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Statistical Procedures

Parameter Determination

Central value and range (or upper limit)

e.g. flux of WIMPs

Comparing data with Hypotheses   Discoveries, Upper Limits,…

Just one Hypothesis

Goodness of Fit

e.g. Just known particles

Comparing 2 Hypotheses

Hypothesis Testing

e.g. Just known particles   or   Also WIMPs
2

Why bother ?

Experiments are expensive and time-consuming, so: 

Worth investing effort in statistical analysis 

 better information from data



TOPICS
Introduction
Some issues related to Discovery claims

Choosing between 2 hypotheses
p-values (including CL_s)
Blind analyses
Look Elsewhere Effect
Why 5-sigma for discovery
Background systematics

Upper Limits
Summary

Other important topics not included:
Combining results
Likelihoods (including Coverage)
Bayes and Frequentism
MVA: How Neural Networks work
Wilks Theorem
Discovery of Higgs
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Choosing between 2 hypotheses

Possible methods:
Δχ2

p-value of statistic    

lnL–ratio

Bayesian:

Posterior odds

Bayes factor

Bayes information criterion (BIC)

Akaike ……..                       (AIC)

Minimise “cost”

See ‘Comparing two hypotheses’
http://www-cdf.fnal.gov/physics/statistics/notes/H0H1.pdf

https://exchange.imperial.ac.uk/owa/redir.aspx?C=FFGO9_-zL0WDfvjyRLqW6QPNjc0Y5dIIDPqvjRaX8husjYVzFH15vYBtXGDJxIj53QGBYUOrXGs.&URL=http://www-cdf.fnal.gov/physics/statistics/notes/H0H1.pdf


Using data to make judgements about H1 (New Physics) versus 

H0 (S.M. with nothing new)

Topics:

Example of Hypotheses

H0 or H0 v H1?

Blind Analysis

Why 5σ for discovery?

Significance

P(A|B) ≠ P(B|A)

Meaning of p-values

Wilks’ Theorem

LEE = Look Elsewhere Effect

Background Systematics

Upper Limits

Higgs search: Discovery and spin

(N.B. Several of these topics have no unique solutions from Statisticians)
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Examples of types of 
Hypotheses

1) Event selector         
Selection of event sample based on required features 

e.g. H0: Cerenkov ring produced by electron   H1: Produced by other particle
Possible outcomes:    Events assigned as H0 or H1

2) Result of experiment 
e.g. H0 = nothing new

H1 = new particle produced as well
(Sterile neutrino,…..)

Possible outcomes         H0      H1
 X      Exclude H1
X        Discovery
  No decision

X       X ?
.
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Errors of 1st and 2nd Kind
• 1st Kind:  Reject H0 when H0 true

Should happen at rate 

• 2nd Kind: Fail to reject H0 when H0 is false 

Rate depends on:

How similar H0 and H1 are

Relative rates of H0 and H1 (for event selector)

For event selector: E1st   = Loss of efficiency

E2nd = Contamination

As  , efficiency  and contamination 

For result of expt ,  E1st gives incorrect result

E2nd fails to make discovery

 = E1st

 = Prob of failing to exclude

H0, if H1 = true  

1-  = power of test  for H1                           




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H0 or   H0 versus H1 ?
H0 = null hypothesis

e.g. known backgrounds, with nothing new

H1 = specific New Physics     e.g. WIMP with MW = 70 GeV

H0: “Goodness of Fit” e.g. χ2, p-values

H0 v H1: “Hypothesis Testing” e.g. L-ratio

Measures how much data favours one hypothesis wrt other

H0 v H1 likely to be more sensitive for H1

or
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Choosing between 2 hypotheses

Hypothesis testing: New particle or statistical fluctuation?

H0 = b        H1 = b + s
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First define your data statistic t (n, L-ratio, etc.) 

(a)                                                                                 (b)

(c)

H0                             H1

p1 p0

t

t ttobs
tobs

tobs

H0                                                       H1

With 2 hypotheses, 

each with own pdf, 

p-values are 

defined as tail 

areas, pointing in 

towards each other

L-ratio:
Relative heights of 
pdf’s for H0 and H1
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1)  No sensitivity                        2) Maybe                             3) Easy separation

H0 H1

t

β tcrit α

Procedure:    Obtain expected distributions for data statistic (e.g. L-ratio) for H0 and H1

Choose  α (e.g. 95%, 3σ, 5σ ?) and CL for p1 (e.g. 95%)  

