 Future Big Feature on branch S | —

50 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop release

* Develop on a separate branch C{; -

* Future Big Feature on branch

* And another one

51 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop release

* Develop on a separate branch C{; (-)
* Future Big Feature on branch

* And another one for |l work

52 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop hotfixes release

é;% 0]

Develop on a separate branch

Future Big Feature on branch

And another one for Il work

Pays off for bug fix!

53 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop hotfixes release

* Develop on a separate branch
* Future Big Feature on branch
* And another one for Il work

 Pays off for bug fix!

+ Git merge to get fix across

54 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop hotfixes release

* Develop on a separate branch
* Future Big Feature on branch
* And another one for Il work

 Pays off for bug fix!

+ Git merge to get fix across

* Feature done, merges in

55 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop

release branches hotfixes release

* Develop on a separate branch
* Future Big Feature on branch
* And another one for Il work

 Pays off for bug fix!

« Git merge to get fix across
* Feature done, merges in

* New branch holds release

56 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop

release branches hotfixes release

* Develop on a separate branch
* Future Big Feature on branch
* And another one for Il work

 Pays off for bug fix!

« Git merge to get fix across
* Feature done, merges in

* New branch holds release

and it’s inevitable fixes

57 Bob Jacobsen, UC Berkeley

58

Branches are key

feature
branches

Develop on a separate branch
Future Big Feature on branch
And another one for Il work
Pays off for bug fix!
Git merge to get fix across
Feature done, merges in
New branch holds release

and it’s inevitable fixes

until merge and release master

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

develop

release branches

hotfixes

release

=X

School of Computing

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop

release branches hotfixes release

* Develop on a separate branch

* Future Big Feature on branch

* And another one for Il work
 Pays off for bug fix!

+ Git merge to get fix across

* Feature done, merges in

* New branch holds release

* and it’s inevitable fixes

« until merge and release master.

* Meanwhile, work proceeds

59 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key (SC

School of Computing

feature
branches develop

release branches hotfixes release

* Develop on a separate branch

* Future Big Feature on branch

* And another one for Il work
 Pays off for bug fix!

+ Git merge to get fix across

* Feature done, merges in

* New branch holds release

* and it’s inevitable fixes

« until merge and release master.
* Meanwhile, work proceeds

* And the process repeats

Keys: cheap branches,

reliable merges A\ 4

Author: Vincent Driessen
Original blog post: http://nvie.com

Gives understandable story

60 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Rebase: An Editor for the Story (SC

School of Computing

Finished difficult development task,
/(]t) after several dead ends, lots of little
% % bits of progress & dead ends
O

s

61 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Rebase: An Editor for the Story (SC

School of Computing

Finished difficult development task,
/(]t) after several dead ends, lots of little
% % bits of progress & dead ends
O

61 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Rebase: An Editor for the Story (SC

School of Computing

Finished difficult development task,
/(]t) after several dead ends, lots of little
% % bits of progress & dead ends
O

61 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Rebase: An Editor for the Story (SC

School of Computing

Finished difficult development task,
/(]t) after several dead ends, lots of little
% % bits of progress & dead ends
O

% Deleting only gets you so far

61 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Rebase: An Editor for the Story (SC

School of Computing

Finished difficult development task,
/(]t) after several dead ends, lots of little
% 3 bits of progress & dead ends
O

© o
“Rebase” operation\ 213

“Squashing” commits

61 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Tools and Techniques Lecture 2
Rebase: An Editor for the Story (SC

School of Computing

Finished difficult development task,
/(]t) after several dead ends, lots of little
% 3 bits of progress & dead ends

O

COMMENT DATE
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE
HERE HAVE CODE.
ARAAAAAA
ADKFJISLKDFISOKLFT
MY HANDS ARE TYPING WORDS
HARARAAAAANDS

AS A PROJTECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

62 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

63

Tools and Techniques Lecture 2

You want me to trust how many people?

