Introduction to Statistical Issues for Phystat-DM

Louis Lyons Imperial College, London and Oxford

PHYSTAT-DM@ Stockholm July 2019 Why bother ?

Experiments are expensive and time-consuming, so:

Worth investing effort in statistical analysis

 \rightarrow better information from data

Statistical Procedures

Parameter Determination

Central value and range (or upper limit)

e.g. flux of WIMPs

Comparing data with Hypotheses \rightarrow Discoveries, Upper Limits,...

Just one Hypothesis

Goodness of Fit

e.g. Just known particles

Comparing 2 Hypotheses

Hypothesis Testing

e.g. Just known particles or Also WIMPs

TOPICS

Introduction Some issues related to Discovery claims Choosing between 2 hypotheses p-values (including CL_s) Blind analyses Look Elsewhere Effect Why 5-sigma for discovery Background systematics Upper Limits Summary

Other important topics not included: Combining results Likelihoods (including Coverage) Bayes and Frequentism MVA: How Neural Networks work Wilks Theorem Discovery of Higgs

Choosing between 2 hypotheses

Possible methods:

 $\Delta \chi^2$ p-value of statistic \rightarrow *lnL*-ratio **Bayesian**: Posterior odds **Bayes** factor Bayes information criterion (BIC) Akaike (AIC) Minimise "cost"

See 'Comparing two hypotheses'

http://www-cdf.fnal.gov/physics/statistics/notes/H0H1.pdf

Using data to make judgements about H1 (New Physics) versus H0 (S.M. with nothing new)

Topics:

Example of Hypotheses H0 or H0 v H1? **Blind Analysis** Why 5σ for discovery? Significance $P(A|B) \neq P(B|A)$ Meaning of p-values Wilks' Theorem LEE = Look Elsewhere Effect**Background Systematics Upper Limits** Higgs search: Discovery and spin

(N.B. Several of these topics have no unique solutions from Statisticians)

Examples of types of Hypotheses

1) Event selector

Selection of event sample based on required features e.g. H0: Cerenkov ring produced by electron H1: Produced by other particle Possible outcomes: Events assigned as H0 or H1

2) Result of experiment

- e.g. H0 = nothing new
 - H1 = new particle produced as well (Sterile neutrino,....)

 \checkmark

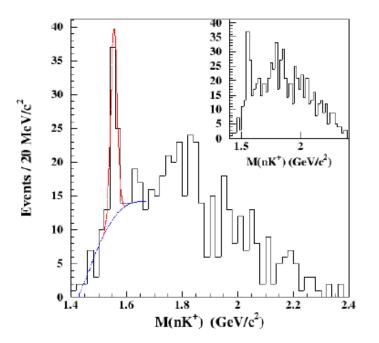
Х

Possible outcomes

- H0 H1
 - X Exclude H1
- X ✓ Discovery
- \checkmark \checkmark No decision

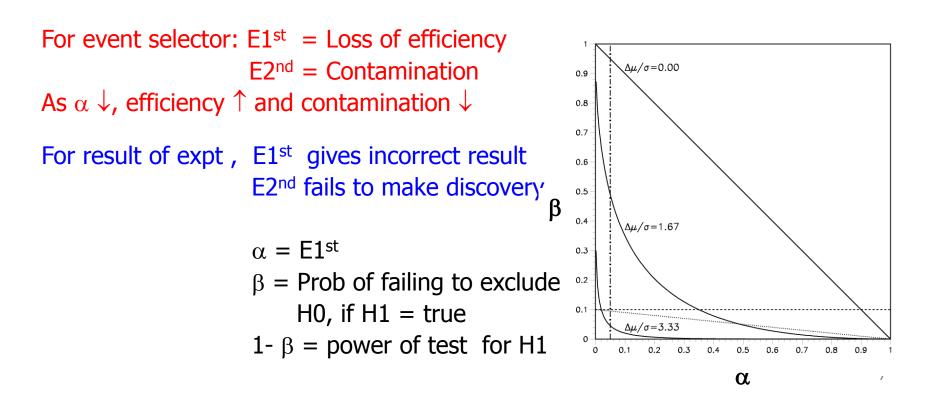
?

Х



Errors of 1st and 2nd Kind

 1st Kind: Reject H0 when H0 true Should happen at rate α
 2nd Kind: Fail to reject H0 when H0 is false Rate depends on: How similar H0 and H1 are Relative rates of H0 and H1 (for event selector)

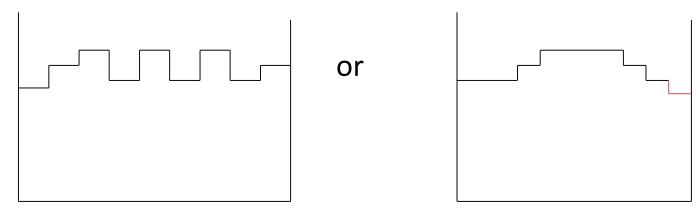


HO or HO versus H1?

H0 = null hypothesis

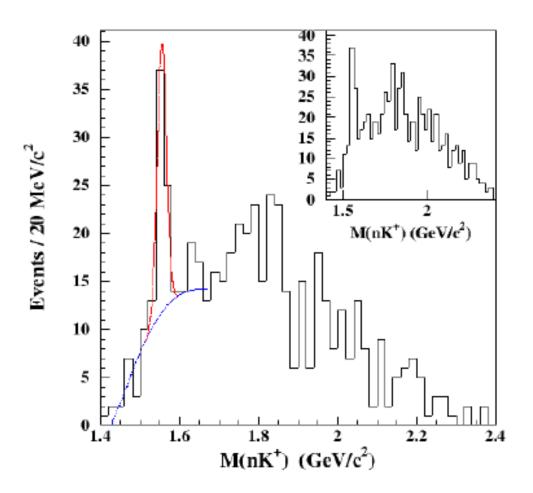
e.g. known backgrounds, with nothing new H1 = specific New Physics e.g. WIMP with $M_W = 70 \text{ GeV}$ H0: "Goodness of Fit" e.g. χ^2 , p-values H0 v H1: "Hypothesis Testing" e.g. \mathcal{L} -ratio Measures how much data favours one hypothesis wrt other

H0 v H1 likely to be more sensitive for H1

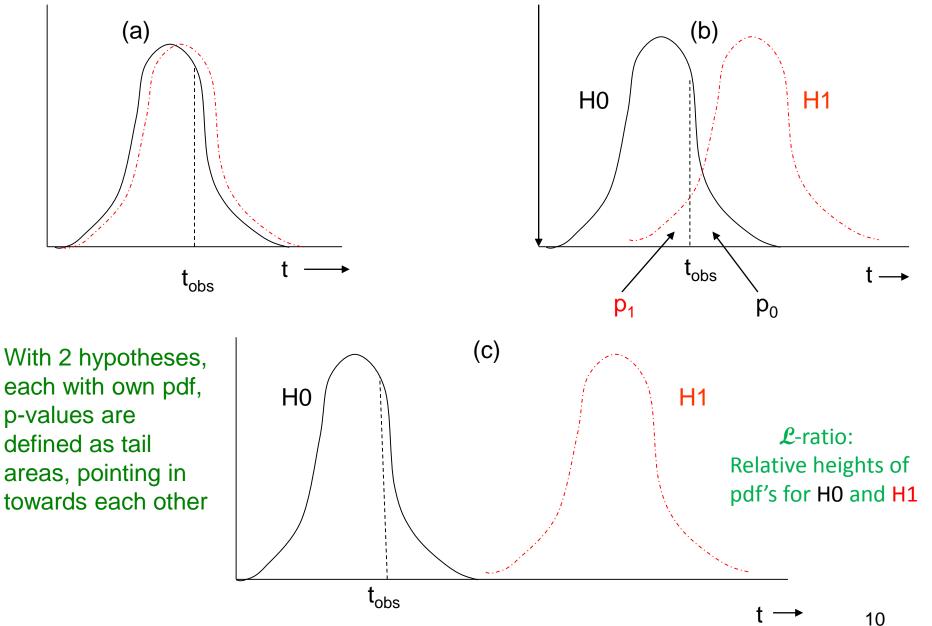


Choosing between 2 hypotheses

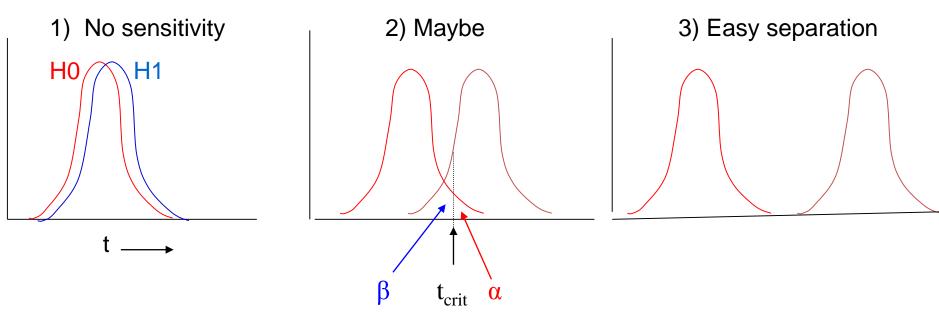
Hypothesis testing: New particle or statistical fluctuation? H0 = b H1 = b + s



First define your data statistic t (n, *L*-ratio, etc.)



Procedure for choosing between 2 hypotheses



Procedure: Obtain expected distributions for data statistic (e.g. \mathcal{L} -ratio) for H0 and H1 Choose α (e.g. 95%, 3 σ , 5 σ ?) and CL for p_1 (e.g. 95%) Given b, α determines t_{crit} b+s defines β . For s > s_{min}, separation of curves \rightarrow discovery or excln $1-\beta = Power \text{ of test}$ Now data: If $t_{obs} \ge t_{crit}$ (i.e. $p_0 \le \alpha$), discovery at level α If $t_{obs} < t_{crit}$, no discovery. If $p_1 < 1-CL$, exclude H1

p-values and z-score (number of sigma)

Conventional to convert p-values to number of sigma for one-sided tail of Gaussian

e.g. 16% = 1σ

3 10-7 = 5σ

Statisticians call this 'z-score'

