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https://arxiv.org/abs/1807.05996


Notation
x denotes observable(s), can be multi-D
More generally, x is any convenient or useful function of the 
observable(s), and is called a “statistic” or “test statistic”
µ denotes parameter(s)   (sometimes we use θ) 
p(x|µ) is probability/pdf characterizing everything that 
determines the probabilities (densities) of the observations, from 
laws of physics to experiment setup and protocol
p(x|µ) is called the “statistical model” or simply “the model” by 
statisticians.
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Basic notions of confidence intervals (Sec. 6.2)
In two sentences:

Given the model p(x|µ) and the observed value xobs, for what 
values of µ is xobs an “extreme” value of x?  
Include in the confidence interval [µ1,µ2] those values of µ for 
which xobs is not “extreme”.
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Basic notions of confidence intervals (Sec. 6.2)
In two sentences:

Given the model p(x|µ) and the observed value xobs, for what 
values of µ is xobs an “extreme” value of x?  
Include in the confidence interval [µ1,µ2] those values of µ for 
which xobs is not “extreme”.

To be well-defined, the first point needs to be supplemented:

1) In order to define “extreme”, one needs to choose an ordering 
principle for x applicable to each µ: high rank means not extreme.

2) One also needs to specify what fraction of values of x are not 
considered extreme.  Called the confidence level C.L.; α = 1 – C.L.
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Three common ordering choices in 1D 
(when p(x|µ) is such that higher µ implies higher average x):

1. Order x from largest to smallest.                                            
Leads to confidence intervals known as upper limits on µ.

2. Order x from smallest to largest.  Leads to lower limits on µ. 
3. Order x using central quantiles of p(x|µ).                              

Gives central confidence intervals for µ.
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Basic notions of confidence intervals (cont.)

These orderings apply only when x is 1D



Basic notions of confidence intervals (cont.)
So, one-sentence definition of confidence interval:

The confidence interval [µ1,µ2] contains those values of µ for 
which xobs is not “extreme” at the chosen C.L., given the ordering.

See Section 6.8 (and F-C paper) for graphical equivalent that we 
call “Neyman’s construction”, and “confidence belts”

Bob Cousins, PhyStat-DM, 8/2019 6



Confidence Intervals and Coverage (Sec. 6.11)
Let µt be the unknown true value of µ. In repeated experiments, 
confidence intervals will have different endpoints [µ1, µ2], since 
the endpoints are functions of the randomly sampled x. 
A little thought will convince you that a fraction C.L. = 1 – α of 
confidence intervals so obtained will contain (“cover”) the fixed 
but unknown µt . I.e.,  
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)
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Confidence Intervals and Coverage (Sec. 6.11)
Let µt be the unknown true value of µ. In repeated experiments, 
confidence intervals will have different endpoints [µ1, µ2], since 
the endpoints are functions of the randomly sampled x. 
A little thought will convince you that a fraction C.L. = 1 – α of 
confidence intervals so obtained will contain (“cover”) the fixed 
but unknown µt . I.e.,  
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)
In this (frequentist) equation, µt is fixed and unknown.               
The endpoints µ1,µ2 are the random variables (!). 
Coverage is a property of the set of confidence intervals, not of 
any one interval.
See backup re Neyman’s point that expts need not be the same.
Discrete observations and/or nuisance parameters typically 
make exact coverage unobtainable – see writeup.
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4. Order x using likelihood ratio L(x|µ) / L(x|µbest fit), advocated    
by F-C.

Ordering applies (in principle) for arbitrary dimensions of x, µ.

We looked “everywhere” in literature on confidence intervals, did 
not see this ordering used for intervals.  Was it really new?  
Instructive twist as our paper was in proof!
For that we must first turn to...
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Fourth ordering: Likelihood ratios (Sec. 6.7)

Phys. Rev. D57 3873 (1998):



Hypothesis testing

a) A given functional form (“model”) vs another functional 
form.  Also known as “model selection”.

b) Within the same functional form, a single value of a 
parameter (say 0 or 1) vs all other values.                            
The model with the single value is nested within the 
model with all other values.

c) Goodness of Fit: A given functional form against all 
other (unspecified) functional forms (aka “model 
checking”)

(Section 2.3)
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Many special cases, including:
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form.  Also known as “model selection”.