How do you give 6,000 people access to a central repository?
A) Don’t! Have them submit patches to Package Coordinators (PBs)

Index: java/src/jmri/jmrix/openlcb/swing/downloader/LoaderPane.java

-—— java/src/jmri/jmrix/openlcb/swing/downloader/LoaderPane. java {revision 29731)
+++ javassrc/jmri/jimrix/openlcb/swing/downloader/LoaderPane. java {working copy)
@@ -186,15 +186,19 @a

*/

void sendMext() {
byte[] temp = new byte[SIZE];
int 1i;
for (i = 8; i < SIZE; i++) {
if (linputContent.locationInUse(location+i))

+ + + 1 1 1

int count;
for {count = @; count = SIZE; count++) {
if (linputContent.locationInUse(location+count)) {
break;

- temp[i] = (byte)inputContent.getlLocation{location+i);
+
+ temp[count] = {byte)inputContent .getlLocation{location+count);

1
- byte[] data = new byte[i];
- System.arraycopy(temp, @, data, @, i);
+ byte[] data = new byte[count];
+ System.arraycopy(temp, 8, data, @, count);

int addr = location; // next call back might be instantaneous
- location = location + 1i;
- log.info{"Sending write to @x{}", Integer.toHexString(location).tolUpperCase());
+ location = location + count;
+ log.info{"Sending write to @x{} length {}", Integer.toHexString{location).toUpperCase(), count);

mcs .request (hew MemoryConf igurationService.McsWriteMeno(destNodeID(), space, addr, data) {
public void handleWriteReply{int code) {
/{ update GUI intermittently

Enough info for reliable commit, but not a lot of context, and no reliable
way to merge back if commit is delayed

How can you share this as a work-in-progress?

Bob Jacobsen, UC Berkeley

CERN 5

School of Computing

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Tools and Techniques Lecture 2
You want me to trust how many people? (SC

School of Computing

How do you give 6,000 people access to a central repository?
B) Find reliable people and give them access, log all their commits

Revision: 29733
http://sourceforge.net/p/jmri/code/29733

Author: jacobsen

Date: 2015-08-09 23:20:19 +0000 (Sun, 09 Aug 2015)

Log Message:

Better index variable name; improve logging message
Modified Paths:

trunk/jmrifjava/sre/jmrifjmrix/openicb/swing/downloader/LoaderPane java

Modified: trunk/jmrifjava/src/jmri/jmrix/openicb/swing/downloader/LoaderPane.java

-- trunk/jmrifjava/src/jmrifjmrix/openicb/swing/downloader/LoaderPane.java 2015-08-08 23:10:01 UTC (rev 29732)
+++ trunk/jmrifjava/src/imrifjmrix/openicb/swing/downloader/LoaderPane.java 2015-08-09 23:20:19 UTC (rev 29733)
@@ -186,18 +186,19 @@
*
void sendNext() {
byte[] temp = new byte[SIZE];
inti;
for (i = 0; i< SIZE; i++) {
if (linputContent.locationinUse(location+i))
int count;
for (count = 0; count < SIZE; count++) {
if (linputContent.locationinUse(location+count)) {
break;
templi] = (byte)inputContent.getLocation(location+i);

o

+

}
temp[count] = (byte)inputContent.getLocation(location+count);

+

byte[] data = new byteli];
System.arraycopy(temp, 0, data, 0, i);
byte[] data = new byte[count];
System.arraycopy(temp, 0, data, 0, count);

+ 4

int addr = location; // next call back might be instantaneous

location = location + i;

log.info("Sending write to 0x{}", Integer.toHexString(location).toUpperCase());

location = location + count;

log.info("Sending write to 0x{} length {}", Integer.toHexString(location).toUpperCase(), count);
mes.request(new MemoryConfigurationService.McsWriteMemo(destNodelD(), space, addr, data) {

public void handleWriteReply(int code) {
// update GUI intermittently

++

Solves the context & merge-back problem,

but do you really have 6,000 reliable friends?
64 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2 S
CERN