Does NOT imply that actual pdf is Gaussian

Just convention

Simply easier to remember than corresponding p-value

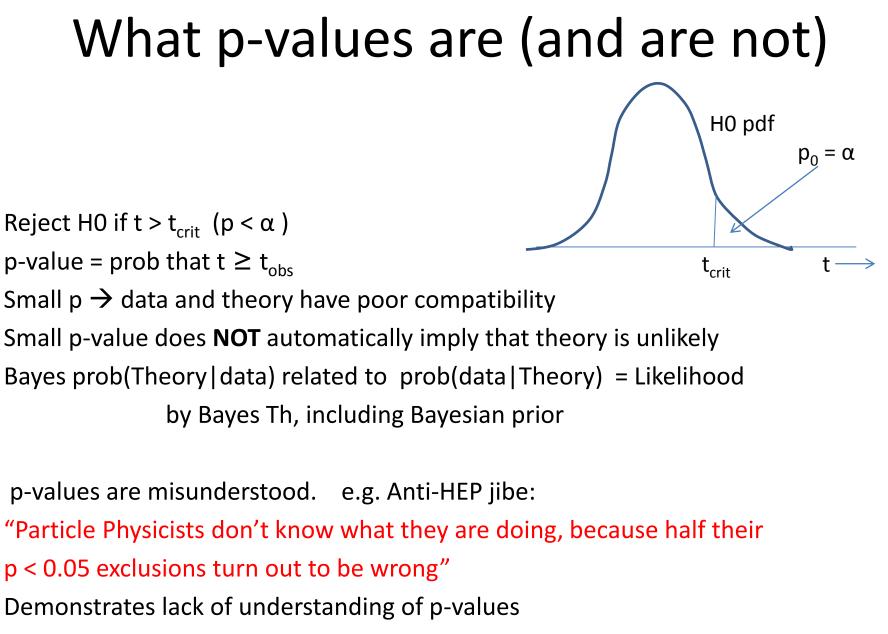
$\mathsf{P}(\mathsf{A} \,|\, \mathsf{B}) \neq \mathsf{P}(\mathsf{B} \,|\, \mathsf{A})$

Remind Lab or University media contact person that: Prob[data, given H0] is very small does **not** imply that Prob[H0, given data] is also very small.

e.g. Prob{data | speed of $v \le c$ }= very small does **not** imply Prob{speed of $v \le c$ | data} = very small or Prob{speed of v > c | data} ~ 1

Everyday situation:

p(eat bread|murderer) ~ 99% p(murderer|eat bread) ~ 10^{-6}



[All results rejecting energy conservation with $p < \alpha = .05$ cut will turn out to be 'wrong']

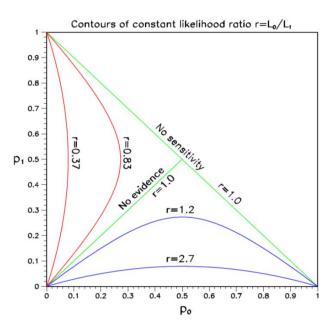
$p_0 v p_1 plots$

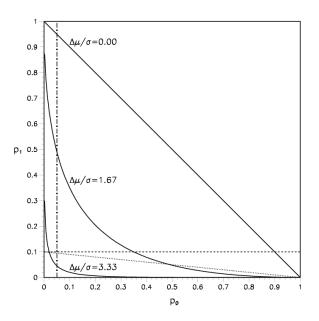
Preprint by Luc Demortier and LL, "Testing Hypotheses in Particle Physics: Plots of p₀ versus p₁" http://arxiv.org/abs/1408.6123

For hypotheses H0 and H1, p_0 and p_1 are the tail probabilities for data statistic t

Provide insights on:

CLs for exclusion Punzi definition of sensitivity Relation of p-values and Likelihoods Probability of misleading evidence Sampling to foregone conclusion Jeffreys-Lindley paradox

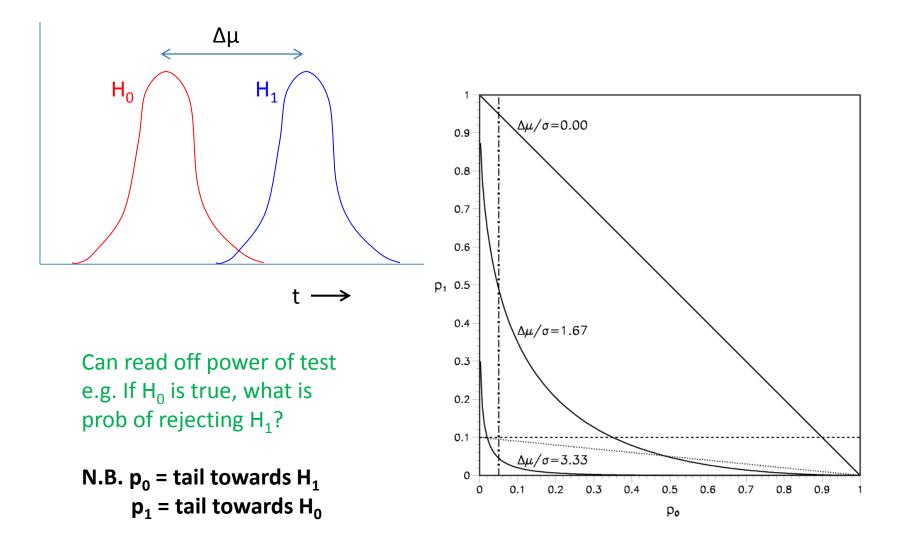




 $CLs = p_1/(1-p_0) \rightarrow diagonal line$

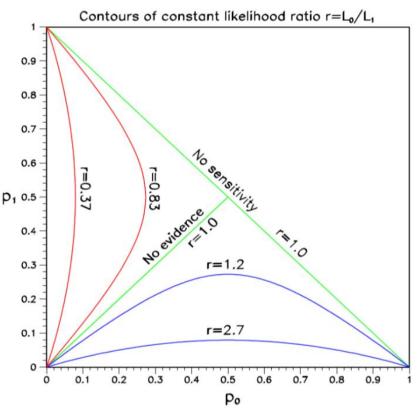
Provides protection against excluding H_1 when little or no sensitivity

Punzi definition of sensitivity: Enough separation of pdf's for no chance of ambiguity



Why $p \neq Likelihood$ ratio

Measure different things: p_0 refers just to H0; \mathcal{L}_{01} compares H0 and H1



Depends on amount of data:

e.g. Poisson counting expt little data:

For H0, μ_0 = 1.0. For H1, μ_1 =10.0

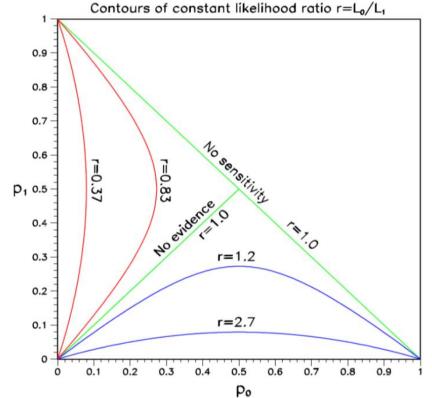
Observe n = 10 $p_0 \sim 10^{-7}$ $\mathcal{L}_{01} \sim 10^{-5}$

Now with 100 times as much data, $\mu_0 = 100.0$ $\mu_1 = 1000.0$

Observe n = 160 $p_0 \simeq 10^{-7}$ $\mathcal{L}_{01} \simeq 10^{+14}$

Jeffreys-Lindley Paradox

H0 = simple, H1 has μ free p₀ can favour H₁, while B₀₁ can favour H₀ B₀₁ = L₀ / \int L₁(s) π (s) ds



Likelihood ratio depends on signal : e.g. Poisson counting expt small signal s: For H₀, $\mu_0 = 1.0$. For H₁, $\mu_1 = 10.0$ Observe n = 10 p₀ ~ 10⁻⁷ L₀₁ ~ 10⁻⁵ and favours H₁ Now with 100 times as much signal s, $\mu_0 = 100.0$ $\mu_1 = 1000.0$ Observe n = 160 p₀ ~ 10⁻⁷ L₀₁ ~ 10⁺¹⁴ and favours H₀

 B_{01} involves intergration over s in denominator, so a wide enough range will result in favouring H_0 However, for B_{01} to favour H_0 when p_0 is equivalent to 5σ , integration range for s has to be O(10⁶) times Gaussian widths

Combining different p-values

Several results quote independent p-values for same effect:

p₁, p₂, p₃.... e.g. 0.9, 0.001, 0.3

What is combined significance? Not just $p_{1*}p_{2*}p_{3}$

If 10 expts each have p ~ 0.5, product ~ 0.001 and is clearly **NOT** correct combined p

$$S = z * \sum_{i=0}^{n-1} (-\ln z)^{j} / j!$$
, $z = p_1 p_2 p_3$

(e.g. For 2^{-5} measurements, S = z $(1 - \ln z) \ge z$)

Problems:

Recipe is not unique (Uniform dist in n-D hypercube → uniform in 1-D)
 Formula is not associative

Combining $\{\{p_1 \text{ and } p_2\}, \text{ and then } p_3\}$ gives different answer

from {{ p_3 and p_2 }, and then p_1 }, or all together Due to different options for "more extreme than x_1 , x_2 , x_3 ". 3) Small p's due to different discrepancies

****** Better to combine data **********

(Number of σ = p-value converted to Gaussian one-sided tail) Significance = S/ \sqrt{B} or similar ?

- Potential Problems:
- •Uncertainty in B
- •Non-Gaussian behaviour of Poisson, especially in tail
- •Number of bins in histogram, no. of other histograms [LEE]
- •Choice of cuts, bins (Blind analyses)

For future experiments:

• Optimising: Could give S =0.1, B = 10^{-4} , S/ \sqrt{B} =10

BLIND ANALYSES

Why blind analysis? Data statistic, selections, corrections, method

Methods of blinding Add random number to result * Study procedure with simulation only Look at only first fraction of data Keep the signal box closed Keep MC parameters hidden Keep unknown fraction visible for each bin

Disadvantages Takes longer time Usually not available for searches for unknown

After analysis is unblinded, don't change anything unless

Luis Alvarez suggestion re "discovery" of free quarks

Look Elsewhere Effect (LEE)

Prob of bgd fluctuation at that place = local p-value Prob of bgd fluctuation 'anywhere' = global p-value Global p > Local p

Where is `anywhere'?

- a) Any location in this histogram in sensible range
- b) Any location in this histogram
- c) Also in histogram produced with different cuts, binning, etc.
- d) Also in other plausible histograms for this analysis
- e) Also in other searches in this PHYSICS group (e.g. SUSY at CMS)
- f) In any search in this experiment (e.g. CMS)
- g) In all CERN expts (e.g. LHC expts + NA62 + OPERA + ASACUSA +)
- h) In all HEP expts

etc.

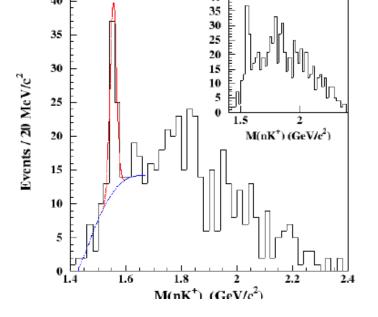
d) relevant for graduate student doing analysis

f) relevant for experiment's Spokesperson

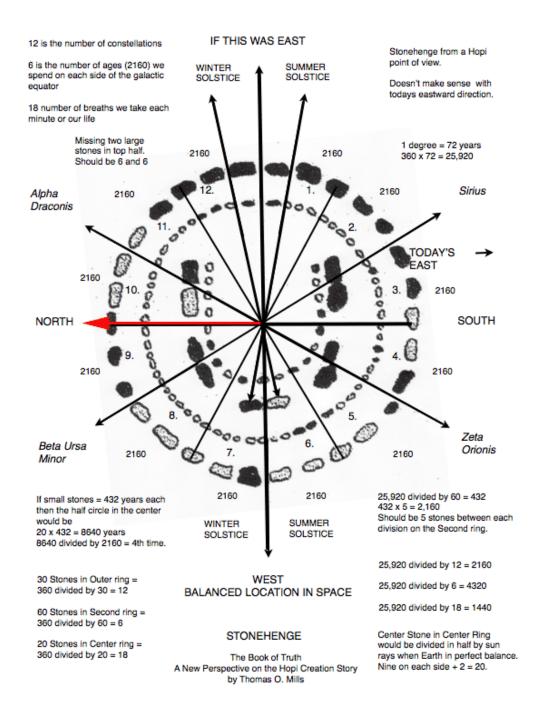
INFORMAL CONSENSUS:

Quote local p, and global p according to a) above. Explain which global p

For DM 'counting' experiments, there is almost no LEE.



