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Signal Search Models

Two statistical models are often encountered in signal searches:
e Signal/background density mixture
p(x|a) = as(x) + (1 — a)b(x). (1)
Parameter of interest is the signal fraction a.

@ Poison process with the intensity function given by
A(x|\) = As(x) + ub(x). (2)

Parameter of interest is the signal rate A. For the purposes of this
study, it is assumed that the background rate p is known.

s(x) and b(x) are continuous, normalized, and fully specified (i.e., no
nuisance parameters) densities for the signal and background, respectively.
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Signal Strength Determination by Maximum Likelihood

@ The signal fraction « of the mixture model is estimated by
maximizing the log-likelihood:

N
(a) = Inp(xila). (3)
i=1

& 1= argmax /() (4)

(03
@ The signal rate \ of the Poisson process model is estimated by
maximizing the (extended) log-likelihood:

N
UA) = =(A+ 1) + D InA(xilA) (5)
i=1

A == argmax {()\) (6)
A
& and \ are asymptotically consistent, asymptotically normal, and

asymptotically efficient under some mild conditions on s(x) and b(x).
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Testing for Signal Presence

@ Wald test A
) ™)
a=0

) @

@ Yet another Wald test, using o obtained from the Al(a) = —1/2 rule

&? d?*((c)
Tw = = E|-
o e (e[

@ Alternative Wald test

d*¢(a)
a2
Twz =4 (*W

A2
(0%
TW3 — % (9)
@ Score test )
d¢
o ate (4| ) (10)
@ Likelihood ratio test
Tir = 2[4(&) — £(0)] (11)

All of these statistics are x3 distributed in the limit N — co. Tests for the \ of
the Poisson process model are similar.
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Testing for Signal Presence (cont'd)

@ For finite samples, better tests can be constructed by using statistics
which take into account the sign of &.

@ One option is to use truncated versions of the statistics presented on
the previous slide. The CCGV paper, for example, is using the
truncated likelihood ratio statistic, T, g, which is %6(0) + %X%
distributed as N — oo:

TTir = { 2[6(04)0— “o)] !f N 20, (12)
if & <0

@ Another option, favored in the modern statistical literature, is to
construct the signed square root versions of these statistics:

R =sgn(a)VT (13)

The R statistics are A/(0, 1) distributed as N — oo.
@ TR, in particular, gives rise to the signed likelihood ratio, R g:

Rir = sgn(&)/2[¢(&) — £(0)] (14)
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Nuisance Parameters in Searches

@ We assume that all nuisance parameters (e.g., signal location and
width) are treated by the theory of random fields. In application to
particle physics searches, this technique is known as the Gross-Vitells
method (GVM). The models and test statistics presented on the
preceding slides correspond to a single point in the nuisance
parameter space.

@ The LEE factor determination by the GVM relies substantially on the
assumptions of consistency and normality (or distribution according
to x?3) of the test statistic used. However, in order to be confident in
the statements made for finite N, we must have an idea how well
these assumptions are satisfied.

@ Nuisance parameters in b(x) can also be treated by profiling, but in
this case mathematical derivations of improved asymptotic formulae
become substantially more challenging.

Igor Volobouev Improved Inference for the Signal Significance 6/ 67



Tools for Developing Higher-Order Asymptotic Theory

@ Taylor expansion of ¢(c) near a« = 0 (or near “true value of the
parameter” for other types of likelihoods)

e Joint cumulants for the derivatives of /()

o Edgeworth series approximation of distributions

Some of the mathematical details are given in the backup
slides. The derivations for ¢(«) follow the general methods
discussed in the book by T.A. Severini, “Likelihood Methods
in Statistics”, Oxford University Press, 2000. Warning:

a few of Severini's higher-order asymptotic formulae are
incorrect. The formulae used in this study were rederived
from first principles using Wolfram Mathematica.

Additional details about the mixture model simulations and asymptotic
derivations are available in the article by I. Volobouev and A. Trindade,
“Improved inference for the signal significance”, 2018 JINST 13 P12011.
The Poisson process model results and the O(N‘5/2) approximations
presented in this talk are new.
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Gram-Charlier Expansion

@ For a quantity whose distribution is close to the standard normal,
an approximate density can be constructed with the Gram-Charlier
expansion

p(z) = TG_T <1+Zﬁk"‘/k ) (15)

The coefficients B are chosen to match the cumulants of the
approximated distribution. In practice, the expansion is truncated at
some maximum k.

@ The CDF for this density is easily found using the following property
7'2 22
of Hermite polynomials: [*_ Hi(r)e™ 2 dT = —Hy_1(z)e” =
@ A slightly different expansion can be obtained in the form

I S K1
- e (1S (52)) oo
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Edgeworth Expansion

@ The Edgeworth expansion is obtained from the Gram-Charlier
expansion by grouping together the terms with the same powers
of N~1/2,

@ This grouping has to assume a particular asymptotic behavior of the
cumulants. The typical cumulant behavior of the likelihood-based
signed test statistics is k1 ~ N71/2, kp =1+ O(N71),
ki ~ N~(k=2)/2 for all k > 2. To create, let say, O(N~2) expansion,
cumulants up to and including x5 must be taken into account.

@ The cumulants of R g are special: kK1 ~ N71/2 x, =1+ O(N7Y),
ki ~ N=K/2 for all k > 2 (this property of R g was established in
1999 by Mykland). Therefore, higher R g cumulants decay faster as
N — oo by factor ~ % To create O(N~2) expansion, cumulants up
to and including k3 must be taken into account.

