PHYSTAT DARK MATTER 2019

Nuisance parameters

H. S. Battey Department of Mathematics, Imperial College London

The talk is based on joint work with David R. Cox (Oxford)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

CLARIFYING TERMINOLOGY

Accounts of statistical theory start from several premises:

- Data are realizations of random variables.
- There is a given family of possible probability distributions for these random variables to which the "true" distribution belongs^a.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• This family is called a statistical model.

^aTo an adequate order of approximation.

STATISTICAL MODELS

The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model.

D. R. Cox, 1995.

NUISANCE PARAMETERS

- Typically arise when a relatively complicated model is required.
- Needed to complete the specification (often inexplicitly) but are not of immediate subject matter concern.

THE DANGERS OF NUISANCE PARAMETERS

- When the number of nuisance parameters is appreciable (relative to the number of independent observations), profile maximum likelihood typically produces severely biased estimators of interest parameters (Bartlett, 1937)^a.
- There are comparable difficulties with Bayesian inference based on high-dimensional flat priors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

^aIn Bartlett's example, direct interpretation of the likelihood tells you that you are almost certain that the interest parameter is very close to half its true value.

TWO BROAD APPROACHES

Treat the nuisance parameters as fixed arbitrary constants and eliminate them by appropriate manoeuvres.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preat the nuisance parameters as realizations of independent and identically distributed random variables with a parametric distribution.

The second approach entails stronger modelling assumptions. The "appropriate manoeuvres" in the first take take different forms.

EXAMPLE: MATCHED COMPARISONS

• Individuals (more generally experimental units) matched on their intrinsic features and randomized to "treatment" and "control".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Idealized case: monozygotic twins; two eyes of the same patient.
- Record an outcome T_i and C_i for pairs indexed by i = 1, ..., n.

EXAMPLE (CONTINUED): TWO MODELS

Suppose that T_i and C_i are exponentially distributed with rates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1
$$\gamma_i \psi$$
 and γ_i / ψ respectively (multiplicative model); or
2 $\rho_i + \Delta$ and $\rho_i - \Delta$ respectively (additive model).

Interest is in the "treatment effects" ψ and Δ . Pair effects γ_i and ρ_i are of no direct concern. There are 2n observations and n + 1 parameters.

TREATING THE $(\gamma_i)_{i=1}^n$ AS FIXED CONSTANTS

 $T_i \sim \exp(\gamma_i \psi)$ and $C_i \sim \exp(\gamma_i / \psi)$. The ratio $Z_i \triangleq T_i / C_i$ has density function at z

$$\frac{\psi^2}{(1+\psi^2 z)^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free of nuisance parameters.

Fit ψ by maximum likelihood based on the ratios. Fisher information per observation is $(4/3)\psi^{-2}$.

TREATING THE $(\gamma_i)_{i=1}^n$ AS RANDOM VARIABLES

 $T_i \sim \exp(\gamma_i \psi)$ and $C_i \sim \exp(\gamma_i / \psi)$. Assume that the $(\gamma_i)_{i=1}^n$ are i.i.d. gamma distributed (shape parameter α , rate β).

The induced joint density function of T_i and C_i at (t, c) is

$$rac{\Gamma(lpha+2)}{\Gamma(lpha)}rac{eta^lpha}{(\psi t+c/\psi+eta)^{lpha+2}}.$$

Only 2 nuisance parameters instead of *n*. Fisher information per observation is $2(\alpha + 2)(\alpha + 3)^{-1}\psi^{-2}$. The two limits are $2\psi^{-2}$ and $(4/3)\psi^{-2}$ as $\alpha \to \infty$ and $\alpha \to 0$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

<u>ERRONEOUSLY</u> TREATING THE $(\gamma_i)_{i=1}^n$ AS RANDOM VARIABLES

Suppose that the model is as in the previous slide, but the assumption of i.i.d. gamma distributed random effects is erroneous.

- The resulting maximum likelihood estimator is consistent.
- It has potentially much larger variance than the estimator obtained by assuming the nuisance parameters are arbitrary constants.
- The difference depends in a rather complicated way on the apparent relative dispersion of the nuisance parameters.

TREATING THE $(\rho_i)_{i=1}^n$ AS FIXED CONSTANTS

 $T_i \sim \exp(\rho_i + \Delta)$ and $C_i \sim \exp(\rho_i - \psi)$. The density function of T_i at t, conditional on the realization s_i of $S_i \triangleq T_i + C_i$ is

$$\frac{2\Delta e^{-2\Delta t}}{1-e^{-2\Delta s_i}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free of nuisance parameters.

Fit Δ by maximum likelihood based on the the conditional density.

GENERAL PRINCIPLES

Let ψ be an interest parameter and λ be a nuisance parameter. From an arbitrary partition (T, C), make a bijective transformation $(T, C) \rightarrow (S, R)$ such that one of the following factorizations holds.