Example of LEE: Stonehenge



Are alignments significant?

- Atkinson replied with his article "Moonshine on Stonehenge" in <u>Antiquity</u> in 1966, pointing out that some of the pits which had used for his sight lines were more likely to have been natural depressions, and that he had allowed a margin of error of up to 2 degrees in his alignments. Atkinson found that the probability of so many alignments being visible from 165 points to be close to 0.5 rather that the "one in a million" possibility which had claimed.
- had been examining stone circles since the 1950s in search of astronomical alignments and the <u>megalithic yard</u>. It was not until 1973 that he turned his attention to Stonehenge. He chose to ignore alignments between features within the monument, considering them to be too close together to be reliable. He looked for landscape features that could have marked lunar and solar events. However, one of's key sites, Peter's Mound, turned out to be a twentieth-century rubbish dump.

Why 5σ for Discovery?

Statisticians ridicule our belief in extreme tails (esp. for systematics) Our reasons:

- 1) Past history (Many 3σ and 4σ effects have gone away)
- 2) LEE
- 3) Worries about underestimated systematics
- 4) Subconscious Bayes calculation

 $\frac{p(H_1|x)}{p(H_0|x)} = \frac{p(x|H_1)}{p(x|H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(x|H_0)}{\pi(H_0)} = \frac{\pi(H_0)}{\pi(H_0)}$ $\frac{p(x|H_0)}{\pi(H_0)} = \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(x|H_0)}{\pi(H_0)} = \frac{\pi(H_1)}{\pi(H_0)}$

"Extraordinary claims require extraordinary evidence"

N.B. Points 2), 3) and 4) are experiment-dependent

Alternative suggestion:

L.L. "Discovering the significance of 5σ " http://arxiv.org/abs/1310.1284

How many σ 's for discovery?

SEARCH	SURPRISE	ΙΜΡΑϹΤ	LEE	SYSTEMATICS	Νο. σ
Higgs search	Medium	Very high	Μ	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B _s oscillations	Medium/Low	Medium	Δm	No	4
Neutrino osc	Medium	High	sin²2ϑ, Δm²	No	4
B _s → μ μ	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/V. high	M, decay mode	Medium	7
(g-2) _µ anom	Yes	High	No	Yes	4
H spin ≠ 0	Yes	High	No	Medium	5
4 th gen q, l, v	Yes	High	M, mode	No	6
Dark energy	Yes	Very high	Strength	Yes	5
Grav Waves	No	High	Enormous	Yes	8

Suggestions to provoke discussion, rather than `delivered on Mt. Sinai' How would you rate 'Dark Matter'?

Bob Cousins: "2 independent expts each with 3.5 σ better than one expt with 5 σ "

SYSTEMATICS

- Harder than statistical uncertainties
- Requires much more thought and effort

Different types:

- A) On measured quantities to extract answer
- B) On implicit assumptions

e.g Simple pendulum expt $\tau = 2\pi \sqrt{L/g}$

A) τ and L

B) Point mass; massless string; small amplitude; no damping

Systematics can be:

- i) Measured in subsidiary (or main) analysis
- ii) Exptl effects not directly measured; or inconsistent results
- iii) Different theories

Just one example here: **BACKGROUND SYSTEMATICS**

SYSTEMATICS

- Harder than statistical uncertainties
- Requires much more thought and effort

Different types:

- A) On measured quantities to extract answer
- B) On implicit assumptions

```
e.g Simple pendulum expt \tau = 2\pi \sqrt{L/g}
```

A) τ and L

B) Point mass; massless string; small amplitude; no damping

Systematics can be:

i) Measured in subsidiary (or main) analysis

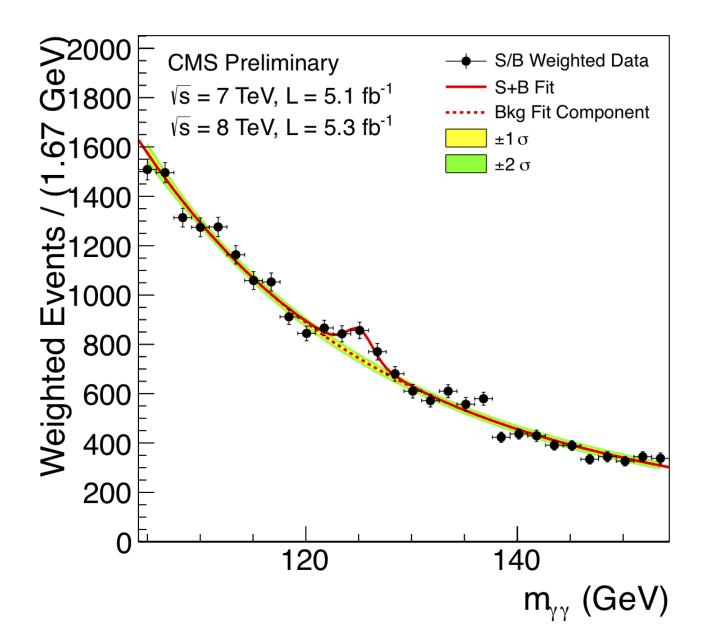
GOOD

UGIY

- ii) Exptl effects not directly measured; or inconsistent results BAD
- iii) Different theories

Just one example here: BACKGROUND SYSTEMATICS

Background systematics



Background systematics, contd

Signif from comparing χ^{2} 's for H0 (bgd only) and for H1 (bgd + signal)

Typically, bgd = functional form f_a with free params

e.g. 4th order polynomial

Uncertainties in params included in signif calculation

```
But what if functional form is different ? e.g. f<sub>b</sub>
```

Typical approach:

If f_b best fit is bad, not relevant for systematics

If f_b best fit is ~comparable to f_a fit, include contribution to systematics But what is '~comparable'?

Other approaches:

```
Profile likelihood over different bgd parametric forms
http://arxiv.org/pdf/1408.6865v1.pdf
Background subtraction
sPlots
Non-parametric background
Bayes
Yellin's Optimal Interval
Cowan's 'Error on the error'
```

etc

No common consensus yet among experiments on best approach {Spectra with multiple peaks are more difficult}

"Handling uncertainties in background shapes: the discrete profiling method"

Dauncey, Kenzie, Wardle and Davies (Imperial College, CMS) <u>arXiv:1408.6865v1</u> [physics.data-an] Has been used in CMS analysis of $H \rightarrow \gamma \gamma$

Problem with 'Typical approach': Alternative functional forms do or don't contribute to systematics by hard cut, so systematics can change discontinuously wrt $\Delta\chi^2$

Method is like profile \mathcal{L} for continuous nuisance params Here 'profile' over discrete functional forms

Reminder of Profile ${\cal L}$

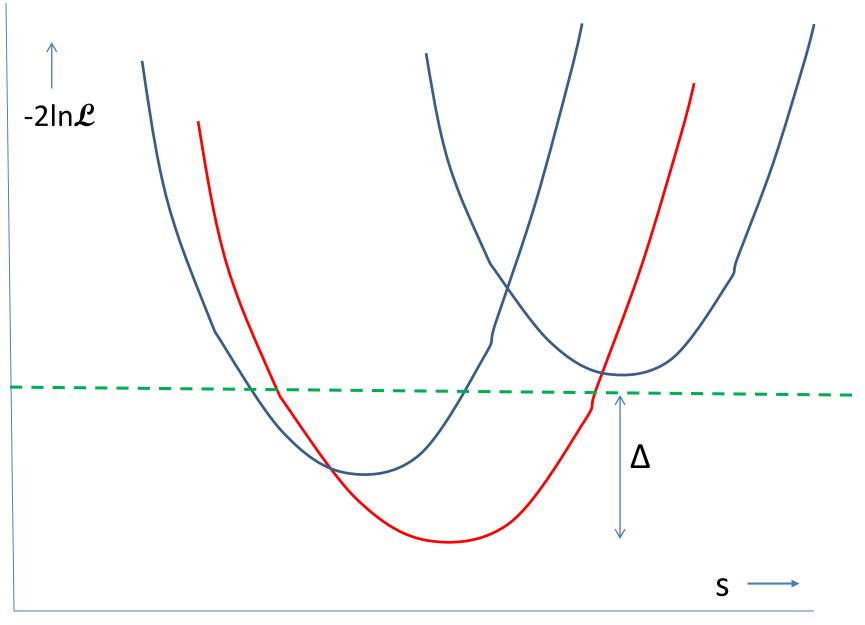
Stat uncertainty on s from width of $\boldsymbol{\mathcal{L}}$ fixed at υ_{best}

Total uncertainty on s from width of $\mathcal{L}(s, v_{\text{prof}(s)}) = \mathcal{L}_{\text{prof}}$ $v_{\text{prof}(s)}$ is best value of v at that s $v_{\text{prof}(s)}$ as fn of s lies on green line

Contours of $ln \mathcal{L}(s, v)$ s = physics param v = nuisance param S

υ

Total uncert \geq stat uncertainty



Red curve: Best value of nuisance param vBlue curves: Other values of vHorizontal line: Intersection with red curve \rightarrow statistical uncertainty

'Typical approach': Decide which blue curves have small enough Δ Systematic is largest change in minima wrt red curves'.

Profile L: Envelope of lots of blue curves Wider than red curve, because of systematics (v) For \mathcal{L} = multi-D Gaussian, agrees with 'Typical approach'

Dauncey et al use envelope of finite number of functional forms

Point of controversy!
Two types of 'other functions':
a) Different function types e.g. Σa_i x_i versus Σa_i/x_i
b) Given fn form but different number of terms
DDKW deal with b) by -2lnL → -2lnL + kn
n = number of extra free params wrt best

k = 1, as in AIC (= Akaike Information Criterion)

Opposition claim choice k=1 is arbitrary.

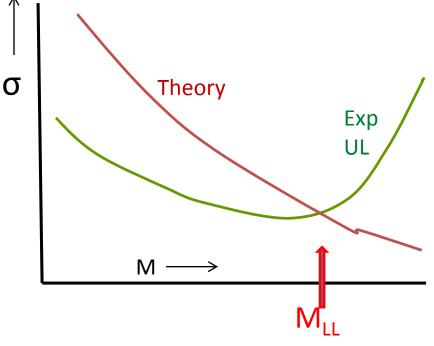
DDKW agree but have studied different values, and say k =1 is optimal for them.

Also, any parametric method needs to make such a choice

WHY LIMITS?

Michelson-Morley experiment → death of aether HEP experiments: If UL on rate for new particle < expected, exclude particle

(Almost) all direct DM searches quote UL on DM flux, rather than claiming a discovery (i.e. flux \neq 0) If theory curve below UL on σ , expt not sensitive enough to exclude any mass.