@ In combination with two different representations of Gram-Charlier
series, this leads to four types of Edgeworth expansions to consider
(the formulae can be found in the backup slides).
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Cumulant Matching

@ While the Edgeworth expansion is a useful asymptotic tool, it has
some drawbacks. It is not guaranteed that the series are non-negative
everywhere, and higher order cumulants of truncated series are not
well-controlled.

@ In 1939, Marcinkiewicz showed that the normal distribution is the only
distribution whose cumulant generating function is a polynomial, i.e.,
the only distribution having a finite number of non-zero cumulants.

@ This naturally leads to the question: if we know some number m of
the leading cumulants, what is the distribution which minimizes, in
some sense, the norms of all remaining cumulants? The minimization
target can be formulated in a number of ways, something like
Zj’imﬂ |kj|P, p > 0 seems reasonable. As far as we know, this
problem is unsolved.
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Shape Parameters

For the mixture model, define
V) = 1E [dklné(a)] - E [dklnp(x|a):|
N a=0

dak dak a=0
For the Poisson process model, we observe only one realization of
{N;x1,...,xy}. It becomes natural to define

Vj = % E [dkcli”fk(/\)} ‘)\:0 (i.e., Vi is defined “per unit u").

For the mixture and Poisson process models, it is convenient to
represent higher-order asymptotic results in terms of the following
parameters:

S < T N R I
T w2 P T TRV Y T 24— )52 0T 120V

(17)

(=1 1V,
(k=1)! (=Va)k/2
location-scale invariant. Large magnitudes of these parameters lead to
slower convergence of the log-likelihood Taylor series and to stronger

deviations from N(0, 1) asymptotic behavior.

(in general, ) These quantities are dimensionless and
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An Example

4

— s(x)
3 — b(x)
2

N\

-02 00 02 04 06 08 10 1.2
X

Use b(x) uniform on [0, 1] and truncated Gaussian s(x):

(1 ifxeoq]
b(x) *{ 0 ifxg[0,1] (18)
s(x) = e_%r%/fol e_%mﬁdy if x € [0,1] (19)
0 if x ¢ [0,1]

As the shape parameters are location-scale invariant, this example is applicable without
loss of generality to a uniform background density and a truncated Gaussian signal
density supported on an arbitrary interval [a, b].
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Dependence of Shape Parameters on Signal Location

4 10
— Poisson y 8 — Poisson p
3r — Mixture y — Mixture p
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4
1r 2
0.0 0.1 0.2 0.3 0.4 05 0.0 0.1 0.2 0.3 0.4 0.5
m m
25 80r
20 — Poisson § - Pc?isson ¢
— Mixture § 60r — Mixture ¢
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40+
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5
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m m

For all of these plots, o = 0.1.
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Dependence of Shape Parameters on Signal Width

10 20
8 — Poisson y — Poisson p
6 — Mixture y 15 — Mixture p
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a

For all of these plots, m = 0.5.
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Example Working Point

@ Working point chosen for the example: m = 0.5 and o = 0.1. For this
point, the shape parameter values are as follows:

Mixture | Poisson
1.1094 | 1.9394
2.6893 | 3.9894
49671 | 8.4755
10.369 | 18.378

PN )

; _ _ 1 0741 < :
@ For the mixture model, ocgr = T Y ON For N < 14, it
becomes impossible to distinguish o = 1 (pure signal) from o =0
(pure background) at the level of 50.

@ For the Poisson process model, Vo/V5 ¢ = 2.82, where —V; ¢ is
the Fisher information about X for the pure counting experiment
(i.e., in the case s(x) = b(x)).
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Effective z Errors of the Asymptotic Distributions

@ Transformation
7z = o7 YPr(R < 2)), (20)

normalizes the distribution of a statistic R. ®(-) is the CDF of A/(0,1) and
®~1(-) is the quantile function.

@ Effective z error of the asymptotic approximation for a statistic with A/(0,1)
limiting distribution:
Az(z)=z—-Z. (21)
@ For N(0,1), Az(z) =0.
o To first order, if Pr(R < z) = ®(z) — ©Eh(z), Az is just h(z).
@ In practice, to ensure numerical stability at large z values, we have to
calculate instead
Az=z—-S"Y(1- Pr(R < 2)), (22)
where 5(z) :=1— ®(z) = lerfc (%) is the survival function of A/(0,1).

Of course, subtractive cancellation should also be avoided in the evaluation
of 1 — Pr(R < z) (i.e., the survival function of R).
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Example z Error Predictions to O(N~—3/2), Mixture Model

0-87 — N =20 ] — N=20

Az s RVV

AZ, Rs

Note different vertical scales in these plots.

Improved Inference for the Signal Significance

Igor Volobouev



Example z Error Predictions to O(u~%/?), Poisson Model

1.5f—lji§0/- 1.57—/1?;0 0-6:_#i§0
= 17:2;200 0 17:11;200 = 0.4::11;200/
= — ;= 2000 = — = 2000 3 0.2] — #=2000
g 0.5 / 4 0.5 / 5 ]
0 0 _0_2:7'
0o 12 3 45 & o 12 3 45 & 0 123 45 6
z z z

The correspondence between Az values and p-values at z =5 is as follows (using
ps=1—®(5)~2.87 x 1077):

Az | p-value/ps
—0.01 0.95
0.01 1.05
0.05 1.29
0.1 1.67
0.2 2.77
0.5 11.9
1.0 110
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@ Want to have a reasonable precision of the p-value determination in
the z ~ 5 region, a traditional threshold for signal discovery claims in
high energy physics. Need ~ 10° samples.

e M = 10° pseudo-experiments were generated for a number of
different N (mixture model) and p (Poisson process model) settings.

e & and \ were found by maximizing the log-likelihood numerically, and
distributions of various statistics were compared with predictions.
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Simulated Distributions of Ry,

Mixture model Poisson process model
le8T 1e8-
le6 le67
n 4 n 4
= )
92, 100007 2, 10000
g ] g |
< <
[0p] 100 n 1007

14

There are "hard” lower and upper limits on & (& € [—0.3345,1.0]) and

a “hard” lower limit on X (3\ > —0.2507) stemming from the requirement
that the combined signal+background probability density must remain
non-negative. The distribution cutoffs, visible for N = 20 (left) and

p = 20 (right), are due to these limits.

