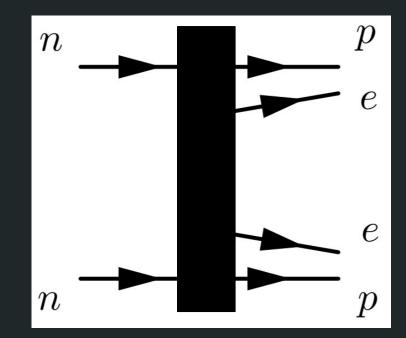


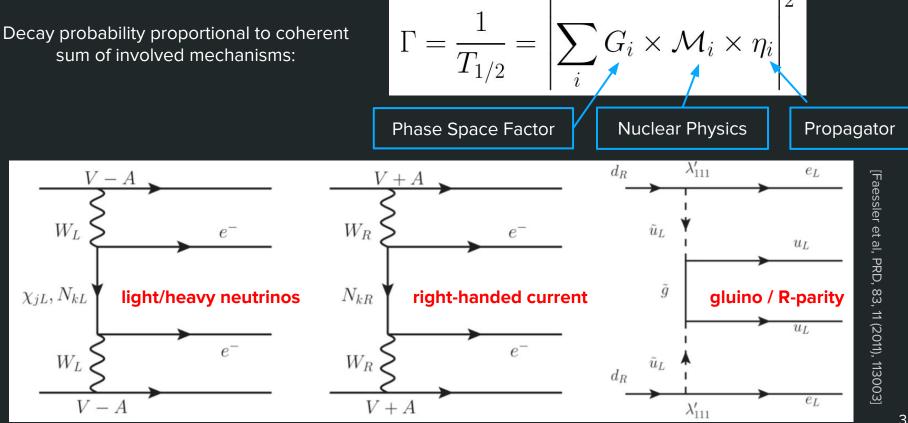
Statistical Inference in Double-β Decay Searches

Matteo Agostini

Technical University Munich


PHYSTAT Dark Matter Stockholm, Jul 31 - Aug 2, 2019

Neutrinoless Double- β Decay ($0\nu\beta\beta$)


Nuclear transition in which:

2n → 2p + 2e⁻

- channel depends on new physics
- > 2 leptons produced w/o balancing anti-leptons
 - matter creating process
 - complementary to proton decay
 - matter-antimatter asymmetry
- > possible only if neutrinos are their own antiparticle
 - origin of neutrino masses

A portal to Physics beyond the Standard Model

A portal to Physics beyond the Standard Model

Decay probability proportional to coherent sum of involved mechanisms:

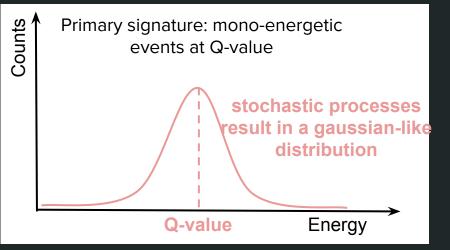
$$\Gamma = \frac{1}{T_{1/2}} = \left|\sum_{i} G_i \times \mathcal{M}_i \times \eta_i\right|^2$$
Phase Space Factor Nuclear Physics Propagator

- T_{1/2} is connected to neutrino physics and other BSM processes (heavy sterile neutrinos, SUSY, ...)
- > $T_{1/2}$ is for $0\nu\beta\beta$ decay what the collision energy is for LHC
- > Experiments: $T_{1/2} > 10^{26}$ yr, i.e. more than a million trillion times the age of the Universe!

Experimental Searches - The Signal

Observables for (single-isotope) experiments:

- \succ daughter isotope status
- electron energy and angular correlations


 $0\nu\beta\beta$: (A, Z) \rightarrow (A, Z + 2) + 2e⁻

e Ονββ

Sum of electron energy equal to Q-value

Currently most sensitive searches are based on colorimetric approach:

- source is the detector active material
- > efficiency maximized
- full energy measured


 $T_{1/2}$ >10²⁶ yr \rightarrow 1 event/yr in 10³ moles of isotope

Detector Design

Loaded scintillator detectors or Xe Time Projection Chambers

- > $0\nu\beta\beta$ isotope mixed in the liquid/gas material
- self-shielding from external background
- > volume fiducialization

Cryogenic Bolometers or Semiconductor detectors:

- > many crystals of isotopically enriched material
- detector granularity
- \succ 0.1% energy resolution

M. Agostini (TU Munich)

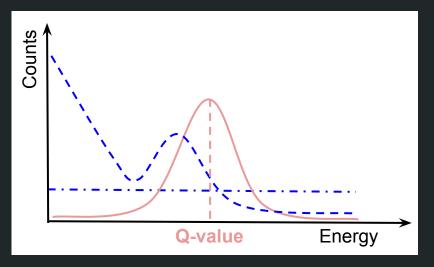
KamLAND-Zen

(n)EXO

NEXT PandaX

Experimental Searches - The Background

Residual Backgrounds:

