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An upper-limit only construction must 
provide arbitrarily low upper limits

• A frequentist 1-𝛼  confidence 
interval contains the true 
value 1-𝛼 of repeated 
experiments


• An upper limit construction 
on a signal rate must 
exclude no signal in 𝛼 of 
experiments
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x ~ Gaussian with 𝝻 = s+𝝻b 𝞂=1, 



• Very small (or empty) intervals 
correspond to a large downwards 
fluctuation, which could be bad luck, 
or a mis-modelled background.


• An important point is that these 
intervals are relatively improbable 
(disregarding mis-modelling)


• Still, experiments have been loath to 
accept this risk (which, with perfect 
coverage is ~ 𝛼) 


• An unexplored solution is to 
adjust 𝛼 until the risk is 
acceptable

164 M. MANDELKERN

Comment
David A. van Dyk

1. A PRIORI UNLIKELY DATA OR MODEL
MISSPECIFICATION?

The seemingly poor properties of standard confi-
dence intervals given a priori unlikely data described
by Professor Mandelkern have received much atten-
tion in physics. I am delighted that the author has so-
licited the advice of the statistical community through
this publication and that the editors of Statistical Sci-
ence have given me the opportunity to comment.

It seems to me that the basic difficulty is summarized
well in the final question of Mandelkern’s discussion,
namely, “Is it reasonable to obtain a more restrictive
measure of confidence for a priori unlikely data than
for the most probable data.” To answer this question,
we consider the Poisson case with N ∼ Poisson(µ +
b), where b is assumed to be known from background
calibration. Figure 1 illustrates the sampling distribu-
tion of the 95% confidence interval for µ when µ =
1.25 and b = 2.88. The simulation values are taken
from the description of the KARMEN 2 experiment
given in the article and in Roe and Woodroofe (1999).
The confidence intervals were computed using the fre-
quentist method of Garwood (1936) for µ+ b and sub-
tracting off b. In Figure 1 the horizontal range of each
rectangle corresponds to the confidence interval for the
given observed value of N and the height of each rec-
tangle corresponds to the sampling probability of the
confidence interval; the dashed vertical line indicates
the supposed value of µ = 1.25. That the confidence
interval grows longer as N increases is readily apparent
in Figure 1. Thus, unlikely values of N that are small
can result in highly restrictive measures of confidence,
that is, narrow intervals. Of course, this is wholly de-
pendent on the choice of scale; the corresponding in-
tervals for log(µ) have finite length only for N ≥ 8.
Even on the original scale, this property is not sur-
prising; smaller values of N make smaller values of
µ + b and the correspondingly smaller Poisson vari-
ability more credible. Although the situation is intensi-

David A. van Dyk is Associate Professor, Depart-
ment of Statistics, Harvard University, one Oxford
Street, Cambridge, Massachusetts 02138 (e-mail:
vandyk@stat.harvard.edu).

FIG. 1. The sampling distribution of the standard 95% Poisson
confidence interval for µ with b = 2.88 and µ = 1.25. The
horizontal width of each rectangle is the confidence interval for the
corresponding value of N ; the height of each rectangle indicates
the sampling probability for the interval. The figure illustrates that
if the model is correctly specified, very short intervals should be
rare.

fied by the known background intensity, since µ + b is
bounded below not by zero but by b, the confidence in-
tervals remain a reasonable frequentist summary under
the model. The reason these frequentist intervals are so
short when N = 0 is that under the model and given b
only very small values of µ make N = 0 at all likely.