Igor Volobouev Improved Inference for the Signal Significance 20 / 67



Simulated Distributions of R, g

Mixture model Poisson process model

le8T le8T

le6T] le6T]

wn 4 wn -
= =

2, 10000 2, 100001

g _ = |
& <

N 100 n 100

17 17
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Simulated Distributions for Small

Poisson process model Poisson process model
le8T le8T
1 — = 1 1 — = 1
; le6 __ L= 2 . le6] = 2
< 1—#=5 < 1—#=5
Q. 10000 9, 10000
= i g |
< <
N 100 n 1007
17 1
LI L B | T T LR
-5 0 5 10 -5 0 5 10
Ry Rir
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z Errors, Mixture Model

Rw

Az,

N =20
0.67 — Simulation
o s] — O
0.45 :
0.37
0.2:
O.l:
0o LA -~
o 15 s s
z
0.154 — Simulation
— O(N-!
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0.33 — Simulation 0.
1— Oo(N !
0.2 _ =
1 — =
0.1 53
El <
R
Frerrrerrrr—————— -0
0 1 2 3 4 5
0 4=
-0.0057 —
-0.01
-0.015 T LAAAA AR RS A LA Ll
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Errors, Poisson Process Model

w =20 w =200 w = 2000
— Simulation 0.57 — Simulation 0.2 3 — Simulation
14— O(u’l)
— O(n «5/2)
& — O(u™) S =
= — O(p="?) 5 =
- 0.57 - -
5 o o
< < <
0 4
FrererrrrrprrTrEr”
0 1 2 3 4 5
z
0.23 — Simulation —-0.0043 — Simulation
31— 0™ 1— O™
31— O(u=37?) _ 1 — O(u™7?)
. 0.1 ) ) 0.005 .
5 I— 0™ 5-0.0157 — O(u™?) = I— O
= — / < — O(u5?) < —
0 -0.0067
o E 5 o 3
< <1-0.02 <
-0.14 -0.0077
-0. LA AN AL AR AL A -0.025 LA LA AL AL sl —0. 008 rrrrrrrerrrrrrrrprrrrrIT T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
z z z
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Cumulant Matching to O(N~%/?), Mixture Model

The cumulant pulls are defined as

ki,simulated —Ki predicted

g ( Ri )predicted

. Diagnostics based on

cumulant matching become unreliable for N 5 120 due to the simulation
pile-up at the “hard” lower limit on & (i.e., when atrye — Amin < 50 CR)-

157 fe) Rw 159 fe) RW 159 o) RW
1] 0 Rwe 1o 0 Rw» 1o 0 R
X Hs X Rs X Rs
5 A RLR — 59 A RLR — 54 A RLJ?,
5 = Q - = = X &
3 ] =Y q 8 ] L] =Y . ]
0 E o B 8 @ L] - 07 % L] - 0 Iy ] L] &
'Y <
_5 ] da o
-10 -10 -10
-1 T T T -1 T T T -1 T T T
100 1000 10000 100 1000 10000 100 1000 10000
157 o Rw 157 o Rw 157 o Rw
wlo 0 Rws 1o 0 Bws o] 0 Rur
X Rg X Rg 2 o X Rg
54 & O A RLR — 5 A RLR — 5 A RLR
= 2 & = 5 -
0] 8 B g & " ":L: o X : B = = '9: 0] L] g 8 )
< <
-5 -5 -5
a
~104 -104 © -10
o
-1 T T T -1 T T T -1 T T T
100 1000 10000 100 1000 10000 100 1000 10000
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4 pull

Cumulant Matching to O(u~5/2), Poisson Process Model

Diagnostics based on cumulant matching become unreliable for 11 <

due to the simulation pile-up at the “hard” lower limit on A (i.e., when

< 50

— <
Atrue — Amin ~ 50¢R).
157 fe) Hw 157 fe) RW 159 o) RW
104 X Rs 10 X Rs 10 X Rs
A Rig A Rpp A Rpg
59 — 5] — 5]
= =
0] S & s B & 2 o g " By & 20 o X 8 8 [
™ o >
'Y <
-5 -5 -5
o
-104 -10 -10
T T T ~153rrrr T T -1 T T T
100 1000 100 1000 100 1000
1 I
153 O Rw =3 O Rw 3 O Rw
104 X Rg 10 X Rs 10 X Bs
A Rpg A Rpg A Rig
59 8 — 5] — 5]
Ix x 7 a s g—« = x L] = .:C‘: E S w P
0 - = ~ 0dx k4 B 8 SLE P &
< o o < A
-5 -5 a -5
-10 -10
~153rrrre T T ~153rrrrr T T ~15-rrrrr T T
100 1000 100 1000 100 1000
I
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p-values at z = 5, Mixture Model

p-value

p-value

le-573

Ry

¢ Simulation

¢ Simulation
— O(N7YH
— O(N—3/?)
— O(N7?)
O(N—%/?)