b) Within the same functional form, a single value of a 
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model with all other values.
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Many special cases, including:
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There is an undetermined parameter µ in H1 , 
and H0 corresponds to a particular parameter value µ0
(e.g., zero, SM prediction, or ∞).
H0: µ = µ0 (the “point null”, or “sharp hypothesis”) 
H1: µ ≠ µ0 (the “continuous alternative”).
Common examples: 
1) Signal strength µ of new physics: null µ0 = 0, alternative µ>0
2) Higgs boson → γγ before observation, signal strength µ: 

null µ0 = 0, alternative µ>0
3) Higgs boson → γγ after observation: 

null µ0 = SM prediction, alternative is any other µ ≠ µ0

(Section 7.3)

Nested Hypothesis Testing is common in HEP
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1a) ν mixing angle θ23 before 1998: null θ23 = 0, alternative θ23 ≠ 0
1b) ν mixing angle θ23 after 1998: null θ23 = 45°, alternative θ23 ≠ 45°

2a) CP violation phase δ before it is observed: 
Two-point-null: “δ = 0 or δ = π” vs alternative: all other δ

2b) After two-point null for δ is rejected:  maybe a theorist has a 
“predicted” value of δ to test

Nested Hypothesis Testing in Neutrino Physics



Classical Frequentist Hypothesis Testing
For null hypothesis H0, order possible observations x from least 
extreme to most extreme, using an ordering principle (which can 
depend on H1 as well). Choose a cutoff α (smallish number). 
Then “reject” H0 if observed xobs is in the most extreme fraction α
of observations x (generated under H0). By construction,

α = probability (with x generated according to H0) of rejecting 
H0 when it is true, i.e., false discovery claim (Type I error)

[See elsewhere for Type II error prob β ]
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In classical/frequentist formalism (but not Bayesian formalism), the 
theory of these hypo tests maps to that of confidence intervals:
Having observed data xobs, suppose the 95% C.L. confidence 
interval for µ is  [µ1,µ2].
This contains all values of µ for which observed xobs is ranked in 
the least extreme 95% of possible outcomes x according to p(x|µ) 
and the ordering principle in use.

Nested Hypothesis Testing: Duality with Intervals
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In classical/frequentist formalism (but not Bayesian formalism), the 
theory of these hypo tests maps to that of confidence intervals:
Having observed data xobs, suppose the 95% C.L. confidence 
interval for µ is  [µ1,µ2].
This contains all values of µ for which observed xobs is ranked in 
the least extreme 95% of possible outcomes x according to p(x|µ) 
and the ordering principle in use.
Now suppose we wish to test H0 vs H1 at Type I error prob α = 5%. 
We reject H0 if xobs is ranked in the most extreme 5% of x according 
to p(x|µ) and the ordering principle in use.

Nested Hypothesis Testing: Duality with Intervals
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In classical/frequentist formalism (but not Bayesian formalism), the 
theory of these hypo tests maps to that of confidence intervals:
Having observed data xobs, suppose the 95% C.L. confidence 
interval for µ is  [µ1,µ2].
This contains all values of µ for which observed xobs is ranked in 
the least extreme 95% of possible outcomes x according to p(x|µ) 
and the ordering principle in use.
Now suppose we wish to test H0 vs H1 at Type I error prob α = 5%. 
We reject H0 if xobs is ranked in the most extreme 5% of x according 
to p(x|µ) and the ordering principle in use.
Comparing the two procedures, we see: 

Reject H0 at α=5% iff µ0 is not in 95% C.L. conf. interval [µ1,µ2].
Use of the duality is referred to as “inverting a test” to obtain 
confidence intervals, and vice versa. (Section 7.4)

Nested Hypothesis Testing: Duality with Intervals



Duality in Nested Hypothesis Testing

While F-C was “in proof”, Gary 
realized that “our” intervals were 
simply those obtained by “inverting” 
the classic “exact” LR hypothesis test 
(which specifies LR ordering) in 
Kendall and Stuart.
It was all on 1¼ pages, plus profiling 
nuisance parameters!
See Gary’s Fermilab talk, “Journeys of 
an Accidental Statistician”, 
http://users.physics.harvard.edu/~feldman/Journeys.pdf

This was of course good ! 
It led to rapid inclusion in PDG RPP. 
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Famous confusion re Gaussian p(x|µ) where µ ≥ 0

