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The physics problem

We would like to detect the signal of a new particle/astronomical
source/astrophysical phenomenon BUT we do not known its location.
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Let’s consider the simplest possible scenario

Underlying assumptions: (i) we search for at most one signal, (ii) the only
unknown parameters are the intensity and the location, (iii) we know both
the background and signal distributions (up to some free parameters).
Model:

(1− η) f (y , φ)︸ ︷︷ ︸
background

+ η︸︷︷︸
signal

relative
intensity

g(y ,

signal
location︷︸︸︷
θ )︸ ︷︷ ︸

bump

0 ≤ η ≤ 1 (1)

Test
H0 : η = 0 versus H1 : η > 0

Test statistics:

LRT = −2 log[L(0, φ̂0, -)︸ ︷︷ ︸
Likelihood
under H0

− L(η̂, φ̂, θ)︸ ︷︷ ︸
Likelihood
under H1

] (2)
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Why can’t we just use Wilks or similar results?

If θ is fixed ⇒ under H0, LRT (θ)
d−−−→

n→∞
1
2χ

2
1 + 1

2δ(0)

(Chernoff, 1954, Self and Liang, 1987).

If θ is not fixed ⇒ under H0, LRT (θ) 6 d−−−→
n→∞

???

(non-identifiability, i.e., θ can take any value when η = 0).

If we define a grid of possible locations ΘR = {θ1, . . . , θR},
for all θr ∈ ΘR we calculate R local p-values pr

(multiple comparisons problem, i.e., our p-values must be corrected for
the fact that many tests are conducted simultaneously).
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How can we tackle this problem?

Approach 1: Multiple hypotesis testing ⇒ that’s how the
e.g., Bonferroni’s correction. Look-Elsewhere Effect (LEE)

problem was originally formulated.

Approach 2: Simulations/resampling
e.g., Monte Carlo, Bootstrap methods.

Approach 3: Extreme value theory/Random fields theory
e.g., Gross and Vitells (2010) ⇒ nowadays this paper is essentially

synonym of LEE.
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Multiple hypothesis testing

In his Class Notes for Statistics 411 at Princeton University in 1976, John
Tukey introduced the problem of multiple comparisons by means of a story:

A young psychologist administers many hypothesis tests as part of a
research project, and finds that, out of 250 tests 11 were significant at the
5% level. The young researcher feels very proud of this fact and is ready to
make a big deal about it, until a senior researcher suggests that one would
expect 12.5 significant tests even in the purely null case, merely by chance.
In that sense, finding only 11 significant results is actually somewhat
disappointing!
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Local p-values and type I error

We have an ensemble of R local p-values p1, . . . , pr , . . . , pR .

The smallest, names pL is then compared with the target probability
of type I error αL.

But what is αL if we want to claim a discovery at 5σ?

Global and local probability of false detection

αL = specific probability of false detection for each of the R tests.
6=

αG = 1− Φ(5) = 2.87 · 10−7 = probability of having at least one false detection

over the whole ensemble of R tests.

⇒ we must correct pL accordingly
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The simplest corrections for the local p-values

If the R tests were independent

αG = 1− (1− αL)R ⇒ pG = 1− (1− pL)R Sidak’s
correction (3)

E.g.: Suppose we are conducting R = 50 simultaneous test, each of
them at 5σ

αL = 1− Φ(5) ⇒ by (3): αG = 1− Φ(4.18)

i.e., αG
αL
≈ 50.

If the R tests were dependent (which is generally the case)

αG ≤ RαL ⇒ pBF = RpL Bonferroni’s
correction (4)

Pros: Easy to implement. Cons: May be overly conservative.
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The LEE as a non-identifiability problem

If θ is not fixed ⇒ under H0, LRT (θ) 6 d−−−→
n→∞

???

What about simulating the distribution of LRT (θ)?

Pros: Easy to implement. Cons: May be computationally intensive.

What about looking at LRT (θ) as a stochastic process?

⇒ Extreme value theory ⇒ Gross and Vitells, 2010.