You want me to trust how many people? am O
How do you give 6,000 people access to a central repository?
C) Use a distributed repository and ““pull requests” Mine oroup
J<=T]
Git-based developers have a full local repository x /1 i 1
= —_—
Commits have full context £2 Fi | ‘(-Aj
1 _;' ’ T/
“Push” moves all that to target l v J’ 2
— ~
A “‘pull request” sends all that to somebody % — > (g J
at the target, who can accept or not - 5

When accepted, the merge is completed & both repositories in sync

(Pull requests rarely rejected outright - usually it’s ““fix these things and
resend’’)

Strong tools exist to make pull requests easy: CI test results, etc automated

65 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Tools and Techniques Lecture 2
Life Cycle of a Pull Request (SC

School of Computing

Bob is working on his laptop, and commits another change locally:

% git commit -m"Cover rest of classes" help/en/html/tools
[ctc-tools 79c28b4c93] Cover rest of classes
1 file changed, 14 insertions(+)

66 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Life Cycle of a Pull Request (SC

School of Computing

Bob is working on his laptop, and commits another change locally:

% git commit -m"Cover rest of classes" help/en/html/tools
[ctc-tools 79c28b4c93] Cover rest of classes
1 file changed, 14 insertions(+)

He’s ready for that work to be reviewed, and wants to move it to a
repository that’s always online:

% git push
Counting objects: 8, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (7/7), done.
Writing objects: 100% (8/8), 1.87 KiB | @ bytes/s, done.
Total 8 (delta 6), reused @ (delta @)
remote: Resolving deltas: 18@% (6/6), completed with 6 local objects.
To https://github.com/bobjacobsen/IMRI.git
3d35322e43..79c28b4c93 ctc-tools -> ctc-tools

67 Bob Jacobsen, UC Berkeley

School of Computing

Tools and Techniques Lecture 2
Life Cycle of a Pull Request CSC

¥ bobjacobsen / JMRI @uUnwatch~ 1 Star 0 YFork 90
forked from JMRI/JMRI '
<> Code Pull requests 0 I'l| Projects 0 Wiki 4 Settings Insights ~
http://jmri.org Edit
Add topics
{D 40,216 commits ¥ 181 branches © 185 releases 42 53 contributors

% |
Your recently pushed branches:

P cte-tools (7 minutes ago)) Compare & pull request
Branch: master ~ New pull request ‘ Create new file = Upload files = Find file Clone or download ~

This branch is 3 commits ahead of JMRI:master. il Pull request [%) Compare

B bobjacobsen Merge branch 'master' of https://github.com/JMRI/JMRI Latest commit 87241d2 18 minutes ago

68 Bob Jacobsen, UC Berkeley

Toonls and Techniniies | ectiire 2 ~

Open a pull request X

“omputing
Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

i,’l base fork: JMRI/JMRI ~ base: master~ ... head fork: bobjacobsen/JMRI ~ compare: ctc-tools ~

v Able to merge. These branches can be automatically merged.

m Update CTC tools based on user feedback Reviewers
No reviews—request one
Write Preview M-Bi Ko EZEE S@R
Assignees
- Better handling of timing Mo one—assign yourself
- Locks can handle multiple segments
- Improved documentation
Labels
None yet
Projects
None yet
... %
Attach files by dragging & dropping or selecting them.
y aragging ppINg g Milestone

Allow edits from maintainers. Learn more Create pull request No milestone

-0-15 commits 20 files changed £J 0 commit comments 42 1 contributor

& Commits on Jul 08, 2017

' bobjacobsen Merge branch 'master’' into ctc-tools dsbafbf
bobjacobsen Merge branch 'sensor-scripts' into ctc-tools 8dfd297
bobjacobsen current sequences d3cf2e9

bobjacobsen

. T T PR T P P R T P O g

log lock fails acc23cd

70

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Once created:

Continuous integration tests are run

° All checks have passed

4 successful checks
v ° VersionEye — All software dependencies are fine. You are awesome!
v (o) continuous-integration/appveyor/pr — AppVeyor build succeeded
v .& continuous-integration/travis-ci/pr — The Travis Cl build passed

v X, coverage/coveralls — Coverage increased (+0.02%) to 33.589%

Reviews happen

Merge checks are done

° This branch has no conflicts with the base branch

Merging can be performed automatically.