CERN CLW (Jan 2000) FNAL CLW (March 2000) Heinrich, PHYSTAT-LHC, "Review of Banff Challenge"

Methods for ULs (no systematics)

Bayes (needs priors e.g. const, $1/\mu$, $1/\sqrt{\mu}$, μ ,) Frequentist (needs ordering rule, possible empty intervals, F-C) Likelihood (DON'T integrate your L) $\chi^2 (\sigma^2 = \mu)$ $\chi^2 (\sigma^2 = n)$ CL_s Power Constrained Limits Optimal Interval Method

Recommendation 7 from CERN CLW (2000): "Show your \mathcal{L} "

- 1) Not always practical
- 2) Not sufficient for frequentist methods

Power Constrained Limits

When $n_{obs} < b$ (expected background), downward fluctuation in data \rightarrow Tighter than expected limits

Avoid most extreme cases by quoting expectation (or $exp - k\sigma$) instead of actual limit.

Suggested by Cowan et al (ATLAS), but abandoned and not used.

NOT RECOMMENDED

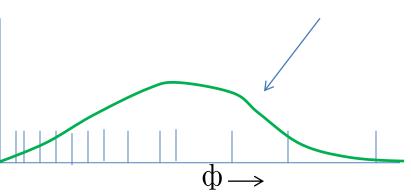
Optimal Interval Steven Yellin, PHYSTAT2003

Good for case when shape of background is uncertain – see PRD 66 (2005) 032005

Use distrib of events in some variable Φ

Choose gap with largest expected signal.

Then use intervals with n events (rather than just zero events)



Expected signal dist

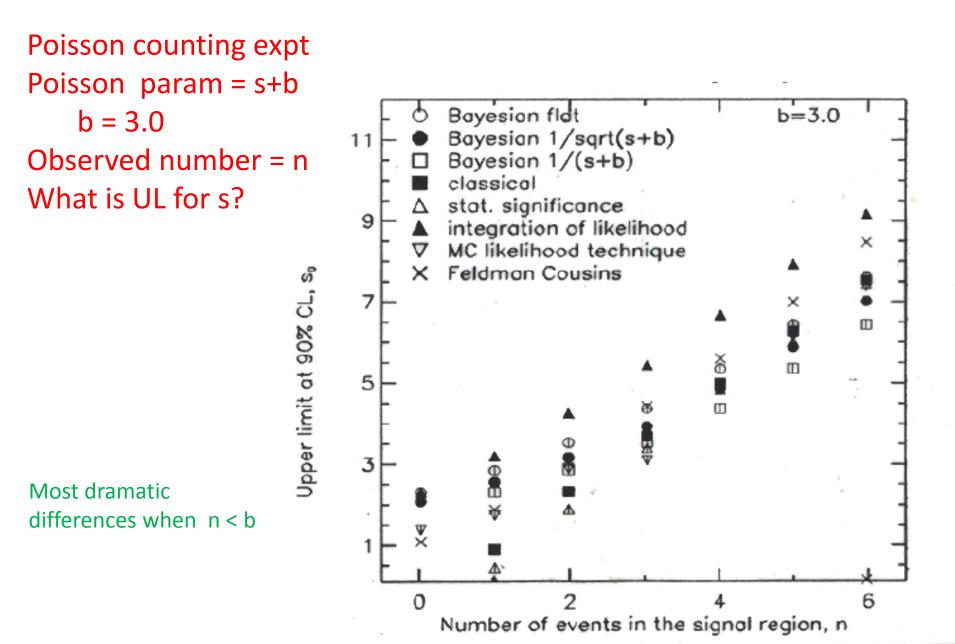
Extended to deal with larger event numbers (arXiv:0709.2701) Combining these upper limits (arXiv:1105.2928) Method used by CDMS, CRESST, Edelweiss

(If bgd is known, better to use different method)

DESIRABLE PROPERTIES

- Coverage
- Interval length
- Behaviour when n < b
- Limit increases as σ_b increases
- Unified with discovery and interval estimation

Ilya Narsky, FNAL CLW 2000



Conclusions

Resources:

Software exists: e.g. RooStats Books exist: Barlow, Cowan, James, Lista, Lyons, Roe,..... `Data Analysis in HEP: A Practical Guide to Statistical Methods', Behnke et al. PDG sections on Prob, Statistics, Monte Carlo CMS and ATLAS have Statistics Committees (and BaBar and CDF earlier) – see their websites. Neutrino expts might go for combined Statistics Committee. Is that appropriate for direct DM experiments?

Before re-inventing the wheel, try to see if Statisticians have already found a solution to your statistics analysis problem. Don't use your square wheel if a circular one already exists.

"Good luck"

BACK-UP

COMBINING RESULTS

 Better to combine data than combine results (Problems with non-Gaussian estimates dealing with correlations uncertainty estimates)

• Beware of uncertainty estimates that depend on parameter estimate e.g. n $\pm \sqrt{n}$ 100 \pm 10 and 80 \pm 9 or $\tau \pm \tau/\sqrt{N}$ 1.00 \pm 0.10 and 1.20 \pm 0.12 (N=100)

Combining: oddities

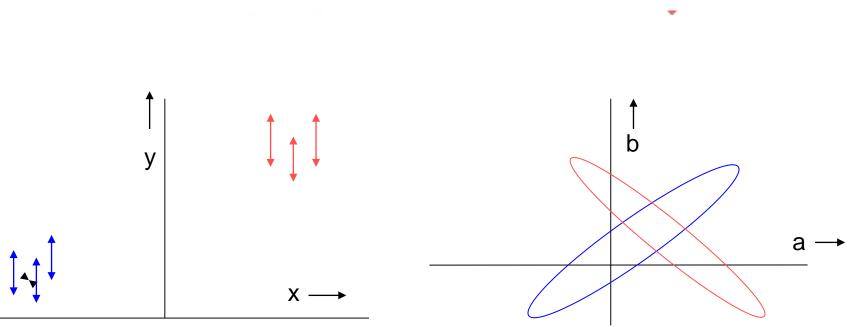
• 1 variable :

Best combination of 2 correlated measurements can be outside range of measurements

• 2 variables, $\alpha \beta$

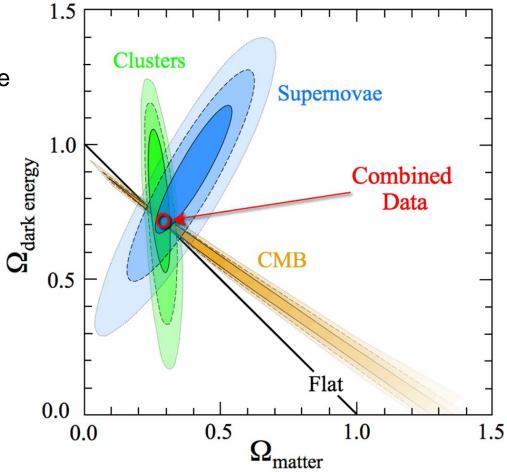
Uncertainties on α_{best} and β_{best} much smaller than individual uncertainties.

• 2 variables, $\alpha \beta$ $\alpha_{\text{best}} > \alpha_1$ and $\alpha_2 \quad \beta_{\text{best}} > \beta_1$ and β_2 Straight line fit to red points has large uncertainties on intercept and on gradient Straight line fit to blue points has large uncertainties on intercept and on gradient Combined straight line fit to red and blue points has much smaller uncertainties on intercept and on gradient



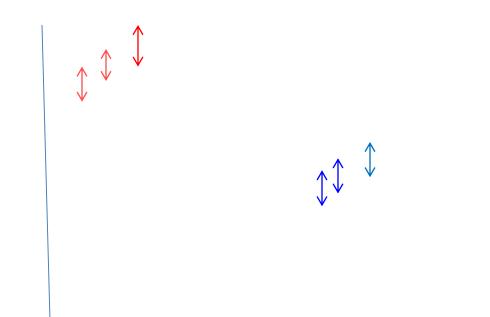
Uncertainty on $\Omega_{dark energy}$

When combining pairs of variables, the uncertainties on the combined parameters can be much smaller than any of the individual uncertainties e.g. $\Omega_{dark energy}$

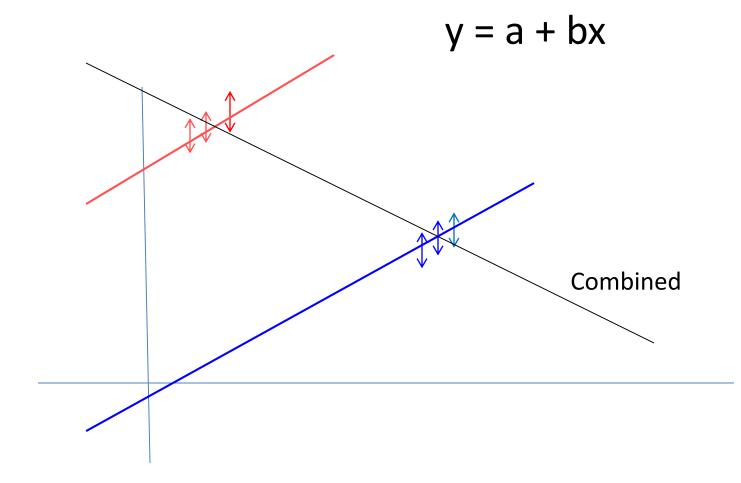


Best values of params a and b outside range of individual values

y = a + bx



Best values of params a and b outside range of individual values



Likelihoods

Here just for parameter determination Also very important for Hypothesis Testing, in Bayesian and Frequentist approaches

Procedure: Write down P(data|hypothesis' param) pdf: Regard this as fn of data, for fixed param values Likelihood: Fn of parameter, for given data e.g. Poisson P(n| μ) = e^{- μ} μ ⁿ/n!