Given b, α determines tcrit

b+s defines  β.    For s > smin, separation of curves  discovery or excln

1-β = Power of test

Now data:      If tobs ≥ tcrit (i.e. p0 ≤ α), discovery at level α

If tobs < tcrit, no discovery.       If p1 <  1– CL, exclude H1

Procedure for choosing between 2 hypotheses



p-values and z-score (number of sigma) 

Conventional to convert p-values to number of sigma for 
one-sided tail of Gaussian

e.g.     16% = 1σ

3 10-7 = 5σ

Statisticians call this ‘z-score’

Does NOT imply that actual pdf is Gaussian

Just convention

Simply easier to remember than corresponding  p-value
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P(A|B) ≠ P(B|A)
Remind Lab or University media contact person that: 

Prob[data, given H0] is very small 

does not imply that 

Prob[H0, given data] is also very small.

e.g.  Prob{data | speed of ν ≤ c}= very small

does not imply 

Prob{speed of ν≤c | data} = very small

or     Prob{speed of ν>c | data} ~ 1

Everyday situation:  

p(eat bread|murderer)  ~ 99%

p(murderer|eat bread) ~ 10-6
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What p-values are (and are not)

Reject H0 if t > tcrit (p < α )

p-value = prob that t ≥ tobs

Small p  data and theory have poor compatibility

Small p-value does NOT automatically imply that theory is unlikely 

Bayes prob(Theory|data) related to  prob(data|Theory)  = Likelihood 

by Bayes Th, including Bayesian prior

p-values are misunderstood.    e.g. Anti-HEP jibe:

“Particle Physicists don’t know what they are doing, because half their

p ˂ 0.05 exclusions turn out to be wrong”

Demonstrates lack of understanding of p-values

[All results rejecting energy conservation with p ˂α =.05  cut will turn out to 
be ‘wrong’]  14

H0 pdf
p0 = α

tcrit t
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p0 v p1 plots

Preprint by Luc Demortier and LL,
“Testing Hypotheses in Particle Physics: 
Plots of p0 versus p1”
http://arxiv.org/abs/1408.6123

For hypotheses H0 and H1, p0 and p1

are the tail probabilities for data 
statistic t

Provide insights on:
CLs for exclusion 
Punzi definition of sensitivity
Relation of p-values and Likelihoods
Probability of misleading evidence
Sampling to foregone conclusion
Jeffreys-Lindley paradox
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CLs = p1/(1-p0)   diagonal line
Provides protection against excluding H1 when little  or no sensitivity

Punzi definition of sensitivity:  
Enough separation of pdf’s for no chance of ambiguity

H0 H1

t

Δµ

Can read off power of test
e.g. If H0 is true, what is 
prob of rejecting H1?

N.B. p0 = tail towards H1

p1 = tail towards H0



17

Why p ≠ Likelihood ratio

Measure different things:

p0 refers just to H0; L01 compares H0 and H1

Depends on amount of data:

e.g. Poisson counting expt little data:

For H0, μ0 = 1.0.     For H1, μ1 =10.0        

Observe n = 10     p0 ~ 10-7 L01 ~10-5

Now with 100 times as much data, μ0 = 100.0    μ1 =1000.0

Observe n = 160    p0 ~ 10-7 L01 ~10+14



18

Jeffreys-Lindley Paradox
H0 = simple,       H1 has μ free
p0 can favour H1, while B01 can favour H0

B01 = L0  / L1(s) (s) ds

Likelihood ratio depends on signal :
e.g. Poisson counting expt small signal s:

For H0, μ0 = 1.0.     For H1, μ1 =10.0        
Observe n = 10     p0 ~ 10-7 L01 ~10-5   and favours H1

Now with 100 times as much signal s, μ0 = 100.0    μ1 =1000.0
Observe n = 160    p0 ~ 10-7 L01 ~10+14 and favours H0

B01 involves intergration over s in denominator, so a wide enough range 
will result in favouring H0

However, for  B01 to favour H0 when p0 is equivalent to 5, integration 
range for s has to be O(106) times Gaussian widths
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Combining different p-values

Several results quote independent p-values for same effect: 
p1, p2, p3…..        e.g. 0.9, 0.001, 0.3 ……..
What is combined significance? Not just p1*p2*p3…..
If 10 expts each have p ~ 0.5, product ~ 0.001 and is clearly NOT correct 

combined p

S = z * (-ln z)j /j! ,        z = p1p2p3…….