And finally, somebody with authorization can click this:

Hide all checks

Details

Details

Details

Details

Merge pull request A You can also open this in GitHub Desktop or view command line instructions.

to complete the merge onto the desired branch in the main repository.

Bob Jacobsen, UC Berkeley

=X

School of Computing

Tools and Techniques Lecture 2
2nd approach: People handle consistency, machines build (SC

School of Computing

With consistency is managed in the repository, building can be automated | |

Enter “CMake A CMake

Cross-platform Make

Two phase process:
e (Zeroth: Pull complete, consistent set of code from managed repository)
e First, automatically build localized control files - no judgement needed

* Second, do a platform-specific build using those files

cmake path
make

CMake:

* Scales very well (builds entire Linux distributions, LCGsoft LHC software)
* Well integrated with other tools (Eclipse, Visual Studio, the whole world)

* Powerful capabilities

71 Bob Jacobsen, UC Berkeley

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Tools and Techniques Lecture 2

School of Computing

Are you sure | don’t need a version system for packages? (SC

We use version control
outside SVN because it’s
too hard to have lots of
independent, controlled
versions inside SVN.

Git’s “Lots of branches”
+
strong & easy merging
is
qualitatively different

72

Project A

Bob Jacobsen, UC Berkeley

AN

\ Project B
\ 4

Tools and Techniques Lecture 2
Compare Approaches: (SC

School of Computing

SVN & CMT Git & CMake
* Code in repository * Code in repository
* Unit of organization: Package * Unit of organization: Branch
£ Package Coordinator decides: Fractal organization within
1 K * Release time & contents « Common time, contents
1=~ * Dependency rules * Dependency implicit 1 ﬁ\

Cooperate to define release
* Tools create releases 7
Pt
Resolve dependencies L Fs— ‘i

At package level % /
GRY,

Specify localization

* Build and distribute * Check out and build
Pre-made Maketfiles Consistent release from branch

CMake handles localization

73 Bob Jacobsen, UC Berkeley

74

Tools and Techniques Lecture 2

Exercises

Tuesday, 17 September 2019
Tools and Techniques E1 -

Test Frameworks Bob Jacobsen (UC Berkeley)

Morning coffee

Performance Profiling

M I Tools and Techniques E2 -
emory SSucs Bob Jacobsen (UC Berkeley)

Code Management

Tools and Techniques E3 -
Bob Jacobsen (UC Berkeley)

Release Management

Announcements

Instructions to get started on Indigo (Tools & Techniques E1)
https://indico.cern.ch/event/769356/contributions/3197065/

You’ll work in pairs. Try to find somebody with complementary skills!

Learn about each topic, spend more time on the ones that interest you.

Speed is not the issue: no reward for first done, no complaint about last.

Think about what you’re doing: There are larger lessons to be found!

Bob Jacobsen, UC Berkeley

=X

School of Computing

https://indico.cern.ch/event/769356/contributions/3197065/
https://indico.cern.ch/event/769356/contributions/3197065/

Tools and Techniques Lecture 2
Lecture summary (SC

School of Computing

Software engineering is the art of building complex computer systems
It’s ideas and techniques spring from our need to handle size & complexity

As you do your own work & develop your own skills, consider:
* How your effort effects or contributes to things 10X, 100X, 1000X larger

* How you’ll do things different/better when it’s your problem

75 Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Lecture summary (SC

School of Computing

Software engineering is the art of building complex computer systems
It’s ideas and techniques spring from our need to handle size & complexity

As you do your own work & develop your own skills, consider:
* How your effort effects or contributes to things 10X, 100X, 1000X larger

* How you’ll do things different/better when it’s your problem

75 Bob Jacobsen, UC Berkeley