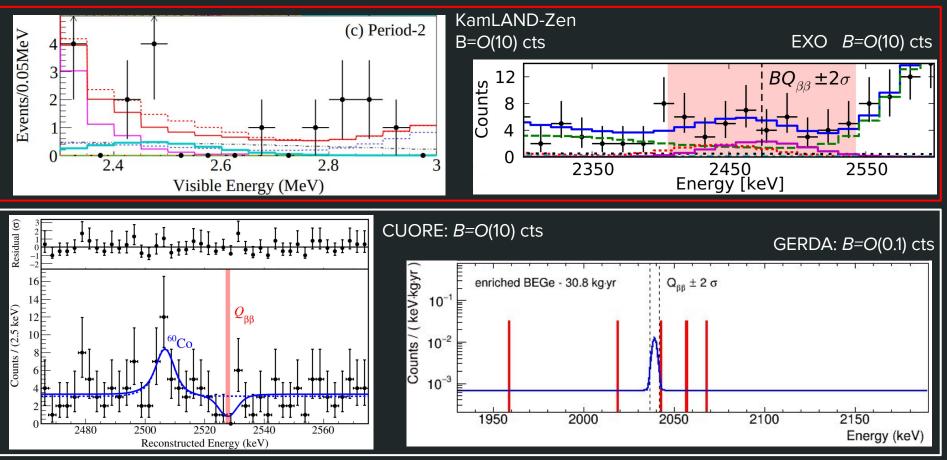

- gamma-rays due to radioactive isotopes in the material surrounding
- radioactive isotopes within the detector or on its surface
- > cosmic rays

Various observables to constrain the background:

- event location and topology
- > particle identification
- ➤ time correlations

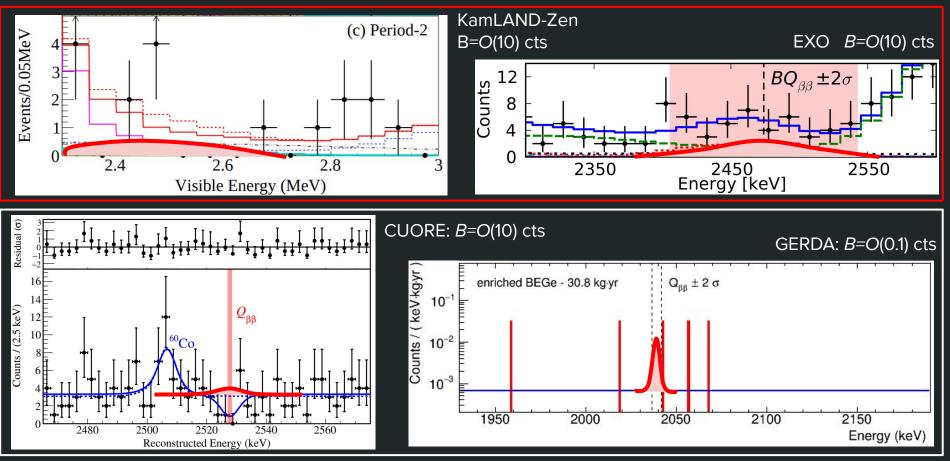
 \blacktriangleright

 \succ

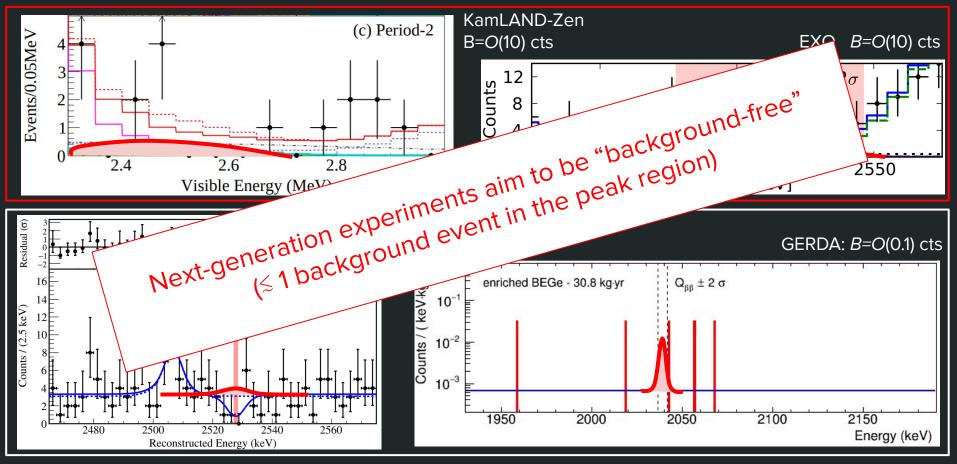

The background is however not connected to physics mechanism generating the signal

- hard to model -> systematic uncertainty
- if energy resolution is good enough, the background becomes approximately flat

...


[Phys.Rev. Lett. 117 (2016) 109903] [Phys.Rev. Lett. 120 (2018) 072701] [Phys.Rev. Lett. 120 (2018) 132501]

Liquid/Gas vs Solid Detectors


[Phys.Rev. Lett. 117 (2016) 109903] [Phys.Rev. Lett. 120 (2018) 072701] [Phys.Rev. Lett. 120 (2018) 132501]

Liquid/Gas vs Solid Detectors

[Phys.Rev. Lett. 117 (2016) 109903] [Phys.Rev. Lett. 120 (2018) 072701] [Phys.Rev. Lett. 120 (2018) 132501]