Data:

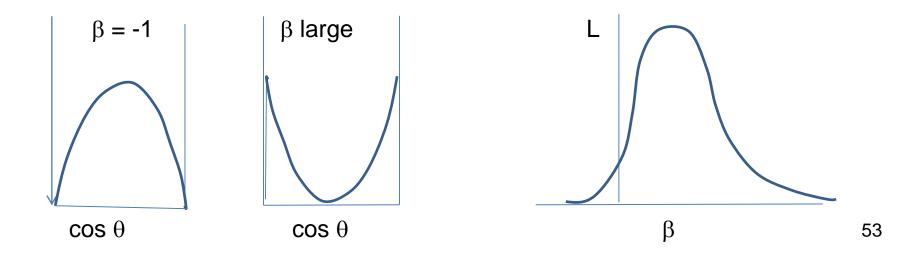
Can be individual values. Does not have to be a histogram

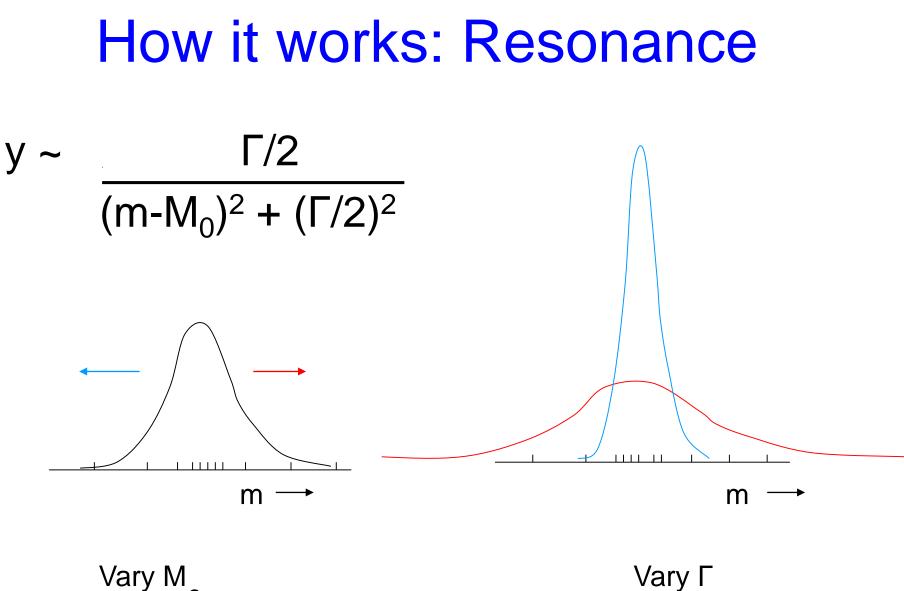
Simple example of Likelihood: Angular distribution

 $\begin{array}{l} y = N \left(1 + \beta \cos^2 \theta\right) \qquad N = 1/\{2(1+\beta/3)\} \\ y_i = N \left(1 + \beta \cos^2 \theta_i\right) \\ = \text{probability density of observing } \theta_i, \text{ given } \beta \\ \mathcal{L}(\beta) = \Pi \ y_i \\ = \text{probability density of observing the data set } y_i, \text{ given } \beta \\ \text{Best estimate of } \beta \text{ is that which maximises } L \\ \text{Values of } \beta \text{ for which } \mathcal{L} \text{ is very small are ruled out} \\ \text{Precision of estimate for } \beta \text{ comes from width of L distribution} \end{array}$

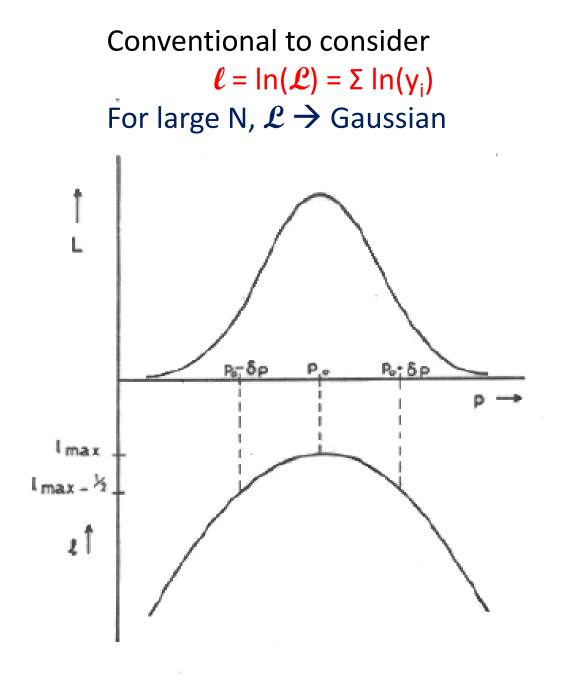
****** **CRUCIAL** to normalise y $N = 1/\{2(1 + \beta/3)\}$

(Information about parameter β comes from **shape** of exptl distribution of $\cos\theta$)





Vary M



$\Delta \ln \mathcal{L} = -1/2$ rule

If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent: 1) RMS of $\mathcal{L}(\mu)$

2) 1/v(-d²ln $\mathcal{L}/d\mu^2$)

3) $\ln(\mathcal{L}(\mu_0 \pm \sigma) = \ln(\mathcal{L}(\mu_0)) - 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Webpage)

Barlow: Phystat05

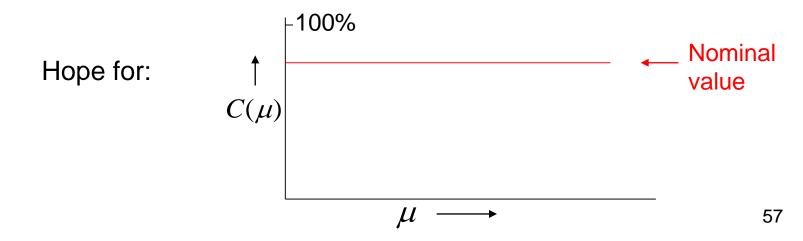
COVERAGE

How often does quoted range for parameter include param's true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with $\boldsymbol{\mu}$

Study coverage of different methods for Poisson parameter μ , from observation of number of events n



COVERAGE

If true for all μ : "correct coverage"

- $P < \alpha$ for some μ "undercoverage" (this is serious !)
 - $P>\alpha$ for some μ "overcoverage"

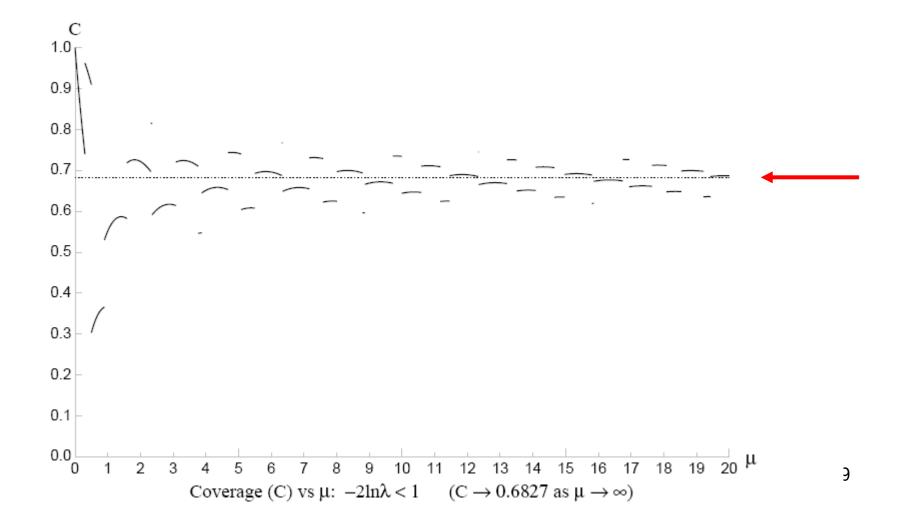
Conservative

Loss of rejection power

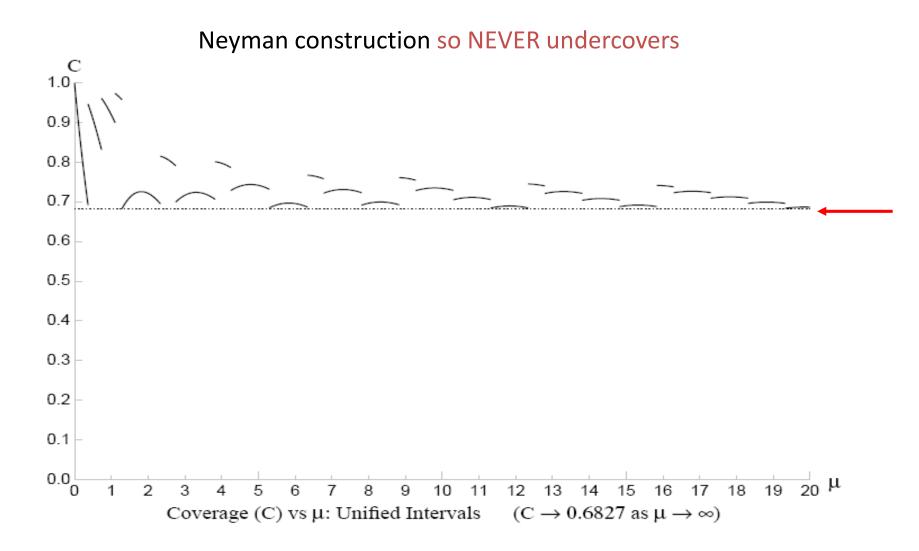
Coverage : *L* approach (Not frequentist)

 $P(n,\mu) = e^{-\mu}\mu^{n}/n!$ (Joel Heinrich CDF note 6438)

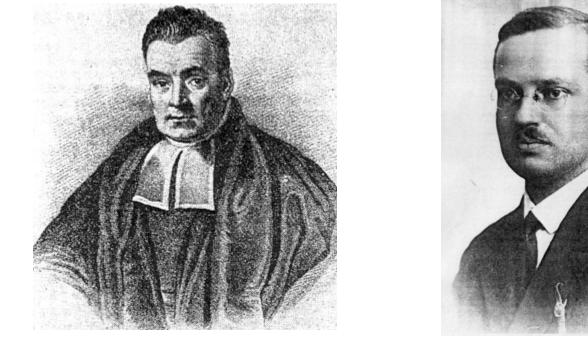
-2 $\ln\lambda < 1$ $\lambda = P(n,\mu)/P(n,\mu_{best})$ UNDERCOVERS



Feldman-Cousins Unified intervals



	Moments	Max Like	Least squares
Easy?	Yes, if	Normalisation, maximisation messy	Minimisation
Efficient?	Not very	Usually best	Sometimes = Max Like
Input	Separate events	Separate events	Histogram
Goodness of fit	Messy	No (unbinned)	Easy
Constraints	No	Yes	Yes
N dimensions	Easy if	Norm, max messier	Easy
Weighted events	Easy	Errors difficult	Easy
Bgd subtraction	Easy	Troublesome	Easy
Uncertainty estimates	Observed spread, or analytic	$\left\{ -\frac{\partial^2 I}{\partial p_i \partial p_j} \right\}$	$ \left\{ \frac{\partial^2 S}{2\partial p_i \partial p_j} \right\} $
Main feature	Easy	Best for params	Goodness of Fit



BAYES and FREQUENTISM: Different views of probability

We need to make a statement about Parameters, Given Data

The basic difference between the two:

Bayesian : Probability (parameter, given data) (an anathema to a Frequentist!)