19Bob Cousins, PhyStat-DM, 8/2019

It is crucial to distinguish between the data x, which can be 
negative (no problem), and a parameter µ such as mass or signal 
strength, for which negative values do not exist in the model.  
I.e., for mass µ <0,  p(x|µ) does not exist:  You would not know 
how to simulate the physics of detector response for mass < 0.
Constraint µ ≥ 0 has nothing to do with a Bayesian prior for µ !!!
It’s in the model (and hence in L(µ)).
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It is crucial to distinguish between the data x, which can be 
negative (no problem), and a parameter µ such as mass or signal 
strength, for which negative values do not exist in the model.  
I.e., for mass µ <0,  p(x|µ) does not exist:  You would not know 
how to simulate the physics of detector response for mass < 0.
Constraint µ ≥ 0 has nothing to do with a Bayesian prior for µ !!!
It’s in the model (and hence in L(µ)).
The confusion is encouraged since 
we often refer to x as the “measured 
value of µ”, and say that x<0 is 
“unphysical” – bad habits!
A proper confidence belt has x of 
both signs, only non-negative µ ≥ 0.  
Example: Construction on right is 
LR ordering advocated by F-C
(Sections 6.9, 14)



Rollout of F-C
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Posted to arxiv Nov. 1997.  
Published in Phys. Rev. D on April 1, 1998

Gary goes to Takayama Japan for Neutrino ’98.  

Official Super-Kamiokande Press Release from Japan MEDIA 
ADVISORY for afternoon June 5, 1998, Takayama, Japan:

EVIDENCE FOR MASSIVE NEUTRINOS”

[Atmospheric neutrino oscillations]
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Long email to me from Gary on June 5, 1998, detailing 
widespread interest in F-C, noting:

“
Most people seem to have heard about our paper, or, if not, are 
starting to ask about it.  
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Long email to me from Gary on June 5, 1998, detailing 
widespread interest in F-C, noting:

“
Most people seem to have heard about our paper, or, if not, are 
starting to ask about it.  
The most disconcerting thing is that I keep getting introduced as 
‘Feldman, of Feldman and Cousins.’ 
”



20 years of experience with F-C
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Lots of experience in HEP, many find it useful, especially when:

• A model parameter is bounded (mass, cross section, 
sin/cosine of an angle, etc.); and/or 

• When log-likelihood is non-Gaussian (so Wilks’s Theorem is 
inaccurate); multiply connected confidence regions; and/or 

• The interesting parameter space is >1D, where LR ordering a 
la F-C and K&S is particularly useful, and other orderings are 
poorly defined (metric dependent)



20 years of experience with F-C

25Bob Cousins, PhyStat-DM, 8/2019

Lots of experience in HEP, many find it useful, especially when:

• A model parameter is bounded (mass, cross section, 
sin/cosine of an angle, etc.); and/or 

• Log-likelihood is non-Gaussian (so Wilks’s Theorem is 
inaccurate); multiply connected confidence regions; and/or 

• The interesting parameter space is >1D, where LR ordering a 
la F-C and K&S is particularly useful, and other orderings are 
poorly defined (metric dependent)

BTW, for data with a “5-sigma discovery”, the F-C “unified 
approach” reproduces same answer as usual one-tailed test.



20 years of experience with F-C (cont.)
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Main foundational (philosophical) issue, already discussed in 
the F-C paper, is illustrated by Poisson case with non-zero 
expected background, zero events observed.  
See Section 9.1 of arxiv post (violation of Likelihood Principle, 
common in frequentist statistics).

Main practical issues: 
1) Computational time, especially in presence of nuisance 

parameters.  
2) In common with other frequentist methods, there is no 

automatic way to “eliminate” nuisance parameters that is 
always satisfactory. (Section 12)

Comparison to other “contenders” in a prototype problem: 
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf

http://www.physics.ucla.edu/%7Ecousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf


Bayes, Fisher, Neyman, 
Neutrino Masses, and the LHC

Bob Cousins
Univ. of California, Los Angeles

Virtual Talk
12 September 2011
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Back to main theme of this talk: 

Hypothesis testing of a point null vs a 
continuous alternative



Bayesian Hypothesis Testing  (Model Selection)
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Forget the duality with intervals (!).

Typically follows Chapter 5 of book by Harold Jeffreys:
Bayes’s Theorem is applied to the models themselves after 
integrating out all parameters, including parameter of interest!