I emphasize that it is unquestionably reasonable that
smaller values of N result in shorter frequentist inter-
vals but only if the model is a plausible representa-
tion of the data generating mechanism. The italicized
caveat is critical. For any probability calculations (fre-
quentist or Bayesian) to be meaningful and relevant the
statistical model must adequately represent the data. In
theory, this means that if the experiment were repeated
many times, the resulting counts would follow a Pois-
son distribution with intensity µ + b for some µ ≥ 0.
Of course, models should be viewed as tools that offer
a parsimonious summary of the relevant aspects of the
data, rather than a complete and full description. Thus,
model selection is inherently a subjective art: it is de-
pendent not only on the characteristics of the data and
data collection process but also the aims and intentions
of the scientist. Nonetheless, to be useful a model must

From D. van Dyks comment  
to M. Mandelkern “Setting Confidence Intervals  
for Bounded Parameters” Stat. Science (2002) 



The CLs approach
• The CLs method penalises  the conventional 

p-value with increasing overlap between the 
test statistic distributions with and without 
signal.


• For large significances, the result 
approaches the classical Neyman 
construction


• Typically constructed using the log-
likelihood ratio as the test statistic


• Motivations originally included constructions 
of upper limits that agreed with Bayesian 
credible interval results using a flat prior


• Also anticipated by the Helène formula 
that only applies to counting


• Contemporaneous alternatives included 
replacing the limit for under-fluctuations with 
the limit at x=0 CLs ⌘

ps+b

1� pb
=

P (x < x̂|H1)

1� P (x̂ > x|H0)
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With a Gaussian:
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CLs for a counting 
experiment

Upper 
Lim

it, 
𝛼=

0.0
5

CLsClassical/Neyman

Upp
er

 Li
mit, 

𝛼=
0.0

5

Ø



• The CLs overcoverage 
smoothly decreases from 1 
when H1=H0 towards the 
nominal coverage


• The overcoverage / 
conservativeness extends 
above the median limit (1.63) Coverage for the  

Gaussian example as function of  
signal expectation

s



Adoption
• CLs is widely adopted by LHC 

experiments 


• Examples in direct detection 
include the XENON100 limit 
combination


• Asymptotic results for the 
test statistic distribution 
were used to compute the 
CLs limits

From “Observation of a new particle in the search for 
the Standard Model Higgs boson with the ATLAS 

detector at the LHC”, ATLAS, 2012 and “XENON100 
Dark Matter Results from a Combination of 477 Live 

Days”, XENON 2016



Power-constrained limits
• The PCL approach is to require 

the experiment to have a 
minimum discovery power 𝞫 for 
each model that it excludes


• If the un-constrained confidence 
interval construction yields a 
lower upper limit, that limit is 
truncated at the signal strength 
with the minimal discovery 
power

Illustration of discovery power 
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• The threshold discovery power is 
a free parameter of the method


• May be considered both a 
benefit and a draw-back


• For a Gaussian (of constant 𝞂) 
measurement or limit 
distribution the threshold 
power corresponds to the 
percentile of the limit 
distribution


• Suggested: 0.158— 
corresponding to a 1-sigma 
downwards fluctuation



Serving suggestion and usage

From Power-Constrained Limits 
by Cowan, Cranmer, Gross & Vitells

median unconstrained limit

median E 1σ

observed unconstrained limitobserved unconstrained limit

PCL

µup

mH

Figure 4: Illustration of the
power-constrained limit as a func-
tion of a model parameter such
as the Higgs boson mass mH (see
text).

In Fig. 4, the solid line represents the median value of the unconstrained upper limit µup,
and the lower and upper dashed curves are the 0.16 and 0.84 quantiles of the distribution of
µup. The dotted curve in Fig. 4 represents a possible outcome for the unconstrained limit µup.
The minimum power is taken to be Mmin = Φ(−1) = 0.16, and thus the power-constrained
limit is the greater of the dotted and lower dashed curves, as indicated by the shaded curve.

8 Treatment of nuisance parameters

In many analyses, the probability model that describes the data is not uniquely specified
by the parameter (or parameters) of interest, but rather also contains nuisance parameters.
That is, the values of these parameters are not known a priori and they must be fitted using
the data. For concreteness suppose the model is characterized by a strength parameter µ and
a set of nuisance parameters θ = (θ1, . . . , θN ).