Liquid/Gas vs Solid Detectors

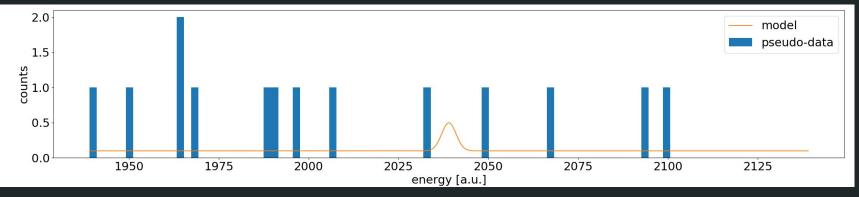
Statistical Inference used in $0\nu\beta\beta$ Experiments

Question:	Statistical Task	Frequentist Techniques	Bayesian Techniques
What is the most plausible T _{1/2} value (i.e. peak amplitude)?	Point Estimation	Maximum likelihood estimators	Mode of Posterior
Is there a signal? With which significance the no-signal hypothesis can be rejected?	Hypothesis test: $H_0 : 1 / T_{1/2} = 0$ $H_1 : 1 / T_{1/2} \neq 0$	Generalized likelihood ratio tests (two-sided profiled likelihood)	Bayes factors or posterior distributions
Which set of T _{1/2} values is compatible with the data?	Interval Estimation	Inversion of likelihood-ratio tests	Smallest/Central interval of posterior

- > Other Frequentist techniques have been used in the past but we are now converging to a standard
- > Chi-square test statistic and distribution still used in combination with coverage checks
- > Bayesian techniques are becoming increasingly popular

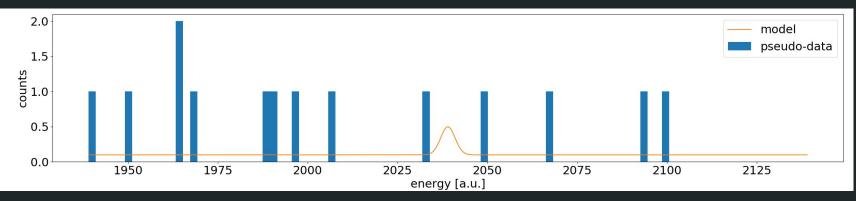
Statistical Problem

Search for a peak over some background:


- > basically a **counting experiment**
- side-bands for background (on/off problem)
- signal at known position (no look-elsewhere)

Primary random variables:

- \succ Energy of the events
- Total number of events


Main parameters and allowed range:

- > expected number of signal events: $\lambda_{c} \ge 0$
- > expected number of bkg events: $\lambda_h \ge 0$

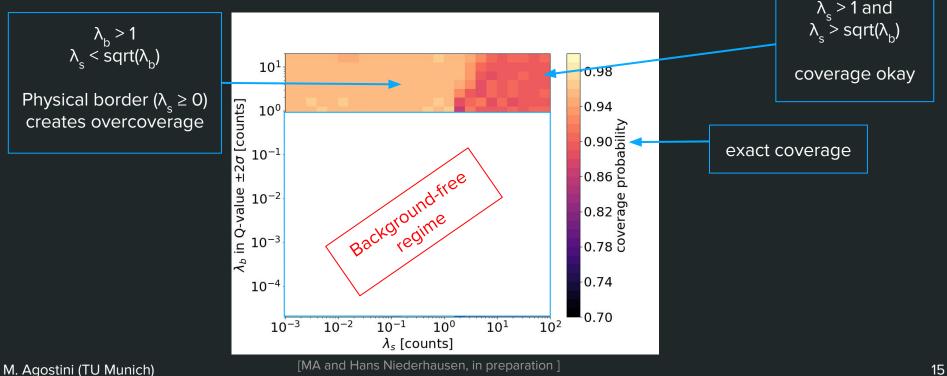
Random Variables and Likelihoods

Type of Analysis	Random Variables	Likelihood function
Counting	bin content: {N _{s+b} , N _b }	$L = Poiss(N_{s+b} \lambda_s + \lambda_b) \cdot Poiss(N_b \tau \lambda_b)$
Extended Unbinned	event energies {E ₁ , E ₂ , , E _M } and total number of events M	$L = Poiss(M \mid \lambda_s + \lambda_b) \cdot \prod_i PDF(E_i \mid \lambda_s, \lambda_b)$
Binned	bin content: {N ₁ , N ₂ , , N _k }	$L = \prod_{i} Poiss(N_{i} (\lambda_{s} + \lambda_{b})_{i})$

M. Agostini (TU Munich)

Random Variables and Likelihoods

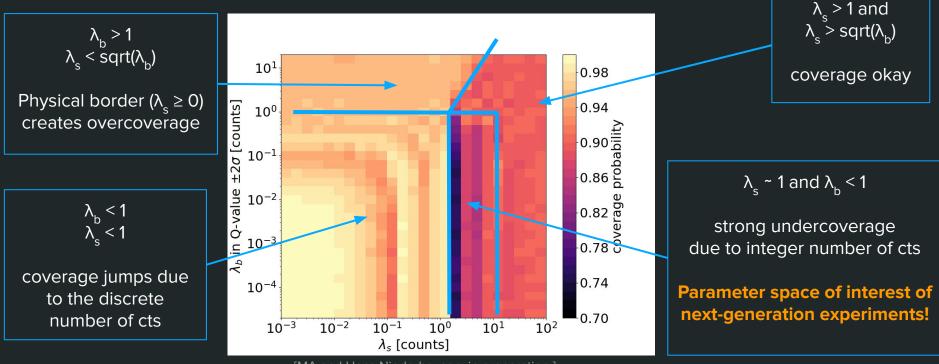
Type of Analysis	Random Variables	Likelihood function
Counting	bin content: {N _{s+b} , N _b }	$L = Poiss(N_{s+b} \lambda_s + \lambda_b) \cdot Poiss(N_b \tau \lambda_b)$
Extended Unbinned	event energies {E ₁ , E ₂ , , E _M } and total number of events M	$L = Poiss(M \lambda_s + \lambda_b) \cdot \prod_i PDF(E_i \lambda_s, \lambda_b)$
Binned	bin content: {N ₁ , N ₂ , , N _k }	$L = \Pi_{i} \operatorname{Poiss}(N_{i} (\lambda_{s} + \lambda_{b})_{i})$