Presented too often as “logical” and therefore simple to use, 
with great benefits such as automatic “Ockham’s razor”, etc.

In fact, it is full of subtleties. E.g., Jeffreys and followers use 
different priors for integrating out parameter in model selection 
than for same parameter in parameter estimation.

(Sections 5, 10, Appendix A)



Bayesian Hypothesis Testing  (Model Selection)
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Here I will mainly just say: Beware!  There are posted/published 
applications HEP that are silly (by Bayesian standards).              
A pentaquark example in PRL provoked me to write a 
Comment: https://arxiv.org/abs/0807.1330 .

For testing point null vs continuous alternative, in asymptotic 
limit of large sample size, your answer (e.g. probability H0 is 
true, or an odds ratio called the Bayes Factor) remains 
proportional to the prior pdf of parameter of interest. 

This is totally different behavior compared to interval 
estimation, where the effect of prior p(µ) typically becomes 
negligible as sample size increases without bound.

https://arxiv.org/abs/0807.1330


Bayesian hypothesis testing for nested case
H0: θ=θ0 vs H1: θ≠θ0

Let π0 be prior prob for H0. Then π1 = 1−π0 is prior prob for H1.
Conditional on H1 true: prior pdf for θ, g(θ). 
π0 is like bit of Dirac δ-ftn (“probability mass”) at θ=θ0 .         

In practice can have a little width: 
ε0 = scale of width of null value(s) of θ
scale τ: extent of prior plausible values in g(θ) 
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g(θ)
π0

θ0

θ

τ



Gaussian model p(x|θ) with rms σtot , sampled value xobs . 
ML Estimate for θ is �θ = xobs . 
Departure from null in sigma: Z = ( �θ − θ𝟎𝟎)/σtot

Sketch has Z ≈ 5. 
Three independent scales: gets interesting when, as shown,    

ε0 << σtot << τ .
Bayesian posterior prob for H0, and Bayes Factor are prop to 

τ /σtot (1/Ockham factor), independent of Z! 
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g(θ)
π0

L(θ)

θθ0 ^
θ

σtot

τ
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g(θ)
π0

L(θ)

θθ0 ^
θ

σtot

τ

g(θ)
π0

L(θ)

θθ0 ^
θ

σtot

τ

Tale of two 5σ effects

σtot smaller, τ /σtot larger:
BF for H0 bigger!
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The fact that BF varies as τ /σtot while Z is fixed is called            
(at least in extreme cases) the Jeffreys-Lindley paradox.

Also implies that, for experiments obtaining the same Z, the 
Bayesian answers depend on sample size (since σtot typically 
goes as 1/sqrt(sample size).  Very different behavior!

For a review and comparison to p-values in discovery of Higgs 
boson, see my paper:

“The Jeffreys-Lindley Paradox and Discovery Criteria in High 
Energy Physics” 

(Published in Synthese – long story) 
https://arxiv.org/abs/1310.3791 . 

Jeffreys-Lindley paradox

https://arxiv.org/abs/1310.3791
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For testing H0: θ = θ0 vs H1: θ ≠ θ0 , improper priors g(θ) for θ that 
work fine for estimation (such as Jeffreys priors) become a 
disaster.

E.g. scale τ of g(θ) diverges so H0 always preferred.

Adding cut-off to make prior g(θ) proper just gives direct 
dependence on (arbitrary?) τ .  
(Contrast with Bayesian  point/interval estimation!)

Silly things like prior flat in log of mass as a way to represent 
“ignorance” are strongly informative! 
(See any serious Bayesian literature.)

Priors in Bayesian Hypothesis Testing
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As my writeup mentions (following Eadie et al. nearly 50 years 
earlier) various words including “estimation” have different 
meanings to statisticians than to physicists.  Beware!

Since then, I have realized that a disastrous mistake seems to  
be made by some physicists regarding the word “scale”.

Recall (or learn about): So-called “objective priors” or “default 
priors” (often called by the misnomer “noninformative priors”) in 
Bayesian estimation are based on the measurement model, i.e., 
the measuring apparatus and the protocol (stopping rule, etc.).        
(Jeffreys’s Rule, Bernardo-Berger Reference Priors, etc.)

E.g., if the measuring apparatus has Gaussian resolution for 
some parameter (say mass-squared), then the default prior for 
that parameter (for estimation) is uniform, with all that implies.

