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Scientific Research Paradigm
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Major paradigm shift

* In the 20th Century, we were able to understand, design, and
manufacture what we could measure

 Physical instruments and computing systems allowed us to see farther,
capture more, communicate better, understand natural processes, control
artificial processes...

* In the 21st Century, we are able to understand, design, create
what we can compute
« Computational models are allowing us to see even farther, going back and

forth in time, relate better, test hypothesis that cannot be verified any
other way, create safe artificial processes




Examples of Paradigm Shift

20th Century 21st Century

* Small mask patterns and « Computational optical
short light waves proximity correction

» Electronic microscope and » Computational microscope
Crystallography with with initial conditions from
computational image Crystallography
processing

» Anatomic imaging with * Metabolic imaging sees
computatlonal image disease before visible
processing anatomic change

 Teleconference * Tele-emersion

)




Faster Is not “just Faster”

« 2-3X faster is “just faster”
- Do a little more, wait a little less
- Doesn’t change how you work

« 5-10x faster is “significant”
- Worth upgrading
- Worth re-writing (parts of) the application

« 100x+ faster is “fundamentally different”
- Worth considering a new platform
- Worth re-architecting the application
- Makes new applications possible
- Drives “time to discovery” and creates fundamental changes in Science




Oow much computing power is enough”

« Each jump in computing power motivates new ways of
computing
- Many apps have approximations or omissions that arose from
limitations in computing power
- Every 100x jump in performance allows app developers to innovate
- Example: graphics, medical imaging, physics simulation, etc.

Users & application developers did not take computing
seriously until they saw real results.

)
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Why didn't this happen earlier?

« Computational experimentation is just reaching critical mass

- Simulate large enough systems
- Simulate long enough system time

- Simulate enough details

« Computational instrumentation is also just reaching critical mass

- Reaching high enough accuracy

- Cover enough observations

)
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A Great Opportunity for Many

* New massively parallel computing is enabling

- Drastic reduction in “time to discovery”

- 1st principle-based simulation at meaningful scale

- New, 3rd paradigm for research: computational experimentation
 The “democratization” of power to discover

- $2,000/Teraflops SPFP in personal computers today
- $5,000,000/Petaflops DPFP in clusters in 2-3 years
- HW cost will no longer be the main barrier for big science

« This is once-in-a-lifetime opportunity for many!

)




The Pyramid of Parallel Programming

Thousand-node systems with MPI-style programming, >100
TFLOPS, SM, allocated machine time (programmers numbered
in hundreds)

Hundred-core systems with CUDA-style programming,
1-5 TFLOPS, SK, machines widely availability
(programmers numbered in 10s of thousands)

Hundred-core systems with MatLab-style
programming, 10-100 GFLOPS, SK, machines widely
available (programmers numbered in millions)
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The Evolution of Computing
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Words of Wisdom

e “| think there is a world market for maybe five computers.”
- Thomas Watson, chairman of IBM, 1943.

* “There is no reason for any individual to have a computer in
their home”
- Ken QOlson, President of Digital Equipment Corporation, 1977.

e “640KB [of main memory] ought to be enough for anybody.”
- Bill Gates, Chairman of Microsoft / IBM System Limitation,1981.
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Processor Evolution

Gordon Moore (Intel cofounder)
predicted in 1965 that transistor
density in semiconductors will
double each 18 months
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Intel Roadmap vs. Moore’'s Law

INTEL INNOVATION LEADERSHIP

Up until 1965: 2x / year
1965 - 201x: 2x [/ 2 years
201x - 202x: 2x [ 3-4 years
The 2x intervals keep getting

Intel

90nm 65nm 45nm 32nm 22nm 14nm 10nm
Year ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 *“10 ‘11 *12 ‘13 ‘14 4516 N=IY '18‘%»

Intel leads the industry by at least 3 years in introducing major process innovations

longer...




Physical gate length (nanometers)
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What about a 10 TFlops Processor?

* Can we build a serial CPU o
- Offering 10 TFlops? N
- Operating on 10 TByte of memory? e
* Reprezentative for today’s needs
* Processor clock should be 10,000 GHz @ 1 instruction / cycle

* Assume data travels at the speed of light ¢ = 3e8 m/s

e Assume the processor is an ideal sphere
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What abouta 10 T

-lops

Processor?

Data should travel a (non-zero) distance from memory to CPU

memory in a volume of 4/3nr3 = 3.

7e-‘|7 m3

- Distance from memory to CPU should ber <c /1013 ~ 3etm
Each instruction requires at least 8 bytes of memory: 1013 bytes of

- Each word of memory can occupy at most 3.7e-30m3 = 3.7 Angstrom3
- Atiny molecule of a few atoms...
Current memory density is about 10GB/cms3
- Factor 1020 pbelow what is required!

Bottom line: we can't do this with current technology
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Pentium Processors Evolution

Pentium | Pentium Il

' Chip area ge
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Extrapolation of Single Core CPUs

If we would have extrapolated the trend, in a few generations, Processors
would have looked like this:

Of course, we know it did not happen.
Q: What happened instead? Why?
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Multi-Core CPUs Evolution

Chip area
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Why 1S Architecture

I Stuttering

@ Transistors per chip, ‘000 ® Clock speed (max), MHz @ Thermal design power*, w
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*Maximum safe power consumption

—xciting Today?

turing lecture

D0I:10.1145/3282307

liked in-specific hardware,
enhanced security, open instruction sets, and
agile chip development will lead the way.