Profile likelihood ratio test statistic

$$T(\lambda_s = X) = -2\ln\frac{\sup_{\lambda_b} \mathcal{L}(\lambda_s = X, \lambda_b)}{\sup_{\lambda_s, \lambda_b} \mathcal{L}(\lambda_s, \lambda_b)}$$

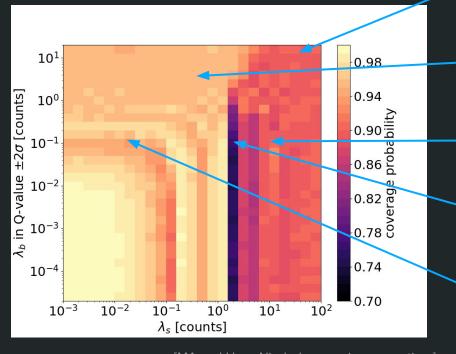
M. Agostini (TU Munich)

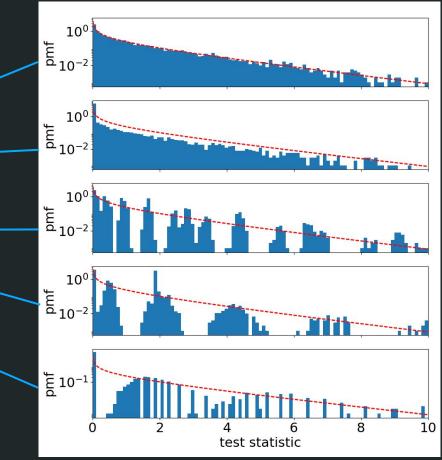
Challenges of a Frequentist Construction


Coverage map for a 90% C.L. test assuming Wilks' asymptotic distributions (chi-square with 1 dof)

(chi-square with 1 dof)

Challenges of a Frequentist Construction

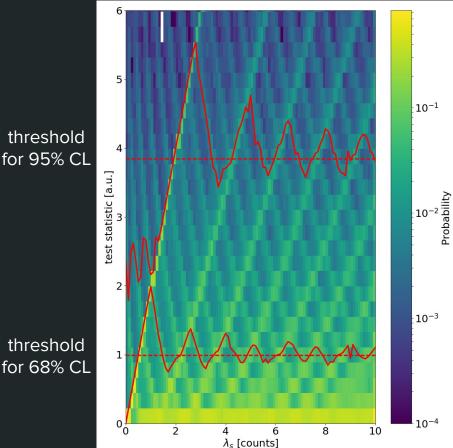

Coverage map for a size-10% test assuming Wilks' asymptotic distributions (chi-square with 1 dof)



M. Agostini (TU Munich)

Challenges for a Frequentist construction

Coverage map for a size-10% test assuming Wilks' asymptotic distributions (chi-square with 1 dof)


M. Agostini (TU Munich)

[MA and Hans Niederhausen, in preparation]

Issues related to Test Statistic Distribution

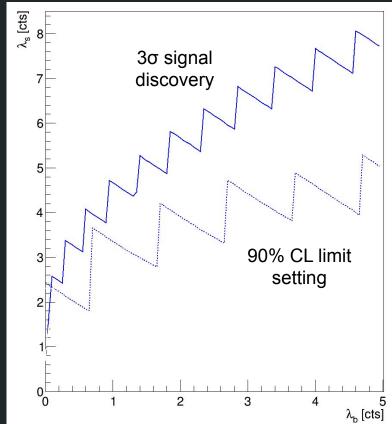
- Monte Carlo construction becomes mandatory
- Test statistic distribution can depend also on nuisance parameters
 - possibly needed to construct threshold as a function of parameters of interest and nuisance parameters
 - how to handle p-values?

[FC, Phys.Rev. D57 (1998) 3873-3889] [Bodhisattva, Walker, Woodroofe, Statist.Sinica 19 (2009) 301-314]

[MA and Hans Niederhausen, in preparation]

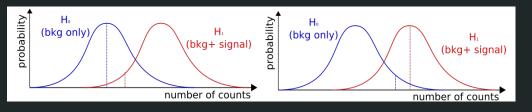
M. Agostini (TU Munich)

Sensitivity and Discovery Power

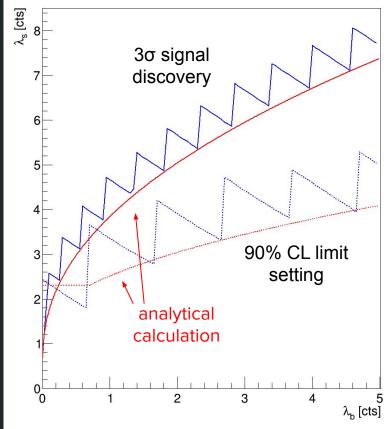

	CL	Concept	How to compute
limit setting	90%	Assuming there is no signal, what is the expected upper limit on the signal expectation?	find signal expectations that would be rejected with a median significance of 90% CL assuming the no-signal hypothesis
signal discovery	99.7% (3σ)	Assuming there is a signal, how strong does it has to be to make a discovery?	find signal expectations for which the no-signal hypothesis would be rejected with a median significance ≥3σ

Construction à la FC:

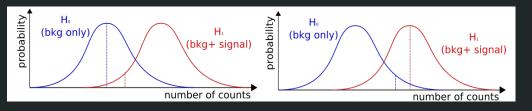
- likelihood ratio with fixed bkg expectation
- test statistic distributions from pseudo-data
- median significance (not mean!)