(e.g. For 2 measurements, S = z * (1 - lnz) ≥ z  )

Problems:  
1) Recipe is not unique  (Uniform dist in n-D hypercube  uniform in 1-D) 
2) Formula is not associative
Combining {{p1 and p2}, and then p3} gives different answer  

from {{p3 and p2}, and then p1} , or all together
Due to different options for “more extreme than x1, x2, x3”. 
3) Small p’s due to different discrepancies

******* Better to combine data ************






1

0

n

j
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Significance

(Number of σ = p-value converted to Gaussian one-sided tail)

Significance =  S/B      or similar ?

Potential Problems:

•Uncertainty in B

•Non-Gaussian behaviour of Poisson, especially in tail

•Number of bins in histogram, no. of other histograms [LEE]

•Choice of cuts, bins             (Blind analyses)

For future experiments:

• Optimising:   Could give S =0.1, B = 10-4,   S/B =10
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BLIND ANALYSES
Why blind analysis?    Data statistic, selections, corrections, method 

Methods of blinding
Add random number to result *
Study procedure with simulation only
Look at only first fraction of data
Keep the signal box closed
Keep MC parameters hidden
Keep unknown fraction visible for each bin 

Disadvantages
Takes longer time
Usually not available for searches for unknown

After analysis is unblinded, don’t change anything unless ……..

* Luis Alvarez suggestion re “discovery” of free quarks
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Look Elsewhere Effect  (LEE)

Prob of bgd fluctuation at that place = local p-value
Prob of bgd fluctuation ‘anywhere’   = global p-value

Global p > Local p
Where is `anywhere’?
a) Any location in this histogram in sensible range
b) Any location in this histogram 
c) Also in histogram produced with different cuts, binning, etc. 
d) Also in other plausible histograms for this analysis
e) Also in other searches in this PHYSICS group (e.g. SUSY at CMS)
f) In any search in this experiment (e.g. CMS)
g) In all CERN expts (e.g. LHC expts + NA62 + OPERA + ASACUSA + ….)
h) In all HEP expts

etc.
d) relevant for graduate student doing analysis
f) relevant for experiment’s Spokesperson

INFORMAL CONSENSUS:
Quote local p, and global p according to a) above.
Explain which global p 

For DM ‘counting’ experiments, there is almost no LEE.



Example of LEE: Stonehenge
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Are alignments significant?

• Atkinson replied with his article "Moonshine on Stonehenge" 
in Antiquity in 1966, pointing out that some of the pits which ….. had used 
for his sight lines were more likely to have been natural depressions, and 
that he had allowed a margin of error of up to 2 degrees in his alignments. 
Atkinson found that the probability of so many alignments being visible 
from 165 points to be close to 0.5 rather that the "one in a million"
possibility which ….. had claimed.

• ….. had been examining stone circles since the 1950s in search of 
astronomical alignments and the megalithic yard. It was not until 1973 
that he turned his attention to Stonehenge. He chose to ignore alignments 
between features within the monument, considering them to be too close 
together to be reliable. He looked for landscape features that could have 
marked lunar and solar events. However, one of …..'s key sites, Peter's 
Mound, turned out to be a twentieth-century rubbish dump.
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http://en.wikipedia.org/wiki/Antiquity_(journal)
http://en.wikipedia.org/wiki/Megalithic_yard


Why 5σ for Discovery?
Statisticians ridicule our belief in extreme tails (esp. for systematics)

Our reasons:

1) Past history (Many 3σ and 4σ effects have gone away)

2) LEE 

3) Worries about underestimated systematics

4) Subconscious Bayes calculation

p(H1|x)  =   p(x|H1)  *  π(H1) 

p(H0|x)   p(x|H0)      π(H0) 

Posterior      Likelihood   Priors

prob ratio

“Extraordinary claims require extraordinary evidence”

N.B. Points 2), 3) and 4) are experiment-dependent

Alternative suggestion:

L.L. “Discovering the significance of 5” http://arxiv.org/abs/1310.1284 26



SEARCH SURPRISE IMPACT LEE SYSTEMATICS No. σ

Higgs search Medium Very high M Medium 5

Single top No Low No No 3

SUSY Yes Very high Very large Yes 7

Bs oscillations Medium/Low Medium Δm No 4

Neutrino  osc Medium High sin22ϑ, Δm2 No 4

Bs μ μ No Low/Medium No Medium 3

Pentaquark Yes High/V. high M, decay 
mode

Medium 7

(g-2)μ anom Yes High No Yes 4

H spin ≠ 0 Yes High No Medium 5

4th gen q, l, ν Yes High M, mode No 6

Dark energy Yes Very high Strength Yes 5

Grav Waves No High Enormous Yes 8

27

Suggestions to provoke discussion, rather than `delivered on Mt. Sinai’
How would you rate  ‘Dark Matter’?
Bob Cousins: “2 independent expts each with 3.5σ better than one expt with 5σ”

How many ’s for discovery?