BY JOHN L. HENNESSY AND DAVID A. PATTERSON

A New Golden
Age for
Computer
Architecture

WE BEGAN OUR Turing Lecture June 4, 2018"* with a review
of computer architecture since the 1960s.

to that review, here, we highlight curre:
and identify future opportunities, projecting a
golden age for the field of computer architecture in
the next decade, much like the 1980s when we did the
research thatled to our award, delivering gains in cost,
energy, and security, as well as performance.

)
7

“Those who cannot remember the past are condemned
torepeat it.” George Santayana, 1905

Software talks to hardware through avocabulary
called an instruction set architecture (ISA). By the early
1960s, IBM had four incompatible lines of computers,
cach with its own ISA, software stack, I/O sy
and market niche —t ng small busines
scientific, and real time, respectively. IBM

busine:

48 COMMUNICATIONS OF THE ACH

ACM Communications, February 2019
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Important Trends

Running out of ideas to improve single thread performance
Power wall makes it harder to add complex features
Power wall makes it harder to increase frequency

Historical contributions to performance:

- Better processes (faster devices) ~20% (eventually disappearing)
- Better circuits/pipelines ~15% (trending lower)

- Better organization/architecture ~15%
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Practical Example

* +300x speedup for matrix vector multiplication
- Data level parallelism: 3.8x
- Loop unrolling and out-of-order execution: 2.3x
- Cache blocking: 2.5x
- Thread level parallelism: 14x

e Further, one can use accelerators to get an additional 100x
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CPUs & GPUs

» Typically GPUs and CPUs coexist in a heterogeneous setting
e “Less” computationally intensive part runs on CPU
- Coarse-grained parallelism
« More intensive parts run on GPU
Fine-grained parallelism

dddddddddddddddd

4 cores
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Performance vs VAX

CPU vs. GPU Performance Gap
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Throughput Oriented Architectures

* Fine-grained interleaved

threading (~2x comp density)
o SIMD/SIMT (>10x comp density)

e Simple core (~2x comp density)

28




The Software Challenge
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Speedup
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Opportunities

e Computer architecture today
- General purpose: optimized for control
- Accelerators: optimized for speed
- Few players: Intel, AMD, ARM, NVidia...
 Future directions?
- Applications have different requirements
 Battery life / energy
* Security & privacy
* Best solutions depend on application
- Many players: HW & SW
- Innovation matters more than Moore’s Law

©
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What Does This Mean to a Programmer??

e Joday, one can expect at most a 20% annual improvement; even

lower if the program is not multi-threaded

- A program needs many threads

- The threads need efficient synchronization and communication
- Data placement in the memory hierarchy is important

- Accelerators should be used when possible
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A Likely Future Scenario

System: cluster + many core node Programming model:
4 ) MPI+?

! \l/
/
Message Passing

Not Message Passing
Hybnd & many core technologies

cluster

will require new approaches:
PGAS, auto tuning, ?

socket
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Why MPI (still) Persists

* MPI did not (and will not) disappear the foreseeable future
e Today we have more than 25 years of legacy software in MPI
 New systems are not sufficiently different to lead to a radical

new (distributed) programming model
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What will be the *?" in MPI+7

* Likely candidates include
- PGAS languages
- Autotuning
- CUDA, OpenCL, OpenACC
- A wildcard from the commercial space

- Domain-specitic paradigms




The Roofline Model
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The Roofline Performance Model

» Basic Ildea
Plot peak floating-point throughput as a function of arithmetic intensity

- Ties together floating-point performance and memory performance for a
target machine

e Arithmetic Intensity

Floating-point operations per byte read o) . oM
~ - P . A N —
Arithmetic Intensity
[ [ ] [ J [ ] L J
oparse methods Dense N-body
matrix matrix :
(SpMV) (FFTs) BLAS (Particle
Structured | Structured ( % Reihods)
grids grids

(Stencils, (Lattice
PDEs) methods)
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Attainable performance [GFLOPS]

Intel XeonE5-2697v2 12C
2.7GHz with DDR3-1866
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Roofline Performance Examples

« Attainable GFLOPs/sec Min = (Peak Memory BW x Arithmetic Intensity,
Peak Floating Point Performance)

Double precision GLFOP/sec
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Roofline Performance Examples

—Intel Séndy Bridge

—AMD Abu Dhabi /
—|BM BG/Q
—Fujitsu FX10
—NVIDIA Kepler
Intel Xeon Phi
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Opt|m|zat|on vs. Roofline Model
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Bott\enecks & Limitations
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Cache-Aware Roofline Model

\

LLC <«—>

|

Memory

How much data is transferred between memory levels?

e

:;f;u L2 PN

]

CARM L2 L3

©
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Performance Limitations

Peak Flop/s
L2 GB/s Find the minimum of
all memory subsystems
L3 GB/s
DRAM GB/s

...........

P J\ Actual performance




Going Forward




What's next”?

Mixed Large

All Large Core and
Small Core

Many Small Cores

All Small Core ™ mm—

Y p——
Different Classes of Chips
Home
Games / Graphics
Business
Scientific
Many Floating- + 3D Stacked
Point Cores Memory

The question is not whether this will
happen but whether we are ready

46
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A Likely Trajectory:
Collision or Convergence?

:

CPU

Future
Processor(s)
Design

multi-threading multi-core many-core

fully programmable

partially programmable

programmability

fixed function

parallelism G PU
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Scientific Computing Community Objective

* Building up the ability to translate parallel computing power into

science and engineering breakthroughs

- |dentify apps whose computing structures are suitable for SC
- These applications can be revolutionised by 100X computing power

- Provide access to expertise needed to tackle these apps

* Develop SW solutions offering better HW efficiency & utilisation
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