Features:

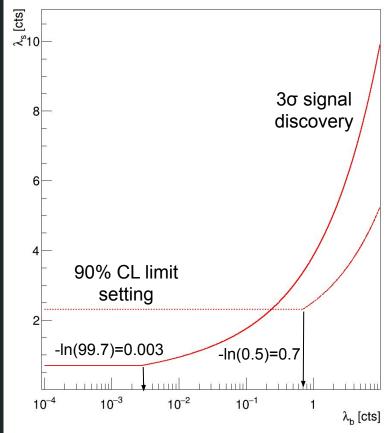
- jumps in coverage due to integer counts
- not monotonic functions -> apparent sensitivity improvement when increasing background
- "better than background free" regime


Simple analytical method:

- based on distributions of expected frequency of observations
- computed directly using poisson CDF described through gamma functions

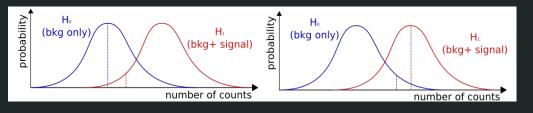

Features:

- touches toy-MC line in the point with exact coverage
- becomes constant for small signal expectations (median or 3o quantile of the distribution for H₀ are at zero)
 M. Agostini (TU Munich)

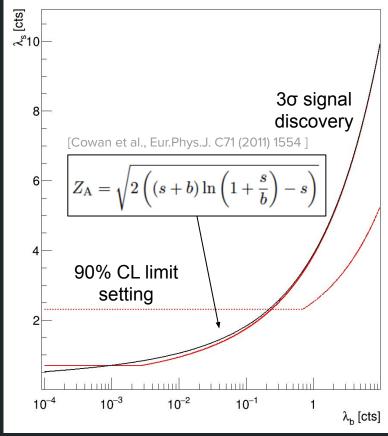

Simple analytical method:

- based on distributions of expected frequency of observations
- computed directly using poisson CDF described through gamma functions

Features:


- touches toy-MC line in the point with exact coverage
- becomes constant for small signal expectations (median or 3o quantile of the distribution for H₀ are at zero)
 M. Agostini (TU Munich)

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)] 22


Simple analytical method:

- based on distributions of expected frequency of observations
- computed directly using poisson CDF described through gamma functions

Features:

- touches toy-MC line in the point with exact coverage
- becomes constant for small signal expectations (median or 3o quantile of the distribution for H₀ are at zero)
 M. Agostini (TU Munich)

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)] 23

Bayesian vs Frequentist

Issues with Bayesian construction:

- data are weakly informative and results strongly depend on prior
- Flat and Jeffreys priors can give a hint of the spread of the results
- Scale-invariant log-prior and other typical choices might lead to not-normalizable posteriors

Large spread of the results from different methods:

- results quoted for multiple
- > blind analysis is almost the standard

 $T_{1/2}$ lower $T_{1/2}$ lower Statistical Method in the last limit limit PRL of the MAJORANA 90% prob sensitivity DEMONSTRATOR $[10^{25} \text{ yr}]$ [10²⁵ yr] Counting 1.6 Unbinned likelihood fit 1.9 2.1 Unbinned likelihood fit & CLs 1.5 1.4 Bayesian flat prior 1.6 2.6 Bayesian Jeffreys prior

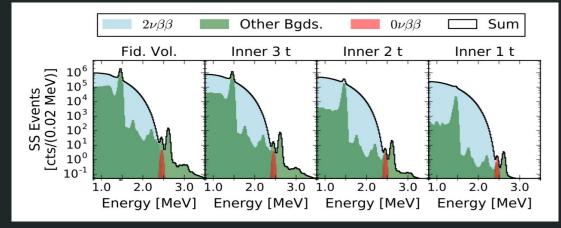
[Phys. Rev. Lett. 120, 132502 (2018)]

