
Computational Science
The Third Pillar of Science?

Emil Slușanschi
CERN School of Computing 2019

Cluj-Napoca, Romania

University Politehnica of Bucharest

Outline
• Scientific Research Paradigm
• The Evolution of Computing
• The Software Challenge
• The Roofline Model
• Going forward

 2

Scientific Research Paradigm

The Third Pillar
of Science

Future Science and Engineering Breakthroughs
Hinge on Computing

Computational
Modeling

Computational
Chemistry

Computational
Medicine

Computational
Physics

Computational
Biology

Computational
Finance

Computational
Geoscience

Image
Processing

Major paradigm shift
• In the 20th Century, we were able to understand, design, and

manufacture what we could measure
• Physical instruments and computing systems allowed us to see farther,

capture more, communicate better, understand natural processes, control
artificial processes…

• In the 21st Century, we are able to understand, design, create
what we can compute
• Computational models are allowing us to see even farther, going back and

forth in time, relate better, test hypothesis that cannot be verified any
other way, create safe artificial processes

 6

Examples of Paradigm Shift
20th Century

• Small mask patterns and
short light waves

• Electronic microscope and
Crystallography with
computational image
processing

• Anatomic imaging with
computational image
processing

• Teleconference

 7

21st Century
• Computational optical

proximity correction
• Computational microscope

with initial conditions from
Crystallography

• Metabolic imaging sees
disease before visible
anatomic change

• Tele-emersion

Faster is not “just Faster”
• 2-3X faster is “just faster”

- Do a little more, wait a little less

- Doesn’t change how you work

• 5-10x faster is “significant”

- Worth upgrading

- Worth re-writing (parts of) the application

• 100x+ faster is “fundamentally different”

- Worth considering a new platform

- Worth re-architecting the application

- Makes new applications possible

- Drives “time to discovery” and creates fundamental changes in Science

 8

How much computing power is enough?
• Each jump in computing power motivates new ways of

computing

- Many apps have approximations or omissions that arose from

limitations in computing power

- Every 100x jump in performance allows app developers to innovate

- Example: graphics, medical imaging, physics simulation, etc.

 9

Users & application developers did not take computing
seriously until they saw real results.

Why didn’t this happen earlier?
• Computational experimentation is just reaching critical mass

- Simulate large enough systems

- Simulate long enough system time

- Simulate enough details

• Computational instrumentation is also just reaching critical mass

- Reaching high enough accuracy

- Cover enough observations

 10

A Great Opportunity for Many
• New massively parallel computing is enabling

- Drastic reduction in “time to discovery”

- 1st principle-based simulation at meaningful scale

- New, 3rd paradigm for research: computational experimentation

• The “democratization” of power to discover
- $2,000/Teraflops SPFP in personal computers today

- $5,000,000/Petaflops DPFP in clusters in 2-3 years

- HW cost will no longer be the main barrier for big science

• This is once-in-a-lifetime opportunity for many!
 11

Thousand-node systems with MPI-style programming, >100
TFLOPS, $M, allocated machine time (programmers numbered
in hundreds)

Hundred-core systems with CUDA-style programming,
1-5 TFLOPS, $K, machines widely availability
(programmers numbered in 10s of thousands)

Hundred-core systems with MatLab-style
programming, 10-100 GFLOPS, $K, machines widely
available (programmers numbered in millions)

The Pyramid of Parallel Programming

The Evolution of Computing

Words of Wisdom
• “I think there is a world market for maybe five computers.”

- Thomas Watson, chairman of IBM, 1943.

• “There is no reason for any individual to have a computer in

their home”
- Ken Olson, President of Digital Equipment Corporation, 1977.

• “640KB [of main memory] ought to be enough for anybody.”
- Bill Gates, Chairman of Microsoft / IBM System Limitation,1981.

 14

Processor Evolution

Gordon Moore (Intel cofounder)
predicted in 1965 that transistor
density in semiconductors will
double each 18 months

 15

 Moore’s law is confirmed.
Until now…

What about going forward?

Intel Roadmap vs. Moore’s Law

 16

• Up until 1965: 2x / year
• 1965 - 201x: 2x / 2 years
• 201x - 202x: 2x / 3-4 years
• The 2x intervals keep getting

longer…

ITRS Roadmap

 17

CPU

What about a 10 TFlops Processor?
• Can we build a serial CPU

- Offering 10 TFlops?
- Operating on 10 TByte of memory?

• Reprezentative for today’s needs
• Processor clock should be 10,000 GHz @ 1 instruction / cycle
• Assume data travels at the speed of light c = 3e8 m/s
• Assume the processor is an ideal sphere

 18

What about a 10 TFlops Processor?
• Data should travel a (non-zero) distance from memory to CPU

- Distance from memory to CPU should be r < c / 1013 ~ 3e-6 m
• Each instruction requires at least 8 bytes of memory: 1013 bytes of

memory in a volume of 4/3πr3 = 3.7e-17 m3
- Each word of memory can occupy at most 3.7e-30m3 = 3.7 Angstrom3
- A tiny molecule of a few atoms…

• Current memory density is about 10GB/cm3
- Factor 1020 below what is required!