10 100 1000
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p-value

p-value

.0001

¢ Simulation

RW? — O(N7Y

T T
1000 10000

N
¢ Simulation
Rir 2 oy
- O(N*'g/z)
— O(N7?)
— O(N—%/?)

100 1000

10000




p-values at z = 5, Poisson Process Model

0.017

0.001

0.0001

p-value

le-57]

le-67

Ry

¢ Simulation

0.017

0.0017

0.0001]

le-57

p-value

le-67]

le-7-T

T
1000 10000

¢ Simulation
1
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1 10 100 1000 10000
1
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4e-77 LE — o(u™)
E — O(u=3?)
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@ For the example considered, fourth order Edgeworth asymptotic
expansions become highly accurate for modeling Ry, Rs, and R r
distributions when the sample size reaches ~ 100. Ry» and Ry3
need ~ 1000 points.

@ Due to its unique cumulant decay rate, R, g exhibits much closer
adherence to normality than all other signal testing statistics
considered.

o For the mixture model, O(N~3/2) calculation provides excellent
p-value approximation for Ry g at all sample sizes practically relevant
for signal detection at z ~ 5. Note that, to O(N~3/2), the R
distribution is still just N (1, K2).

o For the Poisson process model, O(y~/2) approximation of Ry (i.e.,
the leading order) is conservative and works remarkably well down to
very small sample sizes.

Note that these observations are valid only for the particular set of shape
parameters realized in this example.
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@ Cumulant calculations of the signal testing statistics up to fourth
order in N=/2 (or u=1/2) are implemented in the NPStat software
package, together with the corresponding Edgeworth asymptotic
distributions. Relevant functions and classes are
mixtureModelCumulants, poissonProcessCumulants, and
EdgeworthSeries1D. These calculations take likelihood shape
parameters v, p, &, and ¢ (Eq. 17) as inputs.

@ Choice of the optimal method for calculating the shape parameters
(according to Egs. 43-51) will, in general, depend on the type
(parametric or nonparametric) and shape of the s(x) and b(x)
densities. For example, for 1-d Gaussian s(x) and smooth, parametric
b(x), Gauss-Hermite quadrature will be the most appropriate. We
did not attempt to devise a generic procedure for calculating the
shape parameters, but Gauss-Legendre, Gauss-Hermite, and Fejér
quadratures are included in the NPStat package and can be used as
building blocks for your own calculations.
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Directions to Explore

Different s(x) and b(x).
More simulations in the z ~ 5 region.

Very high order Edgeworth expansions for Rs.

For the Poisson process model, one can construct expansions
conditional on N and then combine them numerically.

Models not based on the Edgeworth expansions.

@ Models not based on matching the cumulants for the complete
distribution (e.g., match them only for z > 0).

Incorporation of nuisance parameters into high-order calculations.

New signal testing staistics (e.g., combine predictability of Rs with
the good cumulant control of R g).
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For small and moderate sample sizes, deviations from normality for
likelihood-based statistics used in signal searches can be significant.
Moreover, for narrow signals these deviations are unbounded.

In comparison with other statistics, deviations from normality are
substantially milder for the signed/truncated likelihood ratio statistics.
Tests based on likelihood ratio should therefore be preferred.

It is a good idea to keep these deviations under control. Their
influence can be estimated by comparing higher order approximations
with the asymptotic formulae for various nuisance parameter values.
For the LEE determination by the Gross-Vitells method, the random
fields can be normalized using Eq. 20. In addition, local significance
of the signal test statistic can be adjusted conservatively, leading to

a subsequent conservative estimate of the global p-value.

While the Type 2 error performance of various signal testing statistics
was not covered in this talk, practical choice of the statistic should
take it into account.
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Backup Slides
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Higher-Order Asymptotics

@ The statements about asymptotic N (0, 1) behavior of various signal
testing statistics are valid to O(N~1/2). Informally this means that,
for finite N, a corrected quantity (1 + O(N~Y/2)) R + O(N~/?) can
be found which is distributed as stated.

@ In many situations, it is possible to construct higher-order
approximations explicitly. These approximations, arranged in the
powers of N~1/2 give us control over the differences between the
finite NV distribution of a statistic and its limiting behavior.

@ The proper small parameter for the Poisson process model is ,u_1/2.
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The Roadmap for the Mixture Model

© Represent the log-likelihood derivatives by

d“4(a)
dot | = MVit VNZ, (23)
where V. := E [%] . and Z is an O(1) random variable
o=

with zero mean. Note that Vj are just model-dependent constants
(also V4 = 0 for any model).

@ Construct a sufficiently high order Taylor expansion for ¢(«) at & =0
and solve for & in terms of V) and Z,. The result will look like

M
&= pn(Z1,2,.. )N, (24)
m=0
where pm(Z1, Z2, ...) are certain multivariate polynomials. These
polynomials are also complicated functions of V) but we need to
derive them only once. They do not depend on the model or statistic.
© Using & from the previous step, construct the expression for the test
statistic of interest in terms of V\ and Zj.
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The Roadmap for the Mixture Model (cont'd)

@ Derive the cumulants of the test statistic of interest in terms of V
and the joint cumulants of Zj.

© Evaluate the joint cumulants of Zx under the null hypothesis (i.e.,
a = 0). Propagate the results to the cumulants of the test statistic of
interest.

@ Using the cumulants of the test statistic, model its distribution with
the Edgeworth expansion.

The whole procedure is reminiscent of the quantum mechanics
perturbation theory before the Feynman diagrams were invented.