SYSTEMATICS
• Harder than statistical uncertainties
• Requires much more thought and effort

Different types:
A) On measured quantities to extract answer
B)    On implicit assumptions

e.g Simple pendulum expt τ = 2π √L/g

A) τ and L
B) Point mass; massless string; small amplitude; no damping

Systematics can be:
i) Measured in subsidiary (or main) analysis

ii) Exptl effects not directly measured; or inconsistent results
iii)  Different theories

Just one example here:   BACKGROUND SYSTEMATICS

28



SYSTEMATICS
• Harder than statistical uncertainties
• Requires much more thought and effort

Different types:
A) On measured quantities to extract answer
B)    On implicit assumptions

e.g Simple pendulum expt τ = 2π √L/g

A) τ and L
B) Point mass; massless string; small amplitude; no damping

Systematics can be:
i) Measured in subsidiary (or main) analysis                                    GOOD

ii) Exptl effects not directly measured; or inconsistent results      BAD
iii)  Different theories                                                                              UGLY

Just one example here:   BACKGROUND SYSTEMATICS
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Background systematics

30



Background systematics, contd
Signif from comparing χ2’s for H0 (bgd only) and for H1 (bgd + signal)
Typically, bgd = functional form fa with free params

e.g. 4th order polynomial
Uncertainties in params included in signif calculation

But what if functional form is different ? e.g. fb 

Typical approach:
If  fb best fit is bad, not relevant for systematics
If  fb best fit is ~comparable to fa fit, include contribution to systematics
But what is ‘~comparable’? 

Other approaches:
Profile likelihood over different bgd parametric forms 

http://arxiv.org/pdf/1408.6865v1.pdf
Background subtraction
sPlots
Non-parametric background
Bayes
Yellin’s Optimal Interval
Cowan’s ‘Error on the error’

etc

No common consensus yet among experiments on best approach
{Spectra with multiple peaks are more difficult}
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“Handling uncertainties in background 
shapes: the discrete profiling method”

Dauncey, Kenzie, Wardle and Davies (Imperial College, CMS)

arXiv:1408.6865v1 [physics.data-an] 

Has been used in CMS analysis of Hγγ

Problem with ‘Typical approach’: Alternative functional 
forms do or don’t contribute to systematics by hard cut, so 
systematics can change discontinuously wrt ∆χ2

Method is like profile L for continuous nuisance params

Here ‘profile’ over discrete functional forms

32

http://arxiv.org/abs/1408.6865v1


Reminder of Profile L
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Contours of lnL(s,υ)

s = physics param

υ = nuisance param

υ

s

Stat  uncertainty on s from width 
of L fixed at υbest

Total uncertainty on s from width 

of L(s,υprof(s)) = Lprof

υprof(s) is best value of υ at that s

υprof(s) as fn of s lies on green line

Total uncert ≥ stat uncertainty
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s

-2lnL

∆



Red curve: Best value of nuisance param υ

Blue curves: Other values of υ

Horizontal line:   Intersection with red curve

statistical uncertainty

‘Typical approach’: Decide which blue curves have small enough ∆

Systematic is largest change in minima wrt red curves’.

Profile L: Envelope of lots of blue curves 

Wider than red curve, because of systematics (υ)

For L = multi-D Gaussian, agrees with ‘Typical approach’

Dauncey et al use envelope of finite number of  functional forms
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Point of controversy!

Two types of ‘other functions’:

a) Different function types e.g.

Σai xi versus   Σai/xi

b) Given fn form but different number of terms

DDKW deal with b) by -2lnL  -2lnL + kn

n = number of extra free params wrt best 

k = 1, as in AIC (= Akaike Information Criterion)

Opposition claim choice k=1 is arbitrary.

DDKW agree but have studied different values, and say k =1 
is optimal for them.

Also, any parametric method needs to make such a choice 

36
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WHY LIMITS?
Michelson-Morley experiment  death of aether
HEP experiments: 

If UL on rate for new particle  expected, 
exclude particle

(Almost) all direct DM searches
quote UL on DM flux, rather than 
claiming a discovery (i.e. flux  0) 
If theory curve below UL on σ,
expt not sensitive enough to exclude
any mass.