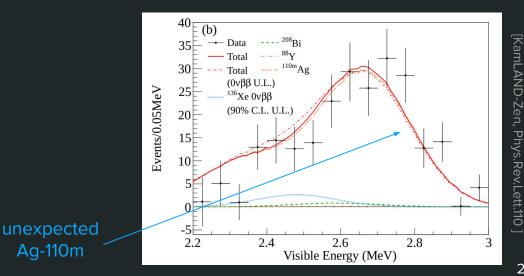
Systematic Uncertainties

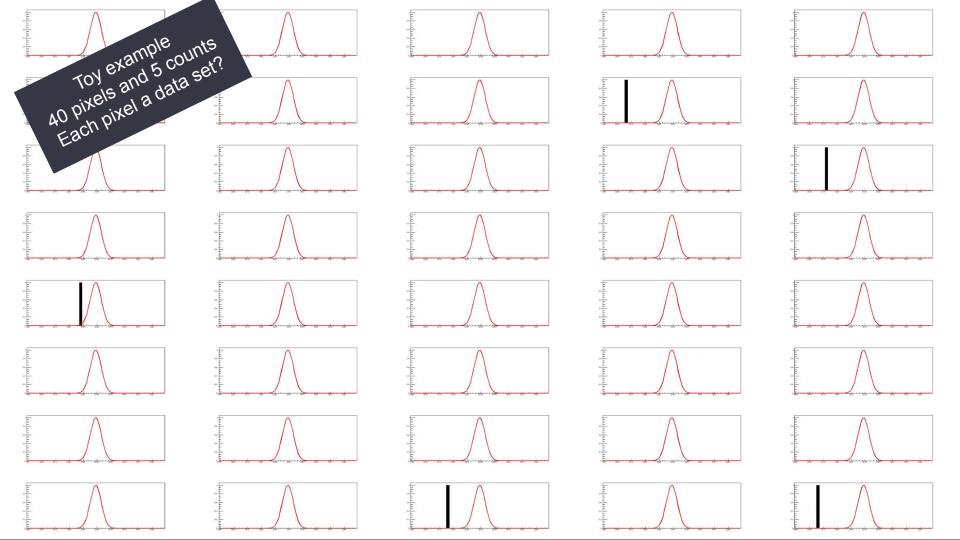
- Statistical uncertainty can affect the result by a factor 2 or 3
- Systematic uncertainties typically affect the result by ≤10%
- Accounted by nuisance parameters and pull terms (auxiliary data) or priors
- ➤ Sources:
 - background modeling
 - energy scale and resolution
 - signal detection efficiency (active volume & analysis cuts)

Background modeling is troublesome in case of a **discovery based on 1 single event**:

- ➤ Gas/Liquid detectors
 - complicated background modeling
 - all components considered?
 - shapes correct within uncertainties?
- Solid state detectors
 - > granular design -> many pixels
 - is background homogenous?
 - how to create data sets?


 \succ


[nEXO pre-CDR, arXiv:1805.11142]


Background Modeling

- \succ Gas/Liquid detectors constrain the background using multivariate analyses (event topology, position, pulse shape)
- \succ Contribution due to gamma-rays from radioactivity in the material around the target isotope is under control
- \succ how to exclude other backgrounds due to radioactive isotopes moving within the detector, e.g. Rn-222?

Ag-110m

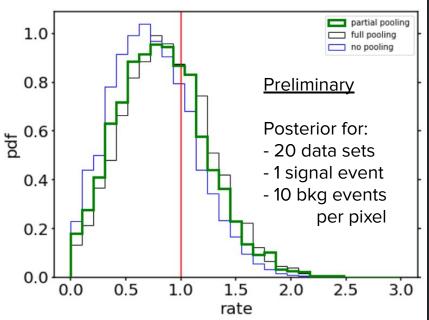
Hans Niederhausen, in preparation

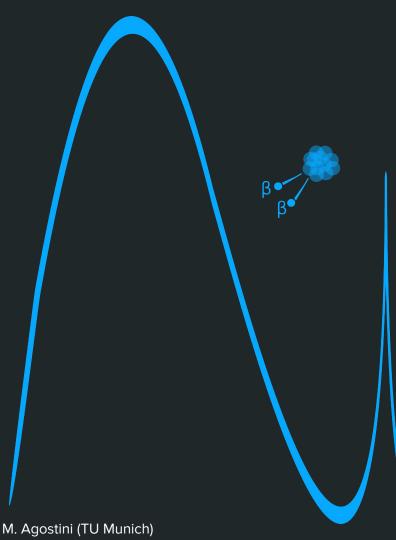
AM]

and

Inhomogeneous **Background Levels**

The problem can be addressed using hierarchical models:

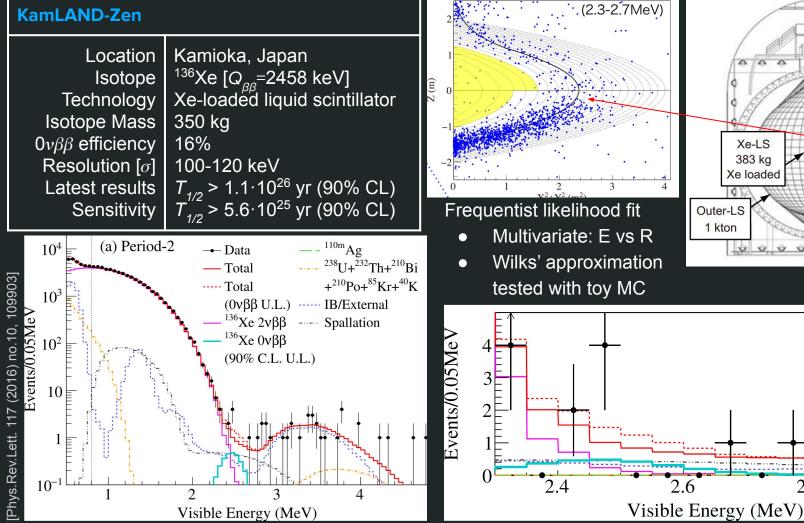

- each data set has a $\lambda_{s}^{i} \ge 0$ and a $\lambda_{b}^{i} \ge 0$ \succ
- λ_{c}^{i} are fully correlated (common signal)
- λ_{h} can be \succ
 - non correlated \succ
 - \succ partially correlated
 - fully correlated \succ
- \succ partial correlations can have the form e.g. of a Gaussian with centroid and variance defined by the data set itself + pull terms