A side note on priors for “Scales”
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To a statistician, whether or not a parameter is a scale parameter 
again depends on the measurement model (!).
Parameter θ is a scale parameter if the model p(x|θ) has the form: 
p(x|θ) = (1/θ) f(x/θ).
From this one can partly derive and partly argue* that invariance 
of prior form under change of scale parameter implies the 
“noninformative prior” p(θ) = 1/θ, i.e., a prior uniform in log(θ).

*See pp. 85-87 of Jim Berger’s book on decision theory for subtleties of derivation.  See also Jeffreys
pp. 120-123, which he abandons later in the book. 

A side note on priors for “Scales” (cont.)
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To a statistician, whether or not a parameter is a scale parameter 
again depends on the measurement model (!).
Parameter θ is a scale parameter if the model p(x|θ) has the form: 
p(x|θ) = (1/θ) f(x/θ).
From this one can partly derive and partly argue* that invariance 
of prior form under change of scale parameter implies the 
“noninformative prior” p(θ) = 1/θ, i.e., a prior uniform in log(θ).

To a physicist, a “scale” is a quantity that sets the size of 
physical quantities like mass, length. 
E.g., “What is the DM mass scale?”

So it seems that some physicists make the mistake of saying, 
“Since mass is a scale, I use the prior uniform in log(mass).”  
OOPS!  This “scale” is not a statistician’s “scale parameter”!
See Comment https://arxiv.org/abs/1703.04585
*See pp. 85-87 of Jim Berger’s book on decision theory for subtleties of derivation.  See also Jeffreys
pp. 120-123, which he abandons later in the book. 

A side note on priors for “Scales” (cont.)

https://arxiv.org/abs/1703.04585
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Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate complexity:

– Bayesian with analysis of sensitivity to prior
– Profile likelihood ratio (Minuit MINOS)
– Frequentist construction with approximate treatment of 

nuisance parameters
– Other “favorites” such as LEP’s CLS (an HEP invention)

Bob Cousins, PhyStat-DM, 8/2019

My advocacy for >10 years (Section 16):
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Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate complexity:

– Bayesian with analysis of sensitivity to prior
– Profile likelihood ratio (Minuit MINOS)
– Frequentist construction with approximate treatment of 

nuisance parameters
– Other “favorites” such as LEP’s CLS (an HEP invention)

The community can (and should) then demand that a result 
shown with one’s preferred method also be shown with the other 
methods, and with sampling properties studied.

When the methods all agree, we are in asymptopic nirvana.
When the methods disagree, we are reminded that the results are 
answers to different questions, and we learn something! E.g.:

– Bayesian methods can have poor frequentist properties
– Frequentist methods can badly violate likelihood principle

Bob Cousins, PhyStat-DM, 8/2019

My advocacy for >10 years (Section 16):



There is a large literature on frequentist 
properties of Bayesian (inspired) procedures

41

Google on:
probability matching priors
Welch and Peers 1963
calibrated Bayes 
Bayes non-Bayes compromise
prior predictive p-value
posterior predictive p-value 
etc.

A nice introductory review is by M.J. Bayarri and J.O. Berger, 
“The Interplay of Bayesian and Frequentist Analysis”, 
Statist. Sci. 19 58-80  (2004), doi:10.1214/088342304000000116

We should be doing more of this in HEP, in my opinion.

Bob Cousins, PhyStat-DM, 8/2019



Coverage of Bayesian estimation procedures
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Pre-data, Bayesians have the model p(x|µ). 
Thus, quite apart from imagined repeated experiments (to which 
they may object) or frequentist definition of probability (to which 
they may object), a Bayesian can calculate:

As a function of µ, what is the coverage probability of the 
credible interval [µ1, µ2] that they will report: what is the 
probability, given the model p(x|µ) (with whatever definition of p 
they use), that their procedure will lead to an interval in which     
µ ∈ [µ1, µ2].

This is a crucial diagnostic to report to the consumer, especially 
if default priors are used! (Jim B. says reference priors will work.)

(Of course, one can also average this coverage over µ, weighted 
by either the prior or the posterior.)