Frequentist : Probability (data, given parameter) (a likelihood function)

PROBABILITY

MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as $n \rightarrow$ infinity

Repeated "identical" trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)

Varies from person to person ***

Quantified by "fair bet"

Bayesian versus Classical

Bayesian

 $P(A \text{ and } B) = P(A;B) \times P(B) = P(B;A) \times P(A)$

{ If A and B independent, $P(A;B) = P(A) \rightarrow P(A \text{ and } B) = P(A) P(B)$ }

e.g. A = event contains t quark

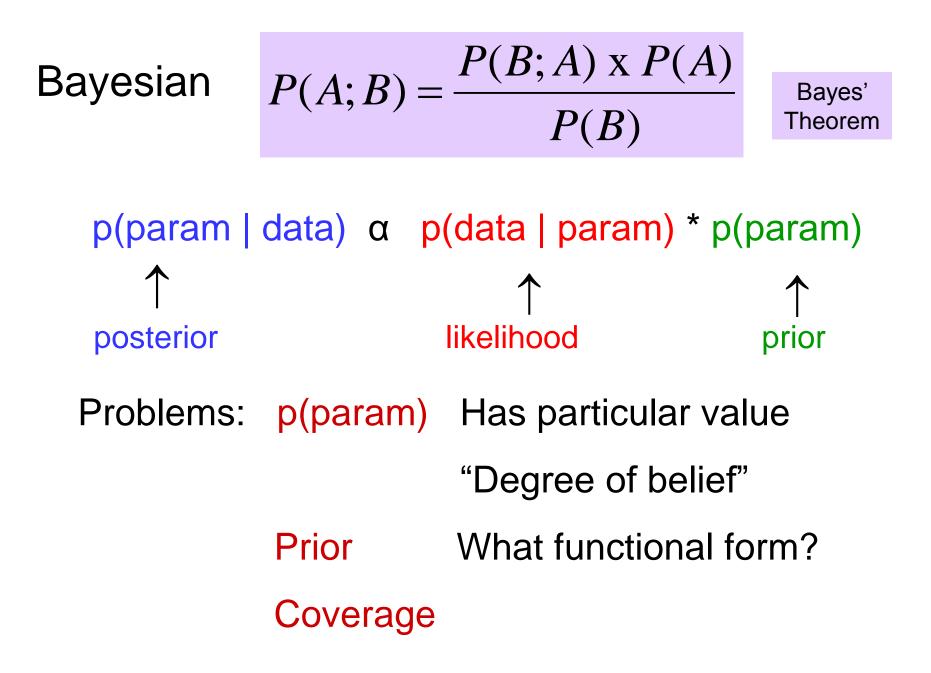
B = event contains W boson

or A = I am in CERN

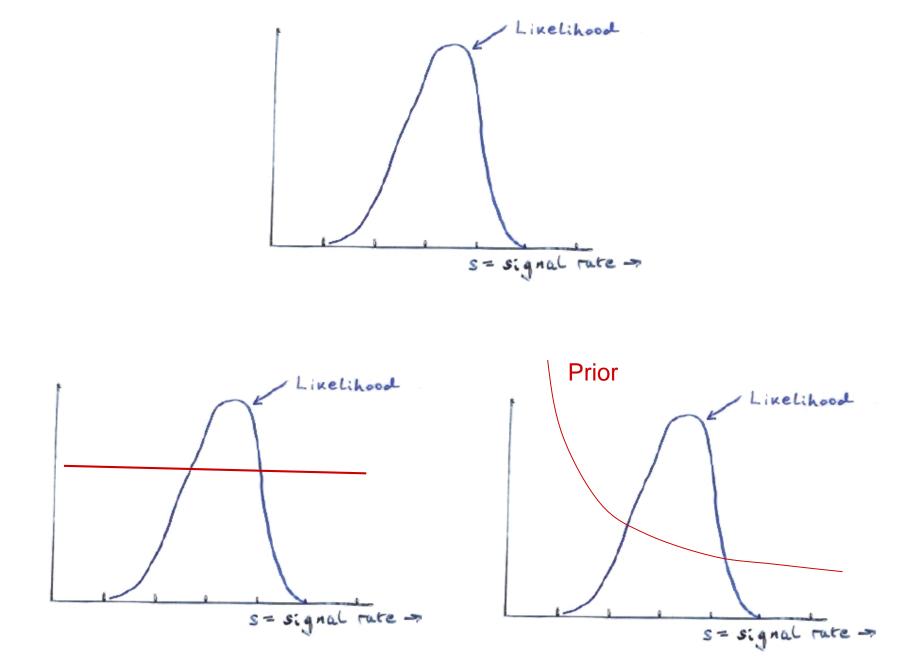
B = I am giving a lecture

 $P(A;B) = P(B;A) \times P(A) / P(B)$ Bayes' Theorem

Completely uncontroversial, provided....

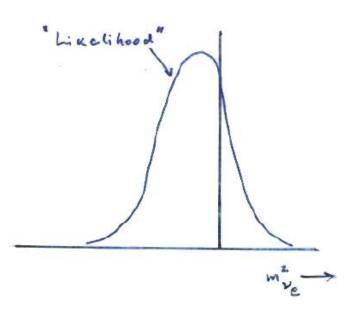


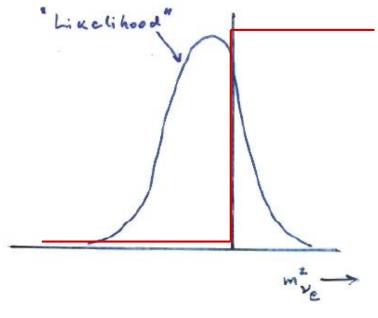
P(parameter) Has specific value "Degree of Belief" Credible interval Prior: What functional form? Uninformative prior: flat? In which variable? e.g. m, m^2 , ln m,...? Even more problematic with more params Unimportant if "data overshadows prior" **Important** for limits Subjective or Objective prior?



Even more important for UPPER LIMITS

Mass-squared of neutrino





Prior = zero in unphysical region

Bayes: Specific example

Particle decays exponentially: $dn/dt = (1/\tau) \exp(-t/\tau)$ Observe 1 decay at time t_1 : $\mathcal{L}(\tau) = (1/\tau) \exp(-t_1/\tau)$ Choose prior $\pi(\tau)$ for τ e.g. constant up to some large τ Then posterior $p(\tau) = \mathcal{L}(\tau) * \pi(\tau)$ has almost same shape as $\mathcal{L}(\tau)$ Use $p(\tau)$ to choose interval for $\tau \rightarrow$ τ in usual way

Contrast frequentist method for same situation later.

Classical Approach

Neyman "confidence interval" avoids pdf for μ Uses only P(x; μ)

Confidence interval $\mu_1 \rightarrow \mu_2$:

P($\mu_1 \rightarrow \mu_2$ contains μ_t) = α True for any μ_t \uparrow \uparrow

Varying intervals from ensemble of experiments fixed

Gives range of μ for which observed value x_0 was "likely" (α) Contrast Bayes : Degree of belief = α that μ_t is in $\mu_1 \rightarrow \mu_2$

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

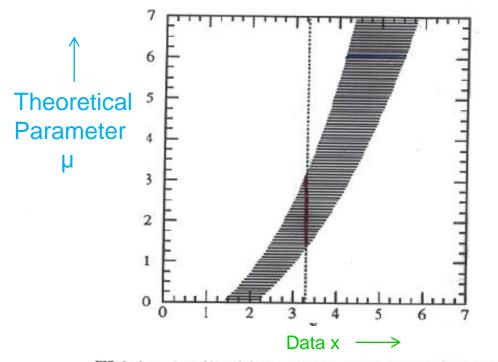


FIG. 1. A generic confidence belt construction and its use. For each value of μ , one draws a horizontal acceptance interval $[x_1, x_2]$ such that $P(x \in [x_3, x_2] | \mu) = \alpha$. Upon performing an experiment to measure x and obtaining the value x_0 , one draws the dashed vertical line through x_0 . The confidence interval $[\mu_1, \mu_2]$ is the union of all values of μ for which the corresponding acceptance interval is intercepted by the vertical line.

Example:

Param = Temp at centre of Sun

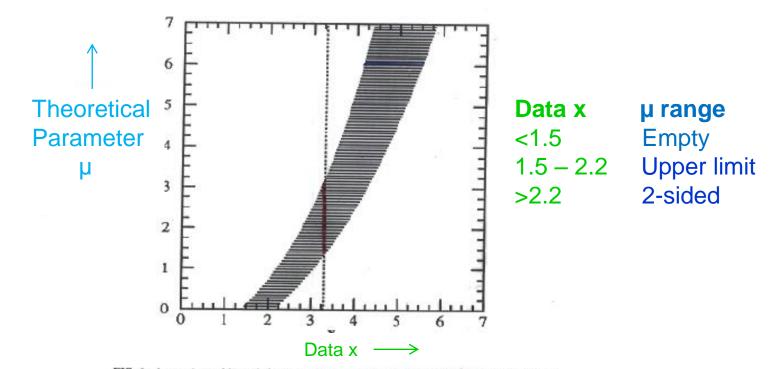
Data = Est. flux of solar neutrinos

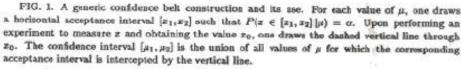
$Prob(\mu_l < \mu < \mu_u) = \alpha$

No prior for μ

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)





Example:

Param = Temp at centre of Sun Data = est. flux of solar neutrinos

No prior for μ

90% Classical interval for Gaussian $\sigma = 1$ $\mu \ge 0$ e.g. $m^2(v_e)$, length of small object 5 4 Mean µ 2 1 0 Measured Mean x

 x_{obs} =3 Two-sided range x_{obs} =1 Upper limit x_{obs} =-1 No region for μ

Other methods have different behaviour at negative x

FELDMAN - COUSINS

Wants to avoid empty classical intervals \rightarrow

Uses "L-ratio ordering principle" to resolve
 ambiguity about "which 90% region?"
 [Neyman + Pearson say L-ratio is best for
 hypothesis testing]

Unified \rightarrow No 'Flip-Flop' problem

Feldman-Cousins 90% conf intervals

Uses different ordering rule

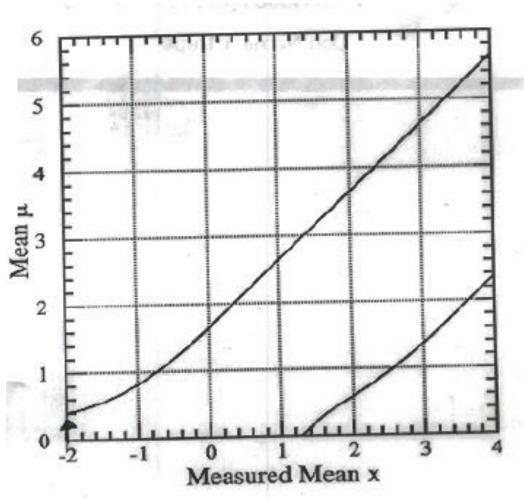
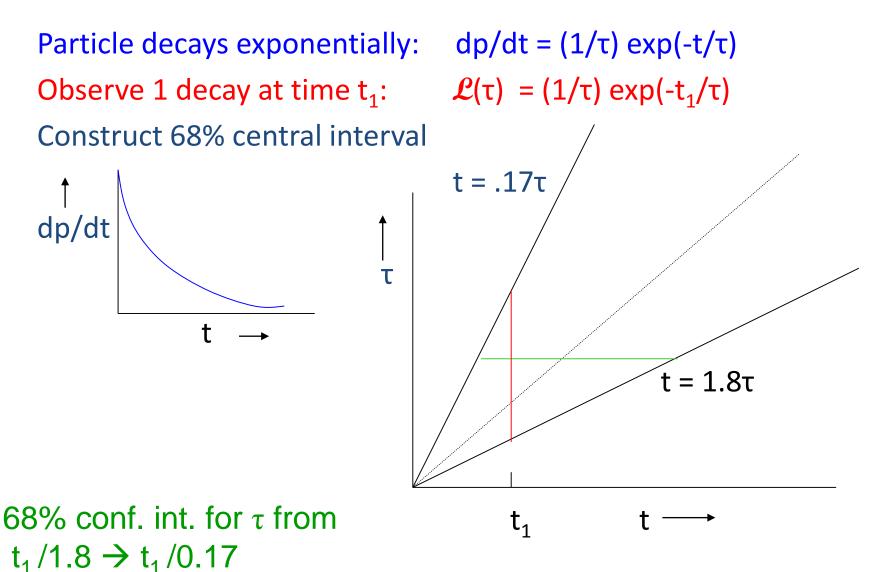


FIG. 10. Plot of our 90% confidence intervals for mean of a Gaussian, constrained to be non-negative, described in the text.