CERN CLW (Jan 2000)
FNAL CLW (March 2000)
Heinrich, PHYSTAT-LHC, “Review of Banff Challenge”

σ Theory

M

Exp
UL

MLL
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Bayes (needs priors e.g. const, 1/μ,  1/√μ,  μ, …..)
Frequentist (needs ordering rule, 

possible empty intervals, F-C)
Likelihood (DON’T integrate your L)
χ2 (σ2 =μ)
χ2(σ2 = n)
CLs

Power Constrained Limits
Optimal Interval Method

Recommendation 7 from CERN CLW (2000): “Show your L”
1) Not always practical
2) Not sufficient for frequentist methods 

Methods for ULs (no systematics)



Power Constrained Limits

When nobs < b (expected background), downward 
fluctuation in data  Tighter than expected limits

Avoid most extreme cases by quoting expectation (or 
exp – kσ) instead of actual limit.

Suggested by Cowan et al (ATLAS), but abandoned and 
not used. 

NOT RECOMMENDED
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Optimal Interval
Steven Yellin, PHYSTAT2003

Good for case when shape of background is uncertain – see 
PRD 66 (2005) 032005  
Use distrib of events in some variableφ Expected signal dist

Choose gap with largest 
expected signal.
Then use intervals with n events                                                                       
(rather than just zero events)     

ф
Extended to deal with larger 
event numbers (arXiv:0709.2701)
Combining these upper limits (arXiv:1105.2928)
Method used by CDMS, CRESST, Edelweiss

(If bgd is known, better to use different method) 40
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DESIRABLE PROPERTIES

• Coverage

• Interval length

• Behaviour when n < b

• Limit increases as σb increases  

• Unified with discovery and interval estimation
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Ilya Narsky, FNAL CLW 2000

Poisson counting expt
Poisson  param = s+b

b = 3.0
Observed number = n
What is UL for s?

Most dramatic 
differences when  n < b



Conclusions
Resources:

Software exists:     e.g. RooStats
Books exist: Barlow, Cowan, James, Lista, Lyons, Roe,…..

`Data Analysis in HEP: A Practical Guide to   
Statistical Methods’ , Behnke et al. 

PDG sections on Prob, Statistics, Monte Carlo
CMS and ATLAS have Statistics Committees (and BaBar and CDF earlier) –
see their websites.

Neutrino expts might go for combined Statistics Committee. Is that 
appropriate for direct DM experiments?

Before re-inventing the wheel, try to see if Statisticians have already found 
a solution to your statistics analysis problem. 
Don’t use your square wheel if a circular one already exists.

“Good luck”
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BACK-UP
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COMBINING RESULTS

• Better to combine data than combine results

(Problems with non-Gaussian estimates

dealing with correlations

uncertainty estimates)

• Beware of  uncertainty estimates that depend on 
parameter estimate

e.g. n  n     100  10  and  80  9

or /N      1.00  0.10  and 1.20  0.12 (N=100)
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Combining: oddities

• 1 variable : 

Best combination of 2 correlated measurements 

can be outside range of measurements

• 2 variables,  

Uncertainties on best and best much     

smaller than individual uncertainties.

• 2 variables,  

best > 1 and  2 best > 1 and 2    

47
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a

b

x

y

Straight line fit to red points has large uncertainties on intercept and on gradient
Straight line fit to blue points has large uncertainties on intercept and on gradient
Combined straight line fit to red and blue points has much smaller uncertainties on 
intercept and on gradient



Uncertainty on Ωdark energy
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When combining pairs of 

variables, the uncertainties on the 

combined parameters can be 

much smaller than any of the 

individual uncertainties  

e.g. Ωdark energy



Best values of params a and b 
outside range of individual values

y = a + bx
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Best values of params a and b 
outside range of individual values

y = a + bx

Combined
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Likelihoods
Here just for parameter determination
Also very important for Hypothesis Testing,
in Bayesian and Frequentist approaches

Procedure:
Write down P(data|hypothesis’ param) 

pdf: Regard this as fn of data, for fixed param values
Likelihood: Fn of parameter, for given data
e.g. Poisson P(n|µ) = e-µ µn/n!