A similar ansatz can be made for the Poisson process model. In this case,
various expectations have to be taken w.r.t. both the Poisson distribution
of N with parameter 1 and the joint null hypothesis distribution of
{x1,...,xy} conditional on N.
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Taylor Series for the Mixture Model Log-Likelihood

Near o = 0,

1 1
f(a) = 5(0) + o+ jczoz2 + §C3a3 + ... (25)




Asymptotic Expansion for & (Model-Independent)

Assume that ¢; = NV; + VNZ; (as in Eq. 23) and Z; is a random variable
with E[Z;] = 0 and Var[Zj] ~ 1 (i.e., independent from N). Then the

condition % =0 leads to
c + b+ §c3a + §c4a +O(NY) =0 (31)

This equation can be solved for & approximately, setting in turn
coefficients for each power of N to 0. Taking into account the condition
V1 =0, one obtains (in agreement with Eq. 5.7 in Severini)

Z
Na =— =
VNa& 7
27, 1Vs_,
+ N~ 1/2( -2z
Vvioo2v3T (32)
L3 Vs 12275 2572 _,(1Vy 1V2
N1 727 - (A28
+ {2v412 2 V3 V3 6Vi 2V
+O( 3/2)
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Expansion for & to O(N~>/?)

Taking couple more steps in the same direction, we arrive at

27, 1V
—1/2 142 3 2
+N -2z
<V22 2v3 1)

+ Nt 322122271212?*21522 13(1&;,1‘432)}
2 V4 2V V3 6V 2V3
sVizi s V2Ziz, 5 3wzt WZizs V32273
N2 8 v 2 V¢ 2 V8 % %
2VZiz, 1 vez{ 173z 3727y 773
3 v 24 V3 e vy 2 Vi %
_TViZ 3w VizZlz, TRz 15 ViZiz 15 \VEZPZE 5 VaVaZiZ,  1VaWZ)
8 v 8 V8 8 V8 8 V] 2 Vv 2 V] 8 V7
| ivfzf 3v3zfz4 V323 2,73 +5v3212223 Ev4zfz3 §v4213222 5 VsZ} 2o
12 v 12 V¢ %3 %3 12 VP 3 VP 24 V8
1 VeZd 17tz 2Zdnz, 12377 722373 2173
120 V& 24 vy 3 V3 2 v Vs 1%
+O(NT5/?)
(33)

There are some hints of structure in this, but it is far from obvious how to make
arbitrary order calculations automatic in, let say, a C++ program
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Expansion for T,z

72 72z 123
TLR:—*1+N71/2(1722—* 331
vy % 3V

5 3 3 4 3
4 V3 3 V3 12 V; 1%

3 2 74 3 4 2 72
T <v32122 1viz 1773 1 VaZ 2122>
%
2

1V3z) sVEztz, 1wavezy 1 wZiz ) V32322

7 6 6 5 5
N2 4V, 4 6 vy 2V %
1wvztz, 1 %z 1 Ztzy Zizmzz 7273
3 v 60 V5 12 v§ vy %
T ViZd T V3ZPz, 1 VEvezd 3 VEZPzy 15 ViZiZ2
T oa 9 a 8 o4 8 T2 7 v 7
24 V§ 4 VB 24 VS 4 V] 4V
VaVaZiZa 1 V328 1 V2ZE  1WZPZy 5 ViZizzs
- 7 T o 7 35 V7 6 V6 o yb
N2 % 24 V] 36 V] 6 V8 2V
10WBZ3Z3  1VvaZpzs 5 VaziZ3 1 VsZPZy 1 VeZP
3 6 6 6 6 6 12 6 360 VO
3V 6 VS 6 VS 12 VS 360 VS
128z 1Z}zzy 12§22 Z3Z3z3 73z
60 V3 3 v} 4 V3 V3 V3
+O(NT%/?)

(34)

The leading terms of this expansion are consistent with Severini (in his book, it is

derived to O(N—3/2))
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A Comment on the Higher-Order Distribution of T,z

e For positive values of T7 g (truncated T;g),
PF(TT[_R < 22) = PF(R[_R < Z), where Rir =V Tr1iR.
@ The following second order treatment of T;g (not truncated) is
especially effective. Construct the adjusted statistic:
-1 :
Pr( Teir < 22) = Pr (TLR < Z2 (1 + %) ) TBLR is known as the

Bartlett-adjusted likelihood ratio statistic, where b is the so-called
Bartlett coefficient. In terms of the second-order cumulants of R;g,
b= N(k% + K2 — 1). Then

z _
Pr( Teir < 22) = erf (\/5) + O(N 2). (35)
That is, Tgir has a x? distribution to order O(N~2): it turns out
that O(N*3/2) terms cancel out. However, to use Tpgi g, you must
treat negative and positive signal fractions on equal footing (not very
practical for signal searches).
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Expansion for R g

Z;

Rir = \/_—Vz(l + A[_R), where

DNV (LVA 12
R 6 V2 2V

" 1V2Z2 5 3Zi2 1 vz? 121Z3 322
9 v§ 12 V3 24 V3 6 V2 8VZ2

23 V3z  1VEZ2z, 11 W3VuZy 2 VaZ2Z3 35 V32472

6 5 5 4 4
=y 216 VS 2 V3 144 V3 Rz 48 V4
7 VWZ22, 1 vz 1 722, 5 217,73 5 73
28 VA 120 VA 22 V3 12 v3 16 V3
48 V3 120 V4 24 V3 12 V3 16 V3
79 viz} 200 V3Z3z, 37 VEvuzt 23 VEZizy 11 ViZ2Z2 (36)
648 V38 432 V] 288 V] 2 v 8 V2
121 V3V, Z3 2, 7 VaVsZi 5 V2zZY 11 WBZiZy  WBZiZZs
288 6 360 6 384 V6 144 V5 vb
N2 288 VS 360 VS 384 VS 144 V3 %
35 V5zyZ3 11 VWZizs 21 V42272 3 sZ3Z 1 Vezt
T3 5 14 5 64 5 80 5 750 V5
32 V3 144 V2 64 V3 80 Vj 720 V3
1 Z3zs 7 Z22Z, 127272 35212273 35 Z
120 VA 8 vA g9 A 8 4 128 V4
120 v 48V 9 v§ 48 Vf 128 Vj
+O(NT52)

