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CLARIFYING TERMINOLOGY

Accounts of statistical theory start from several premises:

Data are realizations of random variables.

There is a given family of possible probability distributions for these
random variables to which the “true” distribution belongsa.

This family is called a statistical model.

aTo an adequate order of approximation.



STATISTICAL MODELS

The very word model implies simplification and idealization. The idea that complex
physical, biological or sociological systems can be exactly described by a few formulae is
patently absurd. The construction of idealized representations that capture important
stable aspects of such systems is, however, a vital part of general scientific analysis and
statistical models, especially substantive ones, do not seem essentially different from
other kinds of model.

D. R. Cox, 1995.



NUISANCE PARAMETERS

Typically arise when a relatively complicated model is required.

Needed to complete the specification (often inexplicitly) but are not
of immediate subject matter concern.



THE DANGERS OF NUISANCE PARAMETERS

When the number of nuisance parameters is appreciable (relative to
the number of independent observations), profile maximum likelihood
typically produces severely biased estimators of interest parameters
(Bartlett, 1937)a.

There are comparable difficulties with Bayesian inference based on
high-dimensional flat priors.

aIn Bartlett’s example, direct interpretation of the likelihood tells you that you are
almost certain that the interest parameter is very close to half its true value.



TWO BROAD APPROACHES

1 Treat the nuisance parameters as fixed arbitrary constants and eliminate
them by appropriate manoeuvres.

2 Treat the nuisance parameters as realizations of independent and
identically distributed random variables with a parametric distribution.

The second approach entails stronger modelling assumptions.
The “appropriate manoeuvres” in the first take take different forms.



EXAMPLE: MATCHED COMPARISONS

Individuals (more generally experimental units) matched on their intrinsic
features and randomized to “treatment” and “control”.

Idealized case: monozygotic twins; two eyes of the same patient.

Record an outcome Ti and Ci for pairs indexed by i = 1, . . . , n.



EXAMPLE (CONTINUED): TWO MODELS

Suppose that Ti and Ci are exponentially distributed with rates

1 γiψ and γi/ψ respectively (multiplicative model); or

2 ρi + ∆ and ρi −∆ respectively (additive model).

Interest is in the “treatment effects” ψ and ∆.
Pair effects γi and ρi are of no direct concern.
There are 2n observations and n + 1 parameters.



TREATING THE (γi )
n
I=1 AS FIXED CONSTANTS

Ti ∼ exp(γiψ) and Ci ∼ exp(γi/ψ).
The ratio Zi , Ti/Ci has density function at z

ψ2

(1 + ψ2z)2
.

Free of nuisance parameters.
Fit ψ by maximum likelihood based on the ratios.
Fisher information per observation is (4/3)ψ−2.



TREATING THE (γi )
n
I=1 AS RANDOM VARIABLES

Ti ∼ exp(γiψ) and Ci ∼ exp(γi/ψ).
Assume that the (γi )

n
i=1 are i.i.d. gamma distributed (shape

parameter α, rate β).
The induced joint density function of Ti and Ci at (t, c) is

Γ(α + 2)

Γ(α)

βα

(ψt + c/ψ + β)α+2
.

Only 2 nuisance parameters instead of n.
Fisher information per observation is 2(α + 2)(α + 3)−1ψ−2.
The two limits are 2ψ−2 and (4/3)ψ−2 as α→∞ and α→ 0.



ERRONEOUSLY TREATING THE (γi )
n
I=1 AS RANDOM VARIABLES

Suppose that the model is as in the previous slide, but the assumption of
i.i.d. gamma distributed random effects is erroneous.

The resulting maximum likelihood estimator is consistent.

It has potentially much larger variance than the estimator obtained
by assuming the nuisance parameters are arbitrary constants.

The difference depends in a rather complicated way on the apparent
relative dispersion of the nuisance parameters.



TREATING THE (ρi )
n
I=1 AS FIXED CONSTANTS

Ti ∼ exp(ρi + ∆) and Ci ∼ exp(ρi − ψ).
The density function of Ti at t, conditional on the
realization si of Si , Ti + Ci is

2∆e−2∆t

1− e−2∆si
.

Free of nuisance parameters.
Fit ∆ by maximum likelihood based on the the
conditional density.



GENERAL PRINCIPLES

Let ψ be an interest parameter and λ be a nuisance parameter.
From an arbitrary partition (T ,C ), make a bijective transformation
(T ,C )→ (S ,R) such that one of the following factorizations holds.