Data: 
Can be individual values. Does not have to be a histogram 

52
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Simple example of Likelihood:  Angular distribution 

y = N (1 +  cos2)            N = 1/{2(1+β/3)}

yi = N (1 +  cos2i)

= probability density of observing i, given 

L() =  yi

= probability density of observing the data set yi, given 

Best estimate of  is that which maximises L

Values of  for which L is very small are ruled out

Precision of estimate for  comes from width of L distribution

****** CRUCIAL to normalise y           N = 1/{2(1 + /3)}

(Information about parameter  comes from shape of exptl distribution of cos)

cos  cos  

 = -1                    large                                   L
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How it works: Resonance

y ~               Γ/2

(m-M0)
2 + (Γ/2)2

m                                                           m

Vary M
0

Vary Γ
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Conventional to consider
l = ln(L) = Σ ln(yi)

For large N, L  Gaussian



56

ΔlnL = -1/2 rule
If L(μ) is Gaussian, following definitions of σ are equivalent:

1) RMS of L(µ)

2) 1/√(-d2lnL/dµ2)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2

If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the true 
value of parameter μ with 68% probability”

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-
page)

Barlow: Phystat05
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COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods for Poisson parameter  μ, from 

observation of number of events n

Hope for:
Nominal

value

100%



)(C
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COVERAGE

If true for all      :      “correct coverage” 

P<     for some        “undercoverage”                                
(this is serious !)

P>     for some        “overcoverage”  

Conservative

Loss of rejection 

power
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Coverage : L approach (Not frequentist)

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
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Moments Max Like Least squares

Easy? Yes, if… Normalisation, 

maximisation messy

Minimisation

Efficient? Not very Usually best Sometimes = Max Like

Input Separate events Separate events Histogram

Goodness of fit Messy No (unbinned) Easy

Constraints No Yes Yes

N dimensions Easy if …. Norm, max messier Easy

Weighted events Easy Errors difficult Easy

Bgd subtraction Easy Troublesome Easy

Uncertainty estimates Observed spread,

or analytic

- ∂2l     

∂pi∂pj

∂2S      

2∂pi∂pj

Main feature Easy Best for params Goodness of Fit



BAYES and FREQUENTISM:

Different views of probability

62
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We need to make a statement about

Parameters, Given Data

The basic difference between the two:

Bayesian :      Probability (parameter, given data)

(an anathema to a Frequentist!)

Frequentist :   Probability (data, given parameter)

(a likelihood function)
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PROBABILITY
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as  n infinity

Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)

Varies from person to person      ***

Quantified by “fair bet”
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Bayesian versus Classical

Bayesian   

P(A and B) = P(A;B) x P(B) = P(B;A) x P(A)

{ If A and B independent,   P(A;B) = P(A)   P(A and B) = P(A) P(B) }

e.g.  A = event contains t quark

B = event contains W boson

or     A = I am in CERN

B = I am giving a lecture

P(A;B) = P(B;A) x P(A) /P(B)    Bayes’ Theorem

Completely uncontroversial, provided….
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)(

)( x );(
);(

BP

APABP
BAP Bayesian

  
posterior likelihood prior

Problems:   p(param) Has particular value

“Degree of belief”

Prior  What functional form?

Coverage

Bayes’ 

Theorem

p(param | data)  α p(data | param) * p(param)
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P(parameter)        Has specific value

“Degree of Belief”   

Credible interval

Prior:       What  functional  form?

Uninformative prior:    flat?    

In which variable?   e.g. m,  m2,  ln m,….?

Even more problematic with more params

Unimportant if “data overshadows prior”

Important for limits

Subjective or Objective prior?
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Prior

Even more important for UPPER LIMITS
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Prior = zero in unphysical region

Mass-squared of neutrino



Bayes: Specific example

Particle decays exponentially:     dn/dt = (1/τ) exp(-t/τ)

Observe 1 decay at time t1:         L(τ)  = (1/τ) exp(-t1/τ)

Choose prior π(τ) for τ

e.g. constant up to some large τ L

Then posterior p(τ) =L(τ) * π(τ)

has almost same shape as L(τ)

Use p(τ) to choose interval for τ
τ in usual way

Contrast frequentist method for same situation 
later.
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Classical Approach

Neyman “confidence interval” avoids pdf  for

Uses only P( x;    )

Confidence interval :21  

P(              contains t ) =  21     True for any    t

Varying intervals 

from ensemble of 

experiments

fixed

Gives range of     for which observed value     was “likely” (    ) 
Contrast Bayes : Degree of belief =                  is in t that  21  



0x



72μ≥0 No prior for μ

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

Example:

Param = Temp at centre of Sun

Data    =  Est. flux of solar neutrinos

Theoretical 

Parameter

µ

Data x

Prob(µl<µ<µu) = α



73μ≥0 No prior for μ

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

Example:

Param = Temp at centre of Sun

Data = est. flux of solar neutrinos

Theoretical 

Parameter

µ

Data x

Data x        µ range

<1.5            Empty

1.5 – 2.2     Upper limit

>2.2            2-sided



74

90% Classical interval for Gaussian

σ = 1     μ ≥ 0      

e.g. m2(νe),     length of small object

Other methods have 

different behaviour at 

negative x

xobs=3  Two-sided range

xobs=1  Upper limit

xobs=-1 No region for µ
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FELDMAN - COUSINS

Wants to avoid empty classical intervals    

Uses “L-ratio ordering principle” to resolve 
ambiguity about “which 90% region?”    