 $X_{obs} = -2$ now gives upper limit

Frequentism: Specific example



$\mu \leq \mu \leq \mu_u$ at 90% confidence

Frequentist $\mathcal{\mu}_l$ and $\mathcal{\mu}_u$ known, but random $\mathcal{\mu}_l$ $\mathcal{\mu}_l$ unknown, but fixed Probability statement about μ_{II} and μ_{II}

Bayesian

 μ_l and μ_u known, and fixed

unknown, and random Probability/credible statement about μ

MULTIVARIATE ANALYSIS

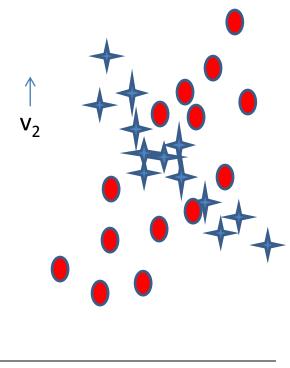
Example: Aim to separate signal from background

Neyman-Pearson Lemma: Imagine all possible contours that select signal with efficiency ε (Loss = Error of 1st Kind) Best is one containing minimal amount of background (Contamination = Error of 2nd Kind)

Equivalent to ordering data by \mathcal{L} -ratio = $\mathcal{L}_{s}(v_{1}, v_{2},) / \mathcal{L}_{b}(v_{1}, v_{2}, ...)$

IF variables are independent

 \mathcal{L} -ratio = { $\mathcal{L}_{s}(v_{1})/\mathcal{L}_{b}(v_{1})$ } x { $\mathcal{L}_{s}(v_{2})/\mathcal{L}_{b}(v_{2})$ } x



V₁

PROBLEM:

Don't know \mathcal{L} -ratio exactly because:

- 1) Signal & bdg generated by M.C. with finite statistics
- 2) Nuisance params (systematics) and signal params
- 3) Neglected sources of bgd
- 4) Hard to implement in many dimensions

METHODS TO DEAL WITH THIS

Cuts

Kernel Density Estimation

Fisher Discriminant

Principal Component Analysis

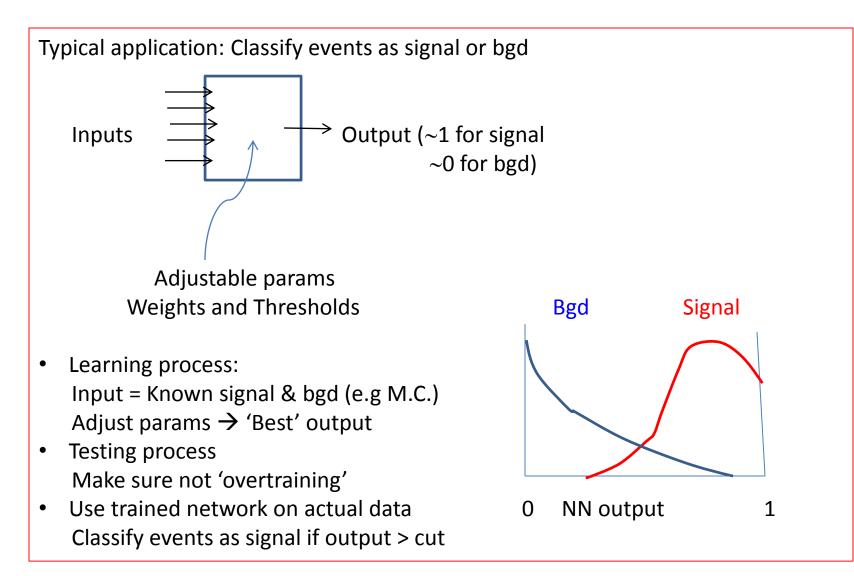
Boosted Decision Trees

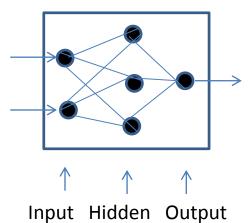
Support Vector Machines

Neural Nets ★ ★

Deep Nets

NEURAL NETWORKS





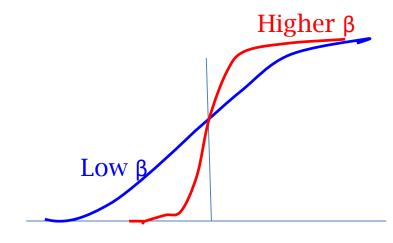
Layer Layer(s) Layer

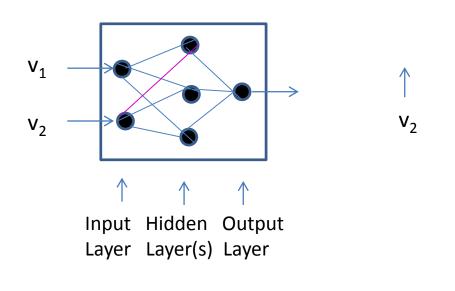
For each hidden or output node j $Output_j = F [\Sigma Input_i * W_{ij} + T_j]$ (W and T = network params)

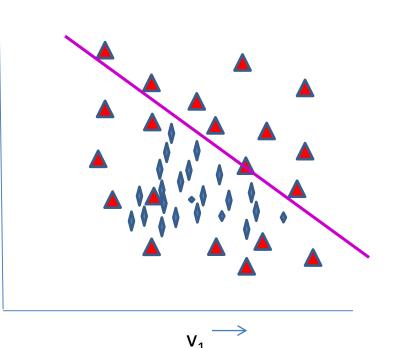
Typical $F(x) = 1/(1 + e^{-\beta x})$ Sigmoid

For large
$$\beta$$
, output of node $j~$ is 'ON' if $\Sigma~I_i\,w_{ij}$ +T_j > 0

This is 'hyper-plane' in I space







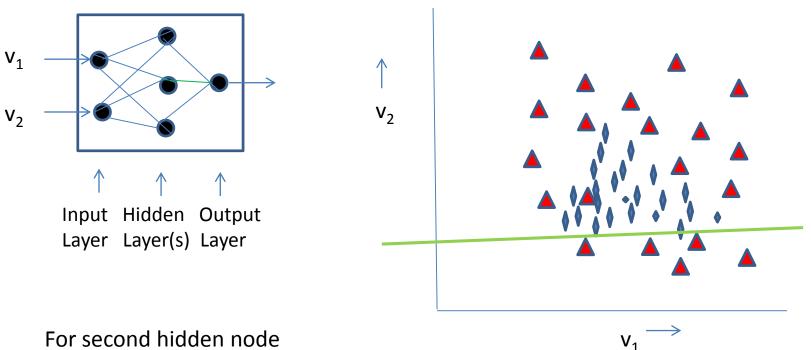
For First hidden node

Straight line is

$$w_{11}^*v_1 + w_{21}^*v_2 + T_{10} = 0$$

where

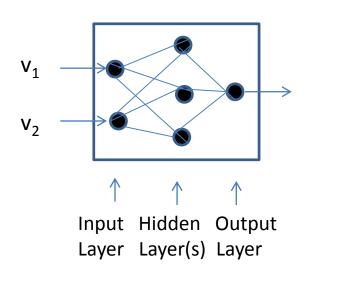
 w_{ij} is weight from ith input node to jth hidden node T_{k0} is threshold for kth hidden node



For second hidden node

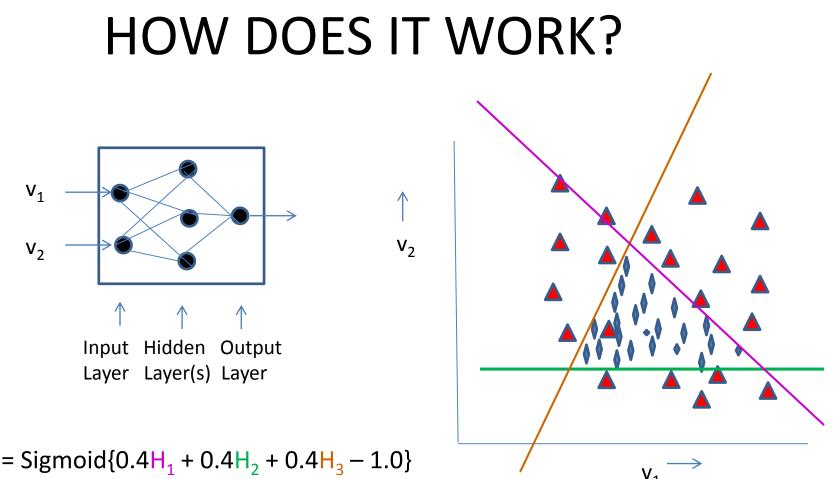
 $\mathbf{\Lambda}$

 V_2



 V_1

For third hidden node



Output = Sigmoid $\{0.4H_1 + 0.4H_2 + 0.4H_3 - 1.0\}$ Output is 'On' only if $H_1 H_2 H_3$ all are 'On'

N.B.

* Complexity of final region depends on number of hidden nodes. * Finite $\beta \rightarrow$ rounded edges for selected region; and contours of constant output in (v₁, v₂) plane.

BEWARE

- Training sets are reliable
- Don't train with variable you want to measure
- Data does not extend outside range of training samples (in multi-dimensions)
- Don't overtrain
- Approx equal numbers of signal and bgd

Is NN better* than simple cuts?

In principle, NO Can cut on complicated variable e.g. NN output

In practice: YES

But:

Better NN performance \rightarrow more work by 'Cuts' analysis to improve performance

* Better = improved efficiency v mistag rate

SIMPLE EXAMPLE

Try to separate π and proton using E and p $\pi: E^2 = p^2 + m_{\pi}^2$ P: $E^2 = p^2 + m_p^2$ F Easy: $p = 0 \rightarrow 2 \text{ GeV}$ Harder: $p = -4 \rightarrow 4$ GeV Hardest: p_x , p_y , $p_z = -4 \rightarrow 4$ GeV More realistic: Add expt scatter of data wrt curves

PHYSICS EXAMPLE

```
Separate b-jets from light flavour, gluons, W, Z:
Input variables: Track IPs, SV mass, distance, quality, etc.
Output: 0 \rightarrow 1
```

Issues:

Pre NN cuts

Training and testing samples (Where from? How many events? Ratios of different bgds,....)

How many inputs?

Network structure

How many networks?

Single output or several

Systematics (use different sets of testing events)

Stability wrt NN cut

NN Summary

• ADVANTAGES:

Very flexible Correlations OK Tunable cut

• DISADVANTAGES

Training takes time Tendency to include too many variables

Treat as black box

* Past attitude: Need to convince colleagues NN is sensible
 More recently: Why aren't you using NN?
 Now/future: Why aren't you using a Deep Network?