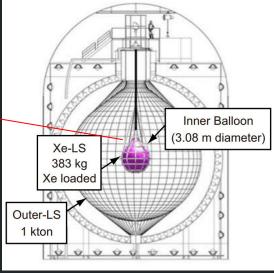

0.2 0.0 0.5 0.0

signal rate

Under study:

- impact of partial vs full pooling \succ
- dependence of results from form of \succ correlations and pull terms
- probability distribution of test statistic and \succ dependence on nuisance parameters

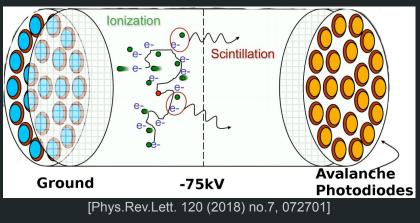


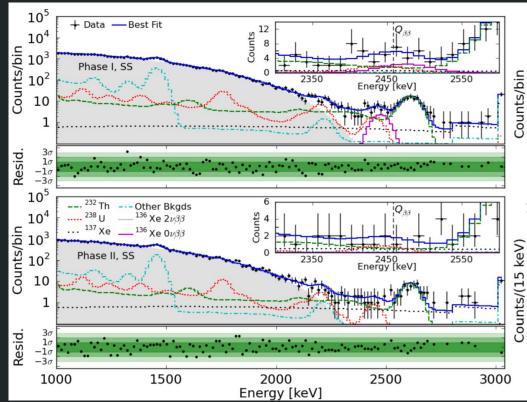

Outlook

- Ονββ decay is a portal to new physics and experiments aim to be background-free
 claim a discovery based on a single event
- Search for a peak with background still poses challenges in the "Deep Poisson" regime:
 - > popular asymptotic methods are not valid
 - test statistic distributions might depend on nuisance parameters
 - data set definition not trivial
- Important to shift focus towards a discovery analysis and define in advance how to deal with the background modeling systematics

Backup slides

KamLAND-Zen

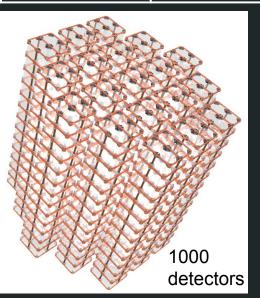

2.8


(c) Period-2

31

EXO-200

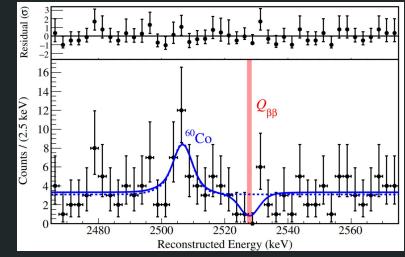
Location Isotope	WIPP, New Mexico, USA
	¹³⁶ Xe [Q _{ββ} =2458 keV] TPC with liquid Xe
Technology	
Isotope Mass	76 kg
$0v\beta\beta$ efficiency	80%
Resolution [σ]	34 keV
Latest results	$T_{1/2} > 1.8 \cdot 10^{25}$ yr (90% CL) $T_{1/2} > 3.7 \cdot 10^{25}$ yr (90% CL)
Sensitivity	$T_{1/2}^{n-2}$ > 3.7 · 10 ²⁵ yr (90% CL)



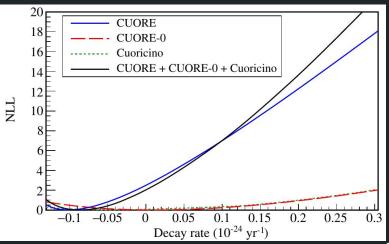
Frequentist binned likelihood fit:

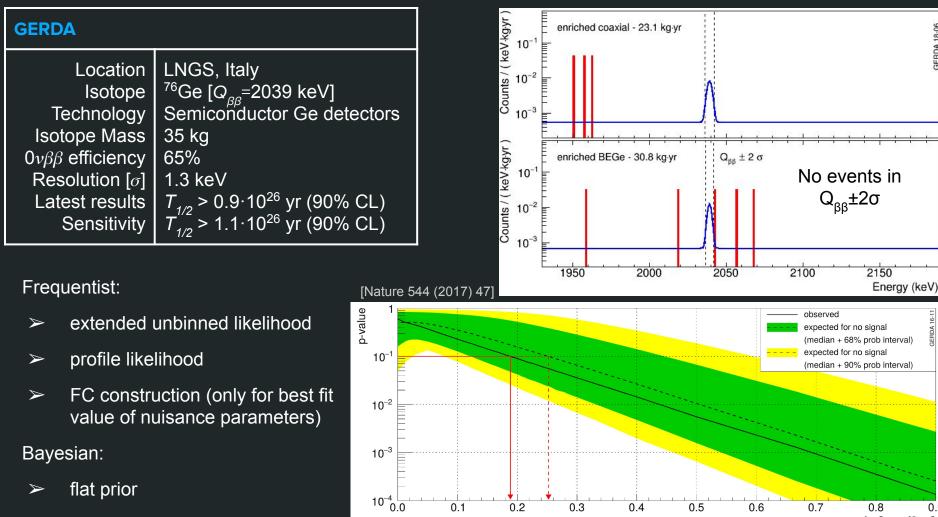
- multivariate (energy, position, TMVA observables)
- Wilks' approximation valid (coverage tested)

