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Scientific Research Paradigm



The Third Pillar 
of Science



Future Science and Engineering Breakthroughs  
Hinge on Computing
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Major paradigm shift
• In the 20th Century, we were able to understand, design, and 

manufacture what we could measure 
• Physical instruments and computing systems allowed us to see farther, 

capture more, communicate better, understand natural processes, control 
artificial processes… 

• In the 21st Century, we are able to understand, design, create 
what we can compute 
• Computational models are allowing us to see even farther, going back and 

forth in time, relate better, test hypothesis that cannot be verified any 
other way, create safe artificial processes

 6



Examples of Paradigm Shift
20th Century 

• Small mask patterns and 
short light waves 

• Electronic microscope and 
Crystallography with 
computational image 
processing 

• Anatomic imaging with 
computational image 
processing 

• Teleconference
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21st Century 
• Computational optical 

proximity correction 
• Computational microscope 

with initial conditions from 
Crystallography  

• Metabolic imaging sees 
disease before visible 
anatomic change 

• Tele-emersion



Faster is not “just Faster”
• 2-3X faster is “just faster” 

- Do a little more, wait a little less 

- Doesn’t change how you work 

• 5-10x faster is “significant” 

- Worth upgrading 

- Worth re-writing (parts of) the application 

• 100x+ faster is “fundamentally different” 

- Worth considering a new platform 

- Worth re-architecting the application 

- Makes new applications possible 

- Drives “time to discovery” and creates fundamental changes in Science
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How much computing power is enough? 
• Each jump in computing power motivates new ways of 

computing 

- Many apps have approximations or omissions that arose from 

limitations in computing power 

- Every 100x  jump in performance allows app developers to innovate 

- Example: graphics, medical imaging, physics simulation, etc.
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Users & application developers did not take computing 
seriously until they saw real results. 



Why didn’t this happen earlier? 
• Computational experimentation is just reaching critical mass 

- Simulate large enough systems 

- Simulate long enough system time 

- Simulate enough details 

• Computational instrumentation is also just reaching critical mass 

- Reaching high enough accuracy 

- Cover enough observations
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A Great Opportunity for Many
• New massively parallel computing is enabling 

- Drastic reduction in “time to discovery” 

- 1st principle-based simulation at meaningful scale 

- New, 3rd paradigm for research: computational experimentation 

• The “democratization” of power to discover 
- $2,000/Teraflops SPFP in personal computers today  

- $5,000,000/Petaflops DPFP in clusters in 2-3 years 

- HW cost will no longer be the main barrier for big science 

• This is once-in-a-lifetime opportunity for many!
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Thousand-node systems with MPI-style programming, >100 
TFLOPS, $M, allocated machine time (programmers numbered 
in hundreds)

Hundred-core systems with CUDA-style programming, 
1-5 TFLOPS, $K, machines widely availability 
(programmers numbered in 10s of thousands)

Hundred-core systems with MatLab-style 
programming, 10-100 GFLOPS, $K, machines widely 
available (programmers numbered in millions)

The Pyramid of Parallel Programming



The Evolution of Computing



Words of Wisdom
• “I think there is a world market for maybe five computers.” 

- Thomas Watson, chairman of IBM, 1943. 

• “There is no reason for any individual to have a computer in 

their home” 
- Ken Olson, President of Digital Equipment Corporation, 1977. 

• “640KB [of main memory] ought to be enough for anybody.” 
- Bill Gates, Chairman of Microsoft / IBM System Limitation,1981.
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Processor Evolution

Gordon Moore (Intel cofounder) 
predicted in 1965 that transistor 
density in semiconductors will 
double each 18 months
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 Moore’s law is confirmed.  
Until now… 

What about going forward?



Intel Roadmap vs. Moore’s Law
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• Up until 1965: 2x / year 
• 1965 - 201x: 2x / 2 years 
• 201x - 202x: 2x / 3-4 years 
• The 2x intervals keep getting 

longer…



ITRS Roadmap
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CPU

What about a 10 TFlops Processor?
• Can we build a serial CPU 

- Offering 10 TFlops? 
- Operating on 10 TByte of memory? 

• Reprezentative for today’s needs 
• Processor clock should be 10,000 GHz @ 1 instruction / cycle 
• Assume data travels at the speed of light c = 3e8 m/s 
• Assume the processor is an ideal sphere
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What about a 10 TFlops Processor?
• Data should travel a (non-zero) distance from memory to CPU 

- Distance from memory to CPU should be r < c / 1013 ~ 3e-6 m 
• Each instruction requires at least 8 bytes of memory: 1013 bytes of 

memory in a volume of 4/3πr3 = 3.7e-17 m3 
- Each word of memory can occupy at most 3.7e-30m3 = 3.7 Angstrom3 
- A tiny molecule of a few atoms… 

• Current memory density is about 10GB/cm3 
- Factor 1020 below what is required! 