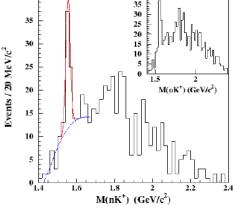
Wilks' Theorem

Data = some distribution e.g. mass histogram For H0 and H1, calculate best fit weighted sum of squares S_0 and S_1 Examples: 1) H0 = polynomial of degree 3H1 = polynomial of degree 52) H0 = background only 35 30 H1 = bgd+peak with free M_0 and cross-section Events / 20 MeV/c² 25 3) H0 = normal neutrino hierarchy 20 15 H1 = inverted hierarchy10 1.6 If H0 true, S₀ distributed as χ^2 with ndf = v_0 If H1 true, S₁ distributed as χ^2 with ndf = v_1

If H0 true, what is distribution of $\Delta S = S_0 - S_1$? Expect not large. Is it χ^2 ?

Wilks' Theorem: ΔS distributed as χ^2 with ndf = $v_0 - v_1$ provided:

- a) H0 is true
- b) H0 and H1 are nested
- c) Params for H1 \rightarrow H0 are well defined, and not on boundary
- d) Data is asymptotic



Wilks' Theorem, contd

Examples: Does Wilks' Th apply?

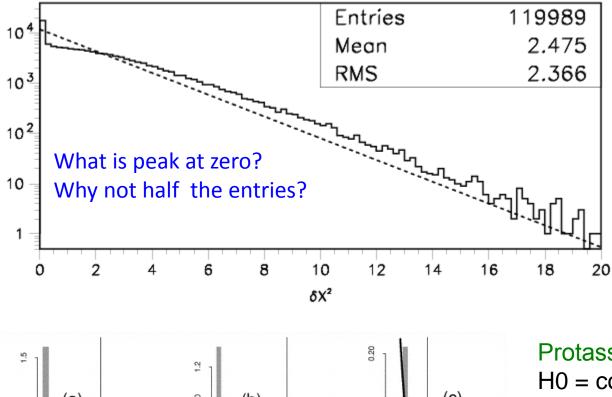
```
1) H0 = polynomial of degree 3
H1 = polynomial of degree 5
YES: \DeltaS distributed as \chi^2 with ndf = (d-4) - (d-6) = 2
```

2) H0 = background only H1 = bgd + peak with free M₀ and cross-section NO: H0 and H1 nested, but M₀ undefined when H1 \rightarrow H0. $\Delta S \neq \chi^2$ (but not too serious for fixed M)

N.B. 1: Even when W. Th. does not apply, it does not mean that ΔS is irrelevant, but you cannot use W. Th. for its expected distribution.

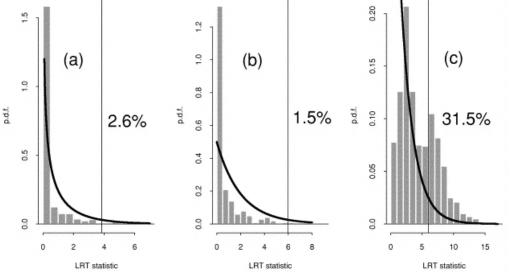
N.B. 2: For large ndf, better to use ΔS , rather than S_1 and S_0 separately

Is difference in S distributed as χ^2 ?



Demortier: H0 = quadratic bgd H1 = Gaussian of fixed width,

variable location & ampl



Protassov, van Dyk, Connors, H0 = continuum(a) H1 = narrow emission line

- (b) H1 = wider emission line
- (c) H1 = absorption line

Nominal significance level = 5%

Is difference in S distributed as χ^2 ?, contd.

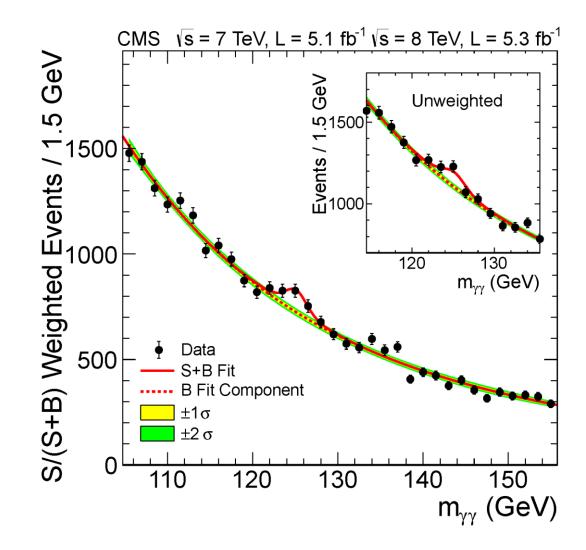
So need to determine the ΔS distribution by Monte Carlo

N.B.

- 1) For mass spectrum, determining ΔS for hypothesis H1 when data is generated according to H0 is not trivial, because there will be lots of local minima
- If we are interested in 5σ significance level, needs lots of MC simulations (or intelligent MC generation)
- 3) Asymptotic formulae may be useful (see K. Cranmer, G. Cowan, E. Gross and O. Vitells, 'Asymptotic formulae for likelihood-based tests of new physics', <u>http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-011-</u>1554-0.)

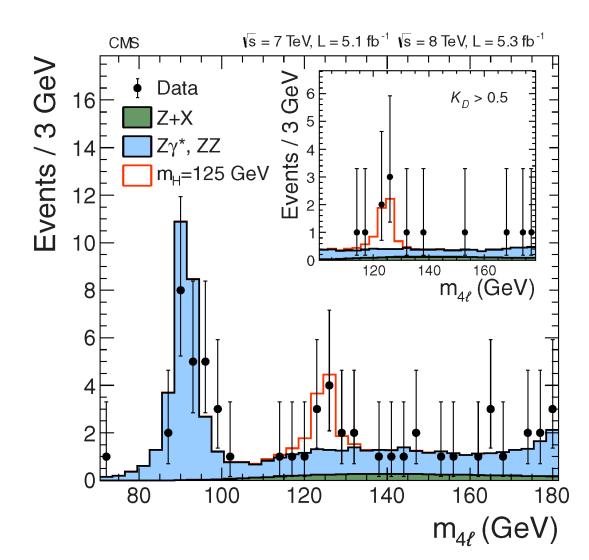
95

Search for Higgs: $H \rightarrow \gamma \gamma$: low S/B, high statistics

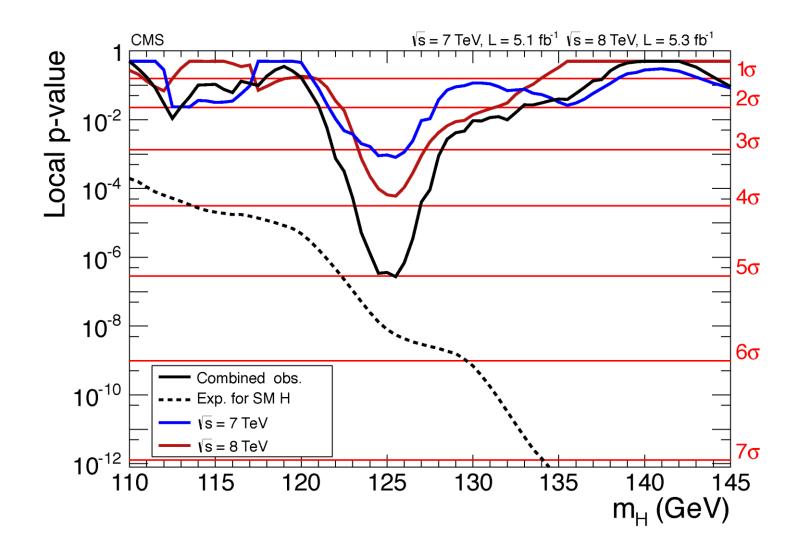


96

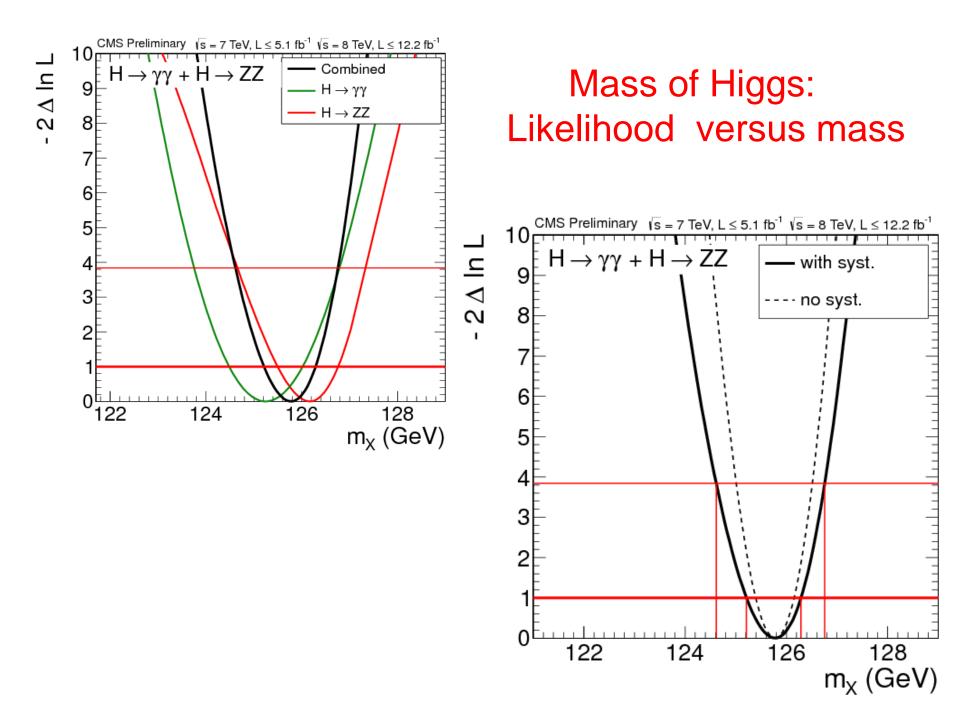
$H \rightarrow Z Z \rightarrow 4$ I: high S/B, low statistics



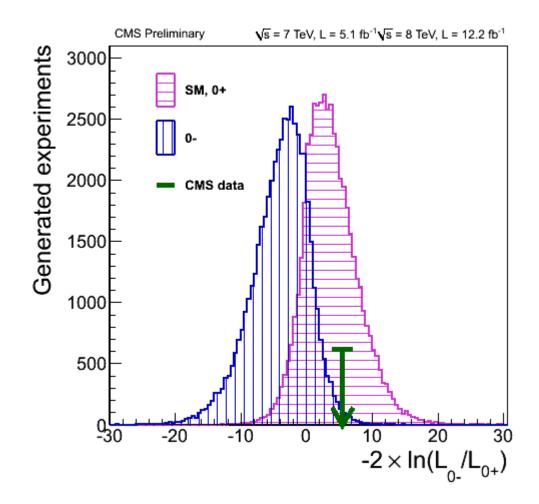
p-value for 'No Higgs' versus m_H



98



Comparing O⁺ versus O⁻ for Higgs (like Neutrino Mass Hierarchy)



http://cms.web.cern.ch/news/highlights-cms-results-presented-hcp