CUORE		
Location	LNGS, Italy	
Isotope	¹³⁰ Te [$Q_{\beta\beta}$ =2527 keV]	
Technology	Cryogenic calorimeters	
Isotope Mass	206 kg	
$0\nu\beta\beta$ efficiency	68%	
Resolution [σ]	3.3 keV	
Latest results	$T_{1/2} > 1.5 \cdot 10^{25}$ yr (90% CL)	
Sensitivity	$T_{1/2} > 0.7 \cdot 10^{25}$ yr (90% CL)	



Bayesian:


- ➤ flat prior
- profiling instead of marginalization


Frequentist:

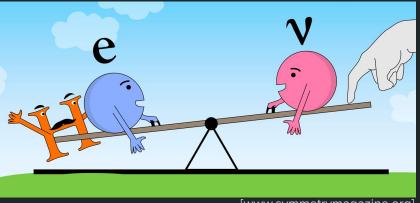
- bounded profile
 likelihood
- Wilks approximation

[Phys. Rev. Lett. 120, 132501 (2018)]

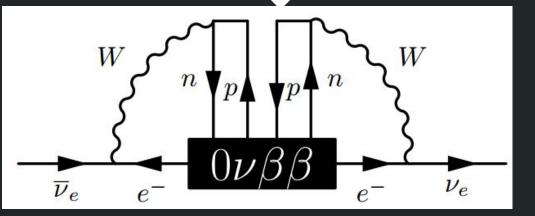
M. Agostini (TU Munich)

 $1/T_{1/2}^{0v} \left[1/(10^{25} \text{ yr}) \right]$

0.9


$0v\beta\beta$ and v Mass Origin

 \mathcal{D}


p

Black Box theorem:

 $0\nu\beta\beta$ operator can be rearranged into a ν - $\overline{\nu}$ oscillation (i.e. a Majorana mass term)

[www.symmetrymagazine.org]

If $0\nu\beta\beta$ decay is discovered:

- > neutrinos are their own antiparticle
- neutrinos can have a Majorana mass
- neutrino small masses can be explained through see-saw models

M. Agostini (TU Munich)

n

n

[Schechter, Valle, PRD 25 (1982) 2951]

Analytical computation of sensitivity

Signal discovery

- Find the number of counts $C_{3\sigma}$ such that: $CDF(C_{3\sigma}|B) = erf(3/\sqrt{2})$
- > Solve: $CDF(C_{3\sigma} | S_{3\sigma} + B) = 50\%$
- ► $C_{3\sigma}$ is an integer: $S_{3\sigma}$ has discrete jumps → Approximate the Poisson CDF with the upper incomplete gamma function so that the above equations can be inverted with standard numerical methods

Limit Setting:

 \succ Find the median number of cts expected from bkg only C_{med}:

 $CDF(C_{med}|B) = 50\%$

> Solve: CDF(C_{med} | S_{90%CL} + C_{med}) = 10%

[more in M.A. et al., Phys.Rev. D96 (2017) no.5)]

The counting experiment with a profile likelihood

if B is perfectly known:

- **B** := background expectation
- **S** := signal expectation
- N := number of cts in ROI

L(s) = Pois(N|S+B)

with $S_{best} = max(0, N-B)$

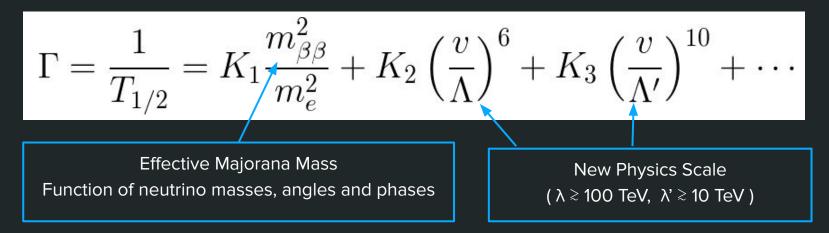
if **B** is derived from a side band or control region:

 τ := side band width / ROI width

(for GERDA: **τ** = 220/6 ~40)

M := number of cts in side band

L(s) = Pois(NIS+B) * Pois(MItB) t(s) =-2[LogPois(NIS+B_{cond})+LogPois(MITB_{cond}) -LogPois(NIS_{best}+B_{best}) - LogPois(MITB_{best})] with: S_{best} =N-M/ τ , B_{best} = M/ τ B_{cond} = N+M-(1+t)S+sqrt((N+M-(1+t)S)² + 4(1+t)SM)]/ [2(1+t)]


M. Agostini (TU Munich)

Sensitivity with background uncertainty

A portal to Physics beyond the Standard Model

Effective field theory - General Expression for dim 5/7/9 operators:

- T_{1/2} is connected to neutrino physics and other BSM processes (heavy sterile neutrinos, SUSY, ...)
- > T_{ν_2} is for $0\nu\beta\beta$ decay what the **collision energy** is for LHC
- > Experimental constraints: $T_{1/2} > 10^{26}$ yr, i.e. more than a million trillion times the age of the Universe!

M. Agostini (TU Munich)