It appears that this expansion is not correct in the Severini's book.
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Expansion for Ry/»

Rwa = —2—(1+ Awsz), where

V=V,
1 Z
awa =N (=337)
2

vt V2Zz2 L1 vyz? 3272
8 v 12 v 8V2

13z} 3v3221222 1v3v4zl3 1 V32227,

N2 4 VP 6 V3 4V 4 v
7 VWZ22, 1 VsZd 173724 5 Z3
24 v} 2 vi 12 V3 16 V3 @7
5T Vizt 1BViZizZ, 19Vivezi 3ViZjzs 99 ViZiZE 11 V3VZz,
128 V8 8 Vv 32 Vv 4 Ve 64 V@ 8 %3
2| 1 Va3 Vs 2y 1 vz} 1v3zf‘z4 gv32122223 1v421323 21 V42223
8 VP % VP 4 VP 8 v 4 v 32 VP
3 VsZ3Z, 1 VeZi 1 Z3Zs 7 2227, 12777 35 7
6 V3 80 V3 24 v} 24 vy 8 Vv 128 V4
+O(NT%?)
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Expansion for Ry3

_ 12Z _ 1v2z22 5 v2 1 VvZ? 1v, 322
AW3=N1/2<7——2)+N1(7—31+f3 41 4+§2

2V, 8 vi 72v3 12 V3 2av2 8 V2
3 73 3 2 72 3 2 2
1V3z3 s Bz 9 VEZ2Z, 1VaVuZd 35 VEZ, 2z 1 \V3Z2Z
VY o4 V5 16 V5 a2 V5 144 VA 9 VvA 4 vA
N3 4 VP 24 VS 16 V3 4 V3 144V 9 Vi 4 V3
7T VWZ2Zy 1 VZd 5 V3zz 5 4z 1 Vszy 1727, 5 Z3 1 24
24 V4 24 v 36 V348 V3 24 V3 12 VP 16 V3 24 V2
57 viz} 205 izl 13 V3Z3z, 19 Vivez} 181 V) S5 V3zz, 7 VRZ
128 V§ 576 VJ 8 V] 2 V] 10368 V& 48 VP 9% V¢
1280 V2v4z2 3 VEZ3zy 99 V2ZPZZ 11 3VuZiZ, 1 V3VeZ} 53 V2,
1728 V¢ 4 Ve 64 V¢ 8 Ve 8 VP 1728 V3
5 V27173 35 VZZE  W3VaZiZ, 25 V3VeZZ  1V3Z3z, 9 V3Z2Zz3 31 V2Z?
8 5 64 \/5 5 144 5 n 5 8 5 288 V5
i 8 V3 64 V3 % 144 V3 4 V3 8 V3 288 V3
1VaZizs 21 VWz2z2 3 VZ3za 1 VpZ} 7 VW 2WZi1Zy 35 BZZ3
Y E Y] IR 0 VB 720 VA o VA 12 vE
4 V3 2 v 16 V3 80 V§ 720 V4 9V 2V
5 V2 2Vaz1Z3 35 VyZ2 7T sz, 1 VeZ2 1 ZiZs 71 Z2nz
us2 vy 9 vy 192 v} 48 vy 48 vy 24 v} 24 vy
12222 35 Z3 1 Vs 1 ZiZs 5 22 5 Z2
8 vy 128Vy T20V3 24 V3 48 V3 T2V3
+O(NT%?)

(38)
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Asymptotic Expansions for Other Statistics

@ Divide the expansion for & by ocg (0cr = 1/v/—NV2) in order to
obtain the expansion for Ryy.

o Rs = \/% to all orders.
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Cumulants

A good introduction into cumulant theory can be found in Wikipedia.

Cumulants are combinations of (univariate or multivariate)
distribution moments which are added when two independent random
variables with the same distribution are added.

For univariate distributions, there is a unique mapping between first
m distribution moments and first m cumulants. For multivariate
distributions, the mapping involves all joint cumulants and moments
up to the order given.

Relationships between cumulants and moments can be determined
automatically (from the Taylor expansion of the cumulant generating
function or from Bell polynomials) by a symbolic algebra system.

For N/(0,1), k2 = 1 while all other cumulants are 0.
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Notation: ¢(z) is the density of A/(0,1) and ®(z) is the CDF of A(0,1).
Expansion w.r.t. N'(0,1) is given by

Fir2 =1 |k
6

- N% Ko —1 n%
Pr(R < z) = ®(z) — ¢(z2) [Hl + Hi(z) > + — + Ha(z) r + 2

ri(r2 — 1) I G N G 17 N g)

+ Hy(2) A,
("
3 24 4 6 8 24

n%mg K1K4 N (k2 — 1)k3 K5
12 24 12 120

3 2 2
KK KK K1(k2 — 1)K K1k Ky — 1)K K K
13+14+1(2 )3+15+(2 )4+3+ 6> (39)