The nuisance parameters complicate the present problem in two ways. First, they make
it difficult to construct an unconstrained interval for the parameter of interest that has the
correct coverage probability for all values of θ. This problem has been widely discussed in
recent years, e.g., Ref. [6]. Many of the proposed procedures give intervals with correct cover-
age for some values of θ, but approximate coverage elsewhere. For example, an approximate
solution based on the profile likelihood ratio test is discussed in Refs. [7]. For the present
discussion we will assume that a test procedure that gives an unconstrained interval has been
chosen. Its coverage probability may or may not be exactly equal to the nominal confidence
level for all values of θ.

Of more direct concern for the present paper is the fact that the power of the test of µ

with respect to the no-signal alternative will depend in general on the nuisance parameters
θ. As the power is intended to represent the probability, under assumption of the no-signal
model, to reject a given value of µ, we take the values of θ that are in best agreement with

the actual data under assumption of µ = 0. We denote these as ˆ̂
θ(0), i.e., they are the

conditional estimators for θ under assumption of µ = 0.

As a consequence of this choice, the power M0(µ) becomes a function of the actual data,
since the data are used to determine values for the nuisance parameters. Thus the range of µ

values where one has sufficient sensitivity also depends to some extent on the data. This may
seem counter-intuitive, since the power of a specific test, i.e., at a given point in (µ,θ)-space,
is independent of the data. But there is a certain power M0(µ) for every point in θ-space,
and one uses the data to choose the point at which one quotes the power.

9

Results from a Search for Dark 
Matter in the Complete Lux 
Exposure, PRL 118 (2017)
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Two-sided intervals 
• Unified confidence intervals give 

both one- or two-sided intervals, 
based on the ordering parameter: 

� 


• For these constructions, the 
coverage for small signals is kept 
since the confidence interval will 
exclude s=0 for p-values below 𝛼


• LUX, PandaX-II and XENON all 
use unified interval constructions, 
as well as applying a PCL
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Discovery thresholds
• For the 1 tonne-year 

XENON1T results, the 
collaboration resolved to only 
report the upper edge of the 
confidence interval until the 
discovery significance 
exceeds 3 𝞂 


• It is possible to modify the 
unified interval to reduce the 
overcoverage due to this, at 
the cost of requiring PCL or a 
similar solution for low signals

^ 3 𝞂  
threshold
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• The discovery significance 
threshold gives 
overcoverage for signal 
sizes ~below the sensitivity 
band



• CLs is widely adopted in particle physics, and does not 
require additional fiducial choices


• PCL emphasises the coverage properties of the construction, 
and (for most choices of power threshold) imposes less over-
coverage than the CLs method


• Unified confidence intervals do not return arbitrarily low limits, 
but liquid xenon TPC collaborations have still combined them 
with PCL to avoid (the small probability of) limits of ~1 event.


• Regardless of the choice, additional norms or rules-of-thumb 
for goodness-of-fit would be of great help. 



Summary
• Limit-only 1- 𝛼 confidence level constructions will exclude even the no-signal 

case 𝛼 of the time. 


• Direct detection experiments have accepted over-coverage for signals for which 
they have little sensitivity; 


• By applying the CLs method of modifying p-values


• By setting a threshold, based on discovery power, below which they will not 
set lower limits (PCL) 


• The unified interval construction achieves coverage for even vanishing signals 
by having 𝜶 of intervals be two-sided. 


• To avoid even this, XENON1T set a discovery significance threshold (3 σ 
rather than p< 𝜶) for reporting two-sided confidence intervals. 



Reminder:



CLs citation history  
(spot the LHC run 1?) 

• ATLAS, CMS, LHCb, 


• NOvA reports both discovery 
p-value and CLs value 



PCL citation history

Lux, XENON1T, 
PANDAX-II,  

ABRACADABRA, 
one or two ATLAS, 