(i) fS,R(s, r ;ψ, λ) = fR|S(r |s;λ)fS(s;ψ),

(ii) fS,R(s, r ;ψ, λ) = fR|S(r |s;ψ)fS(s;λ),

(iii) fS,R(s, r ;ψ, λ) = fR(r ;λ)fS(s;ψ),

(vi) fS,R(s, r ;ψ, λ) = fR|S(r |s;λ, ψ)fS(s;ψ),

(v) fS,R(s, r ;ψ, λ) = fR|S(r |s;ψ)fS(s;ψ, λ).



FACTORIZATION (i)

fS,R(s, r ;ψ, λ) = fR|S(r |s;λ)fS(s;ψ).

A case for marginal likelihooda based on fS(s;ψ)
with S sufficient for ψ.

somethingnothingtotakeupsomespace

a Statisticians’ terminology differs from physicists’ terminology here.



FACTORIZATION (ii)

fS,R(s, r ;ψ, λ) = fR|S(r |s;ψ)fS(s;λ).

A case for conditional likelihood based on
fR|S(r |s;ψ).



FACTORIZATION (iii)

fS,R(s, r ;ψ, λ) = fR(r ;λ)fS(s;ψ).

A case for marginal likelihood based on fS(s;ψ).
The jointly sufficient statistic is two independent

sufficient statistics.



FACTORIZATIONS (iv) and (v)

fS,R(s, r ;ψ, λ) = fR|S(r |s;λ, ψ)fS(s;ψ),

fS,R(s, r ;ψ, λ) = fR|S(r |s;ψ)fS(s;ψ, λ).

Marginal likelihood is applicable for (iv) and
conditional likelihood for (v), but information on

ψ is lost in either case.



CONNECTIONS

Parameter orthogonalization, i.e., interest-respecting
reparameterization (Cox and Reid, 1987).

Modified profile likelihood (Barndorff-Nielsen, 1983; Cox and
Reid, 1987; Cox and Reid, 1992).



ASSESSING MODEL ADEQUACY: GENERAL STRATEGIES

1 Parameterize model space.

2 Sufficiency arguments.



PARAMETERIZATION OF MODEL SPACE

A single parameterization embracing the separate models:

{1 + λ(αi − θ)}1/λ, {1 + λ(αi + θ)}1/λ.

Here λ specifies the form of relation to be fitted.

λ→ 0 recovers the multiplicative rates model (αi = log γi , θ = logψ);

λ = 1 recovers the additive rates model (αi = ρi − 1, θ = ∆);

λ = −1 captures another model in which the treatment has an additive
effect on the means (αi = ξi + 1, θ = φ, say).



SUFFICIENCY ARGUMENTS

The data z are treated as realizations of Z = (Z1 . . . ,Zn).

For any reasonable model m ∈M with parameter vector θm, identify
the sufficient statistic Sm for θm.

A model is compatible with the data if z is not extreme when
calibrated against the conditional distribution of Z given Sm = sm.



SUFFICIENCY ARGUMENT: EXAMPLE

Suppose (for a potential contradiction) that the multiplicative
treatment effect model is true. The likelihood contribution from the
ith pair is

γ2
i exp(−γici/ψ) exp(−γiψti ).

For any given ψ, Si (ψ) , Ci/ψ + Tiψ is sufficient for γi and has
density function

fSi (ψ)(s) = γ2
i s exp(−γi s).



SUFFICIENCY ARGUMENT: EXAMPLE (CONTINUED)

The conditional density of Ti at ti , given Si (ψ) = si (ψ), is

γ2
i exp{−γi si (ψ)}

γ2
i si (ψ) exp{−γi si (ψ)}

=
1

si (ψ)
,

showing that Ti | Si (ψ) = si (ψ) is uniformly distributed between 0
and si (ψ).

For any hypothesized value ψ0 of ψ, compatibility of the proportional
treatment effects model and ψ0 with the data corresponds to
compatibility of the realizations of Ui (ψ0) , Ti/si (ψ0) with a
uniform distribution on (0,1) for all i = 1, . . . , n.



SEVERAL POTENTIAL MODELS

If the data are compatible with several reasonable models with
different subject-matter implications, one should aim to specify them
all. A “confidence set of models”.

Any choice between models in the confidence set would require
additional data or subject-matter expertise.



Thank you for your attention
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