• Bottom line: we can’t do this with current technology
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Pentium Processors Evolution
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Pentium I Pentium II

Pentium III Pentium IV

Chip area 
breakdown

Q: What can you observe? Why?



Extrapolation of Single Core CPUs
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If we would have extrapolated the trend, in a few generations, Processors 
would have looked like this:

Of course, we know it did not happen.  

Q: What happened instead? Why?



Multi-Core CPUs Evolution
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Penny Bloomfield

Gulftown Beckton

Chip area 
breakdown

Q: What can you observe? Why?



Why is Architecture Exciting Today?

 23

CPU	Speed	Flat

ACM Communications, February 2019



Important Trends
• Running out of ideas to improve single thread performance 

• Power wall makes it harder to add complex features 

• Power wall makes it harder to increase frequency 

• Historical contributions to performance: 
- Better processes (faster devices) ~20% (eventually disappearing)  
- Better circuits/pipelines ~15% (trending lower) 

- Better organization/architecture ~15%
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Practical Example
• +300x speedup for matrix vector multiplication 

- Data level parallelism: 3.8x 
- Loop unrolling and out-of-order execution: 2.3x 
- Cache blocking: 2.5x 
- Thread level parallelism: 14x 

• Further, one can use accelerators to get an additional 100x

 25



CPUs & GPUs
• Typically GPUs and CPUs coexist in a heterogeneous setting 
• “Less” computationally intensive part runs on CPU  

- Coarse-grained parallelism 
• More intensive parts run on GPU  

- Fine-grained parallelism
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CPU vs. GPU Performance Gap
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Throughput Oriented Architectures
• Fine-grained interleaved 

threading (~2x comp density) 

• SIMD/SIMT (>10x comp density) 

• Simple core (~2x comp density)
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The Software Challenge



Amdahl’s Law
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“Keep Them 
Honest” 



Opportunities
• Computer architecture today 

- General purpose: optimized for control 
- Accelerators: optimized for speed 
- Few players: Intel, AMD, ARM, NVidia… 

• Future directions? 
- Applications have different requirements 

• Battery life / energy 
• Security & privacy 

• Best solutions depend on application 
- Many players: HW & SW 
- Innovation matters more than Moore’s Law
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What Does This Mean to a Programmer?
• Today, one can expect at most a 20% annual improvement; even 

lower if the program is not multi-threaded 

- A program needs many threads 

- The threads need efficient synchronization and communication 

- Data placement in the memory hierarchy is important 

- Accelerators should be used when possible
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A Likely Future Scenario 
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Why MPI (still) Persists

• MPI did not (and will not) disappear the foreseeable future 

• Today we have more than 25 years of legacy software in MPI 

• New systems are not sufficiently different to lead to a radical 

new (distributed) programming model
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What will be the “?” in MPI+?
• Likely candidates include 

- PGAS languages 
- Autotuning 
- CUDA, OpenCL, OpenACC 
- A wildcard from the commercial space 
- Domain-specific paradigms
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The Roofline Model



The Roofline Performance Model
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• Basic Idea 
- Plot peak floating-point throughput as a function of arithmetic intensity 
- Ties together floating-point performance and memory performance for a 

target machine 
• Arithmetic Intensity 

- Floating-point operations per byte read
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Intel XeonE5-2697v2 12C 
2.7GHz with DDR3-1866

Roofline Performance Examples



Roofline Performance Examples
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• Attainable GFLOPs/sec Min = (Peak Memory BW × Arithmetic Intensity, 
Peak Floating Point Performance)



Roofline Performance Examples

 40



Optimization vs. Roofline Model
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Bottlenecks & Limitations
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Cache-Aware Roofline Model
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Performance Limitations
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Going Forward



What’s next?
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A Likely Trajectory: 
Collision or Convergence?
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Future  
Processor(s)  
Design



Scientific Computing Community Objective

• Building up the ability to translate parallel computing power into 

science and engineering breakthroughs 
- Identify apps whose computing structures are suitable for SC  

- These applications can be revolutionised by 100X computing power 

- Provide access to expertise needed to tackle these apps 

• Develop SW solutions offering better HW efficiency & utilisation
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