Let’s see what Gross and Vitells, 2010 is all about...
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The rationale (1)

If θ is fixed, under H0

LRT (θ)
d−−−→

n→∞

1

2
χ2

1 +
1

2
δ(0)

 

●

θ = 85LR
T
(θ

=
85

) 0.5χ0 + 0.5χ1
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The rationale (2)

If θ is fixed, under H0,

LRT (θ)
d−−−→

n→∞

1

2
χ2

1 +
1

2
δ(0)
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The rationale (3)

If we let θ vary, it can be shown (e.g., Ghosh and Sen, 1985) that under suitable
regularity conditions, if H0 is true,

{LRT (θ), θ ∈ Θ} d−−−→
n→∞

{
1

2
χ2

1 +
1

2
δ(0)

}
(5)

(i.e., the LRT process is asymptotically, under H0, a χ̄2
01).
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The extreme value theory part (1)

Define a grid ΘR of R values θr over the search region Θ.
For all θr ∈ ΘR calculate LRT (θr ).

Combine the R values LRT (θr ) in a unique test statistic

c = maxθr∈ΘR
{LRT (θr )}

This is essentially the maximum of the stochastic process {LRT (θr )}!
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The extreme value theory part (2)

The p-value...

The p-value of our test H0 : η = 0 versus Ha : η > 0 is in the form

P(supθ∈Θ{LRT (θ)} > c) (6)

...which we must calculate/approximate somehow!

 

θ

LR
T(

θ)

c

To do so we consider the
number of upcrossings (Nc)
of c by the process {LRT (θ)}
when H0 is true.

E.g. In this image Nc = 2.
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Approximation of P(supθ∈Θ{LRT (θ)} > c)

From Davies, 1987 we have that as c → +∞ and additional regularity
conditions:

P(sup
θ∈Θ
{LRT (θ)} > c) ≈ P(χ2

1 > c)

2
+ e−

c
2√

2π

∫ U

L
κ(θ)dθ

Expected #
of upcrossings
over c of the
LRT process

under H0

(7)

if c 6→ +∞⇒ we have an upper bound for P(sup LRT (θ) > c).
κ(θ) is complicated ⇒ (7) proposed in Gross and Vitells, 2010

P(sup
θ∈Θ
{LRT (θ)} > c) ≈ P(χ2

1 > c)

2
+ e−

c−c0
2 E [Nc0 |H0]︸ ︷︷ ︸
=E [Nc |H0]

Expected #
of upcrossings
over c0 of the
LRT process

under H0

(8)

where c0 << c and E [Nc0 |H0] is estimated using (few) Bootstrap
simulations.

Pros: Efficient. Cons: Relies on “unspoken” regularity conditions.
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Ok, but what if we are dealing
with more complex situations?

Multiple Simulation Random Fields or
Hypothesis Methods Extreme Value

Testing (MC/Bootstrap) Theory

Multidimensional May become even May become Use Vitells and Gross (2011) or
searches more conservative unfeasible Algeri and van Dyk (2018) instead

If you know how many
Multiple Either you know how many Either you know how many or they do not overlap
signals or they do not overlap or they do not overlap use upper limits

instead of p-values

Using a different
test statistics Use Algeri and van Dyk (2017-2018)
than the LRT or Pilla et al. (2005) instead

X X X
Bkg and/or signal

models are unknown I will cover this in my talk tomorrow at 11AM
(the solution proposed automatically deals with the multiple signals setting as well).
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Example: detecting non-overlapping signals
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Note: we are assuming that we do not know how many signals we should
expect (in this case two of them).
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Upper limits construction

Model: (1− η) e−2.4

k1
+ η e

− (x−θ)2

0.2θ2

k2
, with k1, k2 normalizing constants.

From Gross and Vitells, 2010 we have that, for large cα (and small α)

P(sup
θ∈Θ
{LRT (θ)} ≤ cα) ≈ P(χ2

1 > cα)

2
+ e−

cα−c0
2 E [Nc0 |H0]

Approximated α-quantile: Find c̃α which satisfies

α ≈ P(χ2
1 > c̃α)

2
+ e−

c̃α−c0
2 E [Nc0 |H0]
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3σ upper limit on the LRT process
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Summary

Given their simple implementation and wide applicability, multiple
hypothesis testing correction methods such as Bonferroni should
always be implemented.

If we can afford a large simulation, then you should proceed with that
as we can easily control the error of the approximation (MC error)
and no regularity conditions are required.

If we cannot find anything with multiple hypothesis testing, and if a
simulation would be too expensive, then we can use Gross and Vitells
(2010) or similar approaches, but we must keep in mind that these
procedure rely on regularities conditions which should be assessed.

For all the methods discussed here, we must know the background
and signal models!
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