+H
5(z)< 36 | 48 12 120 48 72 720

nln% N K3K4
72 144
N%N% N K1K3K4 N (ko — I)H% N K3K5 N n%
144 144 144 720 1152

3 3 2 4
"3 R1R3 | R3R4 "3 -5/2 ]

+ Hg(z + Hg(z + + Hi1(z) —— + O(N
() (2) < 1296 1728 ) ol )31104 ( )

For this distribution, the four leading cumulants are matched exactly, while ks and ke
are matched to O(N~%?2). The actual fifth cumulant of this distribution is
ks — k3 — 103 (k2 — 1) — 15k1 (k2 — 1)2
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Edgeworth Expansion for Typical R w.r

z— K1 z— K1 K3 z— K1 K4 zZ— K1
Pr(R<z)=® —¢ 3/2H2 + 5 Hs
VE2 VE2 6y VK2 24K5 VE2
Ks z— Ky (10’% + "‘6) z— Ky
+ 7 Ha + 37— Hs
120H2/ VE2 720.»12 VE2

2
K3Kg H <zfn1> N (853H5+5n4) Hy (szq) (40)

6
14411/? NG 57603 /72

3 2
K zZ— K K3 R zZ— K
2 Hg L ) !
1296;@2/ VK2 1728k3 VK2
4
K z— K1 _
3 Hy +O(NT*?)
31104 NS

For this distribution, the six leading cumulants are matched exactly, actual
k7 =0, kg =0, kg = —126K4k5 — 84K3K6-
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Edgeworth Expansions for R g to O(N~%/?)

e Expansion w.r.t. N/(0,1)

2 _ 3 _
Pr(Rig < 2) = 6(2) — 6(2) {m + Hh(2) (% + 2 1) + Ha(2) (% + w + %)
(a)

4 2 2
K ki(ky — 1 K1k Ky — 1 3 _

1 Ha(2) J+M+g+g+i T O 5/2)]
24 4 6 8 24

For this distribution, the four leading cumulants are matched exactly. Actual
ks = — (K3 + 1063 (52 — 1) + 151 (k2 — 1)? + 10k2k3 + 10(k2 — 1)k3 + SK1k4).

@ Expansion w.r.t. N(k1, k2)

ri z) = e T Z— M K3 Z— K1 K4 z— K1 —5/2
Pr(Rir < 2) ®<\/@> ¢<m)[gng/sz(m)Jrz‘m%%(\/@)+O(N )} (42)

For this distribution, k1, ..., k4 are matched exactly, actual k5 = 0, ks = flong.

“Typical R" expansions can also be used for R r by setting k5 and kg
formal parameters to 0. This leads to an alternative behavior of
actual higher order cumulants.
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Shape Parameters for the Mixture Model

Ep denotes “expectation under the null’: Ep[q] := [ g(x)b(x)dx.
Es denotes “expectation under the signal”: Es[q] := [ q(x)s(x)dx

Note that E, [Z—‘;] = E; [%} For the mixture model, V, =1 — Eg [%]

E» [2(552)°| E. 3E, [3] +2
1= g S - U DT
Vs Eo [-6(532)"| Es || —4E[5| +6E[5] -3
p= 6V22 _ { 6‘/22b } _ {b} - [[Zb}_l)z b (44)
E. |5 —5E. 2] + 10E, [5] — 10E, [5] + 4
ST P,
v Eo|3] -6 [5] + 156 5] - 208, 5] +15E. [5] -5
T CIBEEY
(46)
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Shape Parameters for the Poisson Process Model

v =~ L (47)

v= 2(_\\//32)3/2 - (E'is[gf;)lp (48)
&= 24(—\/\5/2)5/2 (Eis[,[ii]‘r’” (50)
-t Bl (51)

T10V; T (g [3))]

For pure counting experiments, higher-order approximations of various statistics
can be obtained by setting s = b and, consequently, y=p=¢( == 1.
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Cumulants to O(N~%/2) for the Mixture Model

Signed Wald statistic, Ryy:

k1= g (=7 +27p =€),

ko =1+ 1(p—7*— 1)+ 3= (=10v* +3072p + 372 — 227¢ — 8p? —3p+ 10¢ + 1),
K3 = o= + N;‘/z( 129% + 219p — 3y — 9€),

kg = N(p 3) + 7> (—114~* + 28842 p 4 1272 — 1807 — 60p? — 18p 4 66( + 12),
K5 N3/2( 3043 + 507p — 20y — 19§),

Ke = ( 420* 4 93072p — 4072 — 5107¢ — 150p? — 45p + 151¢ + 60).

Signed Wald statistic using observed information, Ry»:
m:ﬁ(*%ﬂﬁ(fﬁ””**%)'

(—27) + e (B + 32 % 155)

ke = 1(10p) + & (ﬂ . 1327 p— 2+ 457 + 7207 — 10p + 88()

K5 = ﬁ(l&ﬁ — 40~yp — 54¢),
ke = 7z (—607* — 1507%p — 107% + 3307¢ + 3600 + 376().

R3 =

-
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Cumulants to O(N~%/2) for the Mixture Model (cont'd)

Signed Wald statistic using A¢(«) = —1/2 uncertainty, Rws:

K1

K2

K3

Ka

K5

— 1 (7p _ 659
1+N<2 3%
1

1 (_x 1 (_ 4y | 259yp | 3y _ 15¢
\f( 2)+N3/2( o T a2 t 16 8)’

170+*  583+%p + 2517°  259~¢ + 131p> _ 7p 4 124
Nz \ 27 13 144 20 36 2 9 )

+
1 1 5v° | 107 3 39

= e (CE R %),

= 1(10p) + £ (%—%—72—47&133&—101)“244),
1

= w72 (157° — 40yp — 54¢),
R —

72 (—607* — 15072p — 1072 + 3307¢ + 3609 + 376().
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Cumulants to O(N~%/2) for the Mixture Model (cont'd)

Signed score statistic, Rs:

k1 =0,

I€2:].