• Bottom line: we can’t do this with current technology

 19

Pentium Processors Evolution

 20

Pentium I Pentium II

Pentium III Pentium IV

Chip area
breakdown

Q: What can you observe? Why?

Extrapolation of Single Core CPUs

 21

If we would have extrapolated the trend, in a few generations, Processors
would have looked like this:

Of course, we know it did not happen.

Q: What happened instead? Why?

Multi-Core CPUs Evolution

 22

Penny Bloomfield

Gulftown Beckton

Chip area
breakdown

Q: What can you observe? Why?

Why is Architecture Exciting Today?

 23

CPU	Speed	Flat

ACM Communications, February 2019

Important Trends
• Running out of ideas to improve single thread performance

• Power wall makes it harder to add complex features

• Power wall makes it harder to increase frequency

• Historical contributions to performance:
- Better processes (faster devices) ~20% (eventually disappearing)
- Better circuits/pipelines ~15% (trending lower)

- Better organization/architecture ~15%

 24

Practical Example
• +300x speedup for matrix vector multiplication

- Data level parallelism: 3.8x
- Loop unrolling and out-of-order execution: 2.3x
- Cache blocking: 2.5x
- Thread level parallelism: 14x

• Further, one can use accelerators to get an additional 100x

 25

CPUs & GPUs
• Typically GPUs and CPUs coexist in a heterogeneous setting
• “Less” computationally intensive part runs on CPU

- Coarse-grained parallelism
• More intensive parts run on GPU

- Fine-grained parallelism

 26

CPU vs. GPU Performance Gap

 27

Throughput Oriented Architectures
• Fine-grained interleaved

threading (~2x comp density)

• SIMD/SIMT (>10x comp density)

• Simple core (~2x comp density)

 28

The Software Challenge

Amdahl’s Law

 30

“Keep Them
Honest”

Opportunities
• Computer architecture today

- General purpose: optimized for control
- Accelerators: optimized for speed
- Few players: Intel, AMD, ARM, NVidia…

• Future directions?
- Applications have different requirements

• Battery life / energy
• Security & privacy

• Best solutions depend on application
- Many players: HW & SW
- Innovation matters more than Moore’s Law

 31

What Does This Mean to a Programmer?
• Today, one can expect at most a 20% annual improvement; even

lower if the program is not multi-threaded

- A program needs many threads

- The threads need efficient synchronization and communication

- Data placement in the memory hierarchy is important

- Accelerators should be used when possible

 32

A Likely Future Scenario

 33

Why MPI (still) Persists

• MPI did not (and will not) disappear the foreseeable future

• Today we have more than 25 years of legacy software in MPI

• New systems are not sufficiently different to lead to a radical

new (distributed) programming model

 34

What will be the “?” in MPI+?
• Likely candidates include

- PGAS languages
- Autotuning
- CUDA, OpenCL, OpenACC
- A wildcard from the commercial space
- Domain-specific paradigms

 35

The Roofline Model

The Roofline Performance Model

 37

• Basic Idea
- Plot peak floating-point throughput as a function of arithmetic intensity
- Ties together floating-point performance and memory performance for a

target machine
• Arithmetic Intensity

- Floating-point operations per byte read

 38

Intel XeonE5-2697v2 12C
2.7GHz with DDR3-1866

Roofline Performance Examples

Roofline Performance Examples

 39

• Attainable GFLOPs/sec Min = (Peak Memory BW × Arithmetic Intensity,
Peak Floating Point Performance)

Roofline Performance Examples

 40

Optimization vs. Roofline Model

 41

Bottlenecks & Limitations

 42

Cache-Aware Roofline Model

 43

Performance Limitations

 44

Going Forward

What’s next?

 46

A Likely Trajectory: 
Collision or Convergence?

 47

Future
Processor(s)
Design

Scientific Computing Community Objective

• Building up the ability to translate parallel computing power into

science and engineering breakthroughs
- Identify apps whose computing structures are suitable for SC

- These applications can be revolutionised by 100X computing power

- Provide access to expertise needed to tackle these apps

• Develop SW solutions offering better HW efficiency & utilisation

 48

Slides &
Support Material

Acknowledgements
David Patterson: Computer Architecture is Back 2007

Dongarra & Rattner - ISC 2008
Sathish Vadhiyar - 2009

Ye Mesman Corporaal - 2010
Michael Garland et. al, "Understanding throughput-

oriented architectures", CACM 2010
Dan Negrut & Dan Melanz & Andrew Seidl - 2013

David Kirk - NVidia 2009/2014
CS61C - University of Berkeley 2016

CS/ECE 3810 - University of Colorado 2017
Cache-Aware Roofline Model - 2018

 49

emil.slusanschi@cs.pub.ro
http://csc.web.cern.ch

Thank you for your attention