[Neyman + Pearson say L-ratio is best for 
hypothesis testing]

Unified  No ‘Flip-Flop’ problem



76Xobs = -2 now gives upper limit

Feldman-Cousins 

90% conf intervals

Uses different

ordering rule



Frequentism: Specific example

Particle decays exponentially:     dp/dt = (1/τ) exp(-t/τ)

Observe 1 decay at time t1:         L(τ)  = (1/τ) exp(-t1/τ)

Construct 68% central interval       

t = .17τ

dp/dt

τ

t

t = 1.8τ

t1 t

77

68% conf. int. for τ from

t1 /1.8  t1 /0.17
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ul    at 90% confidence

and          known, but random

unknown, but fixed 

Probability statement about         and

Frequentist l u

l u

Bayesian
l u






and          known, and fixed

unknown, and random 

Probability/credible statement about 



MULTIVARIATE ANALYSIS
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Example: Aim to separate signal from background

Neyman-Pearson Lemma:
Imagine all possible contours that select signal with
efficiency   (Loss = Error of 1st Kind)
Best is one containing minimal amount of background 
(Contamination = Error of 2nd Kind)

Equivalent to ordering data by 
L-ratio  = Ls(v1, v2, …….) / Lb(v1, v2, …)

IF variables are independent
L-ratio = {Ls(v1)/Lb{v1)} x {Ls(v2)/Lb(v2)} x  …..

v2

v1
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PROBLEM:
Don’t know L-ratio exactly because:

1) Signal & bdg generated by M.C. with finite statistics
2) Nuisance params (systematics) and signal params
3) Neglected sources of bgd
4) Hard to implement in many dimensions

METHODS TO DEAL WITH THIS
Cuts
Kernel Density Estimation
Fisher Discriminant
Principal Component Analysis
Boosted Decision Trees
Support Vector Machines
Neural Nets      
Deep Nets



NEURAL NETWORKS
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Typical application: Classify events as signal or bgd

Inputs                                      Output (1 for signal
0 for bgd)

Adjustable params
Weights and Thresholds                                   Bgd Signal

• Learning process:
Input = Known signal & bgd (e.g M.C.)
Adjust params ‘Best’ output

• Testing process
Make sure not ‘overtraining’

• Use trained network on actual data                    0     NN output                  1 
Classify events as signal if output > cut  



HOW DOES IT WORK?
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Input   Hidden   Output
Layer   Layer(s)  Layer

For each hidden or output node j                                                        
Outputj= F [∑ Inputi * Wij + Tj]                                                 Higher β

(W and T = network params)

Typical F(x) = 1/(1+ e-βx) Sigmoid

For large β, output of node j  is ‘ON’  if            Low β
∑ Ii wij +Tj > 0

This is ‘hyper-plane’ in I space



HOW DOES IT WORK?
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Input   Hidden   Output
Layer   Layer(s)  Layer

v1

v2
v2

v1For First hidden node
Straight line is 

w11*v1 + w21*v2 +T10 =  0
where  
wij is weight from ith input node to jth hidden node
Tk0 is threshold for kth hidden node 



HOW DOES IT WORK?
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Input   Hidden   Output
Layer   Layer(s)  Layer

v1

v2
v2

v1For second hidden node



HOW DOES IT WORK?
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Input   Hidden   Output
Layer   Layer(s)  Layer

v1

v2
v2

v1
For third hidden node



HOW DOES IT WORK?
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Input   Hidden   Output
Layer   Layer(s)  Layer

v1

v2
v2

v1
Output = Sigmoid{0.4H1 + 0.4H2 + 0.4H3 – 1.0}
Output is ‘On’ only if H1 H2 H3 all are ‘On’

N.B. 
* Complexity of final region depends on number of hidden nodes.
* Finite β rounded edges for selected region; and contours of  
constant output in (v1, v2) plane.



BEWARE

• Training sets are reliable

• Don’t train with variable you want to measure

• Data does not extend outside range of training 
samples (in multi-dimensions)

• Don’t overtrain

• Approx equal numbers of signal and bgd
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Is NN better* than simple cuts?