H3=\1ﬁ%

ke = 7(p—3),

ks = w375 (€ — 107),

N3/
ke = 7>(30 — 1092 — 15p + ().

Signed likelihood ratio statistic, R r:
1 1 5 11
“1=ﬁ(—%)+m<—*+ fepJF*—Tog)

1 13 2 53 17 251
H2:1+N(§_7’Y>+N2( ( 36+ % T )_ 1235_
_ 1 251')/ 11'yp 9§
k3 = Nsr2 ( 26 T '
_ 1 1079+* 337 667{ 352
"54*W( 6 T oa- 5 o T80)
ks =0,
Re = 0.
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Cumulants to O(u~5/?) for the Poisson Model

Signed Wald statistic Rw:

k1= 5 (=% + 290 =€),

k2 =1+ 2 (p—7%) + 15 (=107" +307%p — 229¢ — 8p® + 10(),
k3 = 5+ an(—129° + 21yp — 9€),

kg = ﬁ %( 114~* + 288v2p — 180v¢ — 6002 + 66(),

ks = —375 (=303 + 50yp — 19¢),

( 114~* + 288v2p — 180¢ — 60p% + 66C).

Keé

R

Signed likelihood ratio statistic, Ry r:

— 1 (_ayy 1 (_2, 5 11
“1_\/,7( 6)+#3/2( 2T 76 — @
— 1(p_ 134 1 (2(88 _ A\ _ 25146 p>  5¢
"52*1+;L(2 36)+p2(7 (48 36 120 7 T3 )
_ 1 2514° llfyp 9¢
"53*u3/2< 26 T _*>'

5

1 1079 33 66 35p°
KJ4:—2< 216’)/—'_ 'YP_iE:YE_iGP —|—8<),/€5:0,K}6:

Signed score statistic, Rs:
k1 =0, kp =1, /‘63:#, H4:ﬁ,ﬂ5:M§/z,H6:%-
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Cumulants to O(u5/?) for the Poisson Model (cont'd)
Signed Wald statistic using observed information, Ryy»:
1 .5 9

= (D) (%)

by =141 <3p_ﬁ)+%(4147 443’yp+55'y§+10p —|—6§)

( 27)"’ 3/2 (M + B’YJ - 155)

R3 =
ko= 1(10p) + (2“37 13242 + 45~€ + 7202 + 88()
ks = —75 (1573 — 407p — 54E)

K6 = 12 ( 607+ — 15072p + 360> + 330+¢ + 376¢)

Signed Wald statistic usmg AE( ) = —1/2 uncertainty, Rws:
=g (<3) + g (- B - )

Ky = 1+%(7p _ M) +% (172077 _ 58:;;,2,3 25975 n 13316p 4 1244)
7% + 2070 ﬁ)

2

(10p) + 7 (% 180 _ gy 4 B30 124g)
Kg = 3/2(157 — 40vp — 54{)

ke = 22(—607* — 15092 + 36002 + 3307€ + 376)
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Simulated Distributions of Rs

Mixture model Poisson process model

le8T le8T

le6T] le6T]

wn 4 wn -
= =

2, 10000 2, 100001

g _ = |
& <

N 100 n 100

17 17
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Samples

Igor Volobouev

Simulated Distributions of Rs for Small u

Poisson process model

le8
-—,u:1
le6‘_lu:2
__/1/25
10000
1007
14
L B e e e e e e e A
-5 5 10

0
Rs
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Simulated Distributions of Ry/»

Mixture model

le87
le6
n -
9
2, 10000
g |
S
P 1007 — N =20
i — N =200
17 — N = 2000|||
LA L L R B L B
-5 0 5
Ry
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z Errors, Mixture Model

RVV 2

Az,

Rg

Az,

©o o o o o o

N =20

Simulation
O(N~!

- 67 — Simulation
— O(N!
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N = 2000
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N-1

O(N

o )
O(N72)
O(N-2)

0.67 — Simulation 0.37
— -1 4
0.4 (v 0.2
~ ~ ]
= 0.2 = 0.19
o= > 4
; 0 Qf 0
a2 o i
< -0.2 < -0.14
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"

<
-0.0

Improved Inference for the Signal Significance




Rg

Az,

Errors for Rs, Poisson Process Model
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—_ 0(;1’2)
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k-Statistics of Simulated Distributions, Mixture Model

o ¥® 8 ® o Q
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4 OoR & o i Ry
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k-Statistics of Simulated Distributions, Poisson Model

o
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Cumulant Matching to O(N~3/2), Mixture Model

157 o Rw 159 0 o Rw 159 o Rw
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Cumulant Matching to O(u

—3/2), Poisson Process Model
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2 Test for z > 0, Mixture Model

X2 is calculated for z > 0 bins of width 0.1 with 25 or more predicted counts,
typically resulting in slightly over 50 bins used. This test is not affected by the
lower limit on & but it is still affected by the upper limit.

17 a & g e L] -] 17 s g B L]
< )
= o o = o
=
= le-57 < le-57
X =
< < "
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hS N
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= A O(N-9/2) &S a g
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! 1
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2 Test for z > 0, Poisson Process Model

X2 is calculated for z > 0 bins of width 0.1 with 25 or more predicted counts.

The x? p-values of the A/(0, 1) approximation are below 10720 for all statistics
and for all N and p values considered on this and previous slide.
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