

HPTPC Analysis meeting

Seb Jones

Department of Physics & Astronomy University College London

November 1, 2018

UsToF - DsToF matching

Files used

■ UsToF: Data_2018_9_9_b3_800MeV_4blocks_bendM5cm.root

■ Start: 1536490758, End: 1536562524

■ DsToF: Run 1242

■ Start: 1536523466, End: 1536527066

■ These should be fairly typical running conditions — full moderator, 0.8 GeV/c beam

Procedure

- Match beam signals with one another initially to measure the clock drift across entire run $(-2.78\mu s/s \text{ measured over 1 hour})$
- For spill *n*, zero both UsToF and DsToF clocks at the spill signal and apply calculated drift from this point

Example: 1st spill

- For DsToF: these are all bar coincidences no UsToF hit required
- For UsToF: these are the ToF wall hits (S3) which have an associated S1 (the first timing gate) hit
- Appears to be UsToF deadtime effects around 350ms

Example: 100th spill

- For DsToF: these are all bar coincidences no UsToF hit required
- For UsToF: these are the ToF wall hits which have an associated S1 (the first timing gate) hit
- Appears to be UsToF deadtime effects around 350ms

Naming conventions

- Becoming quite confusing calling things UsToF, DsToF (which one?)
- Easier (in my opinion) to just use S_{1-4} since UsToF files contain info from S_{1-3}

Hit matching

- Attempt to match each S3 hit with an S4 hit (many more DsToF hits)
- Have a peak near 0 ns, which is reassuring not exactly there though
- Geometric factors, attenuation, imperfect efficiency will lead to unmatched hits
- Right is just zoomed version of left

Hit matching

- These are for the same spill as the previous slide
- Seems that we have a number of hits that are being matched down to the ns level between the two systems!

Hit matching: spill 1

- However, zooming in further, drift correction has not been 100% effective smearing of peak on left
- To get right for individual spills may need to calculate drift on smaller timescale
- Probably the next thing I'm going to look at today

Hit matching: spill 100

- Drift correction seems to work very well at this particular point in run so will use as an example
- This plot is $S_3 S_4$. These points were pretty close together so it seems we have a \sim 30 ns offset between systems.

Spatial distribution of these hits: spill 100

- \blacksquare For these 'matched' hits (-100ns $<\Delta t<$ 200ns) have plotted the spatial position in S_3 and S_4
- Note: these are not the same 'x' and 'y' on the two plots they are specific to the detectors
- Need to do sum of these over many spills to get better idea of distribution

- Difference between the two plots on the previous slide
- Seemed to be roughly centred on (0, 0) I think have my coordinate system the right way round