In principle, NO
Can cut on complicated variable e.g. NN output

In practice: YES

But:
Better NN performance more work by ‘Cuts’ 
analysis to improve performance

* Better = improved efficiency  v  mistag rate
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SIMPLE EXAMPLE 

Try to separate π and proton using E and p

π: E2 = p2 + mπ
2

P: E2 =  p2 + mp
2                                                              E

Easy:       p = 0  2 GeV

Harder:   p = -4  4 GeV                                        p

Hardest: px, py, pz = -4  4 GeV

More realistic: Add expt scatter of data wrt curves
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PHYSICS EXAMPLE

Separate b-jets from light flavour, gluons, W, Z:

Input variables:  Track IPs, SV mass, distance, quality, etc.

Output: 0  1

Issues:

Pre NN cuts

Training and testing samples (Where from? How many events? Ratios of 
different bgds,….) 

How many inputs?

Network structure

How many networks?

Single output or several 

Systematics (use different sets of testing events}

Stability wrt NN cut
90



NN Summary

• ADVANTAGES:

Very flexible

Correlations OK 

Tunable cut

• DISADVANTAGES

Training takes time

Tendency to include too many variables

Treat as black box

*   Past attitude: Need to convince colleagues NN  is sensible

More recently: Why aren’t you using NN?

Now/future: Why aren’t you using a Deep Network?
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Wilks’ Theorem
Data = some distribution e.g. mass histogram

For H0 and H1, calculate best fit weighted sum of squares S0 and S1

Examples:  1) H0 = polynomial of degree 3

H1 = polynomial of degree 5

2) H0 = background only

H1 = bgd+peak with free M0 and cross-section

3) H0 = normal neutrino hierarchy

H1 = inverted hierarchy

If H0 true, S0 distributed as χ2 with ndf = ν0

If H1 true, S1 distributed as χ2 with ndf = ν1

If H0 true, what is distribution of  ΔS = S0 – S1? Expect not large.    Is it χ2?

Wilks’ Theorem:        ΔS distributed as χ2 with ndf = ν0 – ν1 provided:

a) H0 is true

b) H0 and H1 are nested 

c) Params for H1 H0 are well defined, and not on boundary

d) Data is asymptotic 
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Wilks’ Theorem, contd
Examples: Does Wilks’ Th apply?

1) H0 = polynomial of degree 3

H1 = polynomial of degree 5

YES: ΔS distributed as 2 with ndf = (d-4) – (d-6) = 2

2) H0 = background only

H1 = bgd + peak with free M0 and cross-section

NO: H0 and H1 nested, but M0 undefined when H1 H0.   ΔS≠2

(but not too serious for fixed M)

3) H0 = normal neutrino hierarchy      *********

H1 = inverted hierarchy                 *********

NO: Not nested.  ΔS≠2    (e.g. can have Δ2 negative)

N.B. 1: Even when W. Th. does not apply, it does not mean that ΔS

is irrelevant, but you cannot use W. Th. for its expected distribution.

N.B. 2: For large ndf, better to use ΔS, rather than S1 and S0 separately  
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Is difference in S distributed as χ2 ?

Demortier:

H0 = quadratic bgd

H1 = ……………… +

Gaussian of fixed width,

variable location & ampl

Protassov, van Dyk, Connors, ….

H0 = continuum

(a) H1 = narrow emission line

(b) H1 = wider emission line

(c) H1 = absorption line

Nominal significance level = 5%

What is peak at zero?
Why not half  the entries?
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So need to determine the ΔS distribution by Monte Carlo

N.B. 

1) For mass spectrum, determining ΔS for hypothesis H1 

when data is generated according to H0 is not trivial, 

because there will be lots of local minima

2) If we are interested in 5σ significance level, needs lots of 

MC simulations (or intelligent MC generation) 

3) Asymptotic formulae may be useful (see K. Cranmer, G. Cowan, 

E. Gross and O. Vitells, 'Asymptotic formulae for likelihood-based tests of new 

physics', http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-011-

1554-0 )

Is difference in S distributed as χ2 ?, contd.

http://link.springer.com/article/10.1140/epjc/s10052-011-1554-0
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Search for Higgs:

H  : low S/B, high statistics
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HZ Z  4 l: high S/B, low statistics
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p-value for ‘No Higgs’ versus mH
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Mass of Higgs:

Likelihood  versus mass



Comparing 0+ versus 0- for Higgs
(like Neutrino Mass Hierarchy)

100
http://cms.web.cern.ch/news/highlights-cms-results-presented-hcp