Bob Cousins, PhyStat-DM, 8/2019



Evaluation of properties of Bayesian hypothesis   
testing procedures

43

Similarly, quite apart from imagined repeated experiments or 
frequentist definition of p, a Bayesian can calculate:

As a function of assumed H0 and H1 and any parameters, what is 
the distribution of the Bayes Factors that they will report: what is 
the probability, given each model p(x|Hi,µ) (with whatever 
definition of p they use), that their procedure will obtain various 
values of the Bayes Factor (or posterior probabilities).

This is also a crucial diagnostic to report to the consumer, 
especially if attempts at “noninformative” priors are used!

(enlightening for seeing relationship between Bayes Factors and 
p-values)

Bob Cousins, PhyStat-DM, 8/2019



Thanks to all (see note), including my 
“sponsor”, U.S. DOE Office of Science
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BACKUP
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Coverage: The experiments in the ensemble do 
not have to be the same.
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Neyman pointed this out in his 1937 paper (in which his 
α is the modern 1 - α):



Above is all “pre-data” characterization of the test
How to characterize post-data? 

p-values and Z-values
In N-P theory, α is specified in advance.  
Suppose after obtaining data, you notice that with α=0.05 
previously specified, you reject H0, but with α=0.01 previously 
specified, you accept H0.  
In fact, you determine that with the data set in hand, H0 would be 
rejected for α ≥ 0.023.  This interesting value has a name:
After data are obtained, the p-value is the smallest value of α for 
which H0 would be rejected, had it been specified in advance.
This is numerically (if not philosophically) the same as definition  
used e.g. by Fisher and often taught: “p-value is probability under 
H0 of obtaining x as extreme or more extreme than observed x0.” 
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Interpreting p-values and Z-values

48

It is crucial to realize that that value of α (0.023 in the example) 
was typically not specified in advance, so p-values do not
correspond to Type I error probs of experiments reporting them.      
In HEP, p-value typically converted to Z-value (unfortunately 
commonly called “the significance S”), equivalent number of 
Gaussian sigma.*  
E.g.., for one-tailed test, p = 2.87E-7 is Z = 5.

Bob Cousins, PhyStat-DM, 8/2019



Interpreting p-values and Z-values (cont.)

49

Interpretation of p-values (and hence Z-values) is a long, 
contentious story – beware! 
Widely bashed.  I give some reasons why in 
https://arxiv.org/abs/1807.05996 .
I defend their use in HEP. See https://arxiv.org/abs/1310.3791.)

Whatever they are, p-values are not the probability that H0 is true!
– They are calculated assuming that H0 is true, so they can 

hardly tell you the probability that H0 is true!
– Calculation of “probability that H0 is true” requires prior(s)!

Please help educate press officers and journalists!                    
(and physicists) !

Bob Cousins, PhyStat-DM, 8/2019

https://arxiv.org/abs/1807.05996
https://arxiv.org/abs/1310.3791


Whatever you call non-subjective priors,                  
they do not represent ignorance!

Dennis V. Lindley Stat. Sci 5 85 (1990), “the mistake is to think 
of them [Jeffreys priors or Bernardo/Berger’s reference 
priors] as representing ignorance”

This Lindley quote is emphasized by Christian Robert, The 
Bayesian Choice, (2007) p. 29.

Jose Bernardo: “[With non-subjective priors,] The contribution 
of the data in constructing the posterior of interest should be 
“dominant”. Note that this does not mean that a non-
subjective prior is a mathematical description of 
“ignorance”. Any prior reflects some form of knowledge.”

Nonetheless, Berger (1985, p. 90) argues that Bayesian analysis 
with noninformative priors (older name for objective priors) 
such as Jeffreys and Barnardo/Berger “is the single most 
powerful method of statistical analysis, in the sense of being 
the ad hoc method most likely to yield a sensible answer for 
a given investment of effort”.  
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Recent book exploring Bayesian-frequentist divide

51

Much interesting history and 
up to-date discussion of both theory
and practice, including, for example, 
internal debates among Bayesians.  

Very well-referenced.

Mayo has long advocated “error
statistics”, and in particular the
concept of how severely a
hypothesis has been tested in
a test that “passes”.

(I plan to think more about how this
maps on to what we do in HEP.)

Bob Cousins, PhyStat-DM, 8/2019



Bayes, Fisher, Neyman, 
Neutrino Masses, and the LHC

Bob Cousins
Univ. of California, Los Angeles

Virtual Talk
12 September 2011
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http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf

http://www.physics.ucla.edu/%7Ecousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf
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