(i)
$$f_{S,R}(s,r;\psi,\lambda) = f_{R|S}(r|s;\lambda)f_S(s;\psi)$$
,
(ii) $f_{S,R}(s,r;\psi,\lambda) = f_{R|S}(r|s;\psi)f_S(s;\lambda)$,
(iii) $f_{S,R}(s,r;\psi,\lambda) = f_R(r;\lambda)f_S(s;\psi)$,
(vi) $f_{S,R}(s,r;\psi,\lambda) = f_{R|S}(r|s;\lambda,\psi)f_S(s;\psi)$,
(v) $f_{S,R}(s,r;\psi,\lambda) = f_{R|S}(r|s;\psi)f_S(s;\psi,\lambda)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FACTORIZATION (i)

$$f_{S,R}(s,r;\psi,\lambda) = f_{R|S}(r|s;\lambda)f_S(s;\psi).$$

A case for marginal likelihood^a based on $f_S(s; \psi)$ with S sufficient for ψ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

^a Statisticians' terminology differs from physicists' terminology here.

FACTORIZATION (ii)

$$f_{S,R}(s,r;\psi,\lambda) = f_{R|S}(r|s;\psi)f_S(s;\lambda).$$

A case for conditional likelihood based on $f_{R|S}(r|s; \psi)$.

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

FACTORIZATION (iii)

$$f_{S,R}(s,r;\psi,\lambda) = f_R(r;\lambda)f_S(s;\psi).$$

A case for marginal likelihood based on $f_S(s; \psi)$. The jointly sufficient statistic is two independent sufficient statistics.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FACTORIZATIONS (iv) and (v)

$$\begin{aligned} f_{S,R}(s,r;\psi,\lambda) &= f_{R|S}(r|s;\lambda,\psi)f_{S}(s;\psi), \\ f_{S,R}(s,r;\psi,\lambda) &= f_{R|S}(r|s;\psi)f_{S}(s;\psi,\lambda). \end{aligned}$$

Marginal likelihood is applicable for (iv) and conditional likelihood for (v), but information on ψ is lost in either case.

CONNECTIONS

- Parameter orthogonalization, i.e., interest-respecting reparameterization (Cox and Reid, 1987).
- Modified profile likelihood (Barndorff-Nielsen, 1983; Cox and Reid, 1987; Cox and Reid, 1992).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ASSESSING MODEL ADEQUACY: GENERAL STRATEGIES

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Parameterize model space.
- **2** Sufficiency arguments.

PARAMETERIZATION OF MODEL SPACE

A single parameterization embracing the separate models:

$$\{1+\lambda(\alpha_i-\theta)\}^{1/\lambda}, \quad \{1+\lambda(\alpha_i+\theta)\}^{1/\lambda}.$$

Here λ specifies the form of relation to be fitted.

- $\lambda \to 0$ recovers the multiplicative rates model ($\alpha_i = \log \gamma_i$, $\theta = \log \psi$);
- $\lambda = 1$ recovers the additive rates model ($\alpha_i = \rho_i 1$, $\theta = \Delta$);
- $\lambda = -1$ captures another model in which the treatment has an additive effect on the means ($\alpha_i = \xi_i + 1$, $\theta = \phi$, say).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SUFFICIENCY ARGUMENTS

- The data z are treated as realizations of $Z = (Z_1 \dots, Z_n)$.
- For any reasonable model $m \in \mathcal{M}$ with parameter vector θ_m , identify the sufficient statistic S_m for θ_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A model is compatible with the data if z is not extreme when calibrated against the conditional distribution of Z given $S_m = s_m$.

SUFFICIENCY ARGUMENT: EXAMPLE

• Suppose (for a potential contradiction) that the multiplicative treatment effect model is true. The likelihood contribution from the *i*th pair is

$$\gamma_i^2 \exp(-\gamma_i c_i/\psi) \exp(-\gamma_i \psi t_i).$$

• For any given ψ , $S_i(\psi) \triangleq C_i/\psi + T_i\psi$ is sufficient for γ_i and has density function

$$f_{\mathcal{S}_i(\psi)}(s) = \gamma_i^2 s \exp(-\gamma_i s).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SUFFICIENCY ARGUMENT: EXAMPLE (CONTINUED)

• The conditional density of T_i at t_i , given $S_i(\psi) = s_i(\psi)$, is

$$\frac{\gamma_i^2 \exp\{-\gamma_i s_i(\psi)\}}{\gamma_i^2 s_i(\psi) \exp\{-\gamma_i s_i(\psi)\}} = \frac{1}{s_i(\psi)},$$

showing that $T_i | S_i(\psi) = s_i(\psi)$ is uniformly distributed between 0 and $s_i(\psi)$.

• For any hypothesized value ψ_0 of ψ , compatibility of the proportional treatment effects model and ψ_0 with the data corresponds to compatibility of the realizations of $U_i(\psi_0) \triangleq T_i/s_i(\psi_0)$ with a uniform distribution on (0,1) for all i = 1, ..., n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SEVERAL POTENTIAL MODELS

• If the data are compatible with several reasonable models with different subject-matter implications, one should aim to specify them all. A "confidence set of models".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Any choice between models in the confidence set would require additional data or subject-matter expertise.

Thank you for your attention

References

The lecture was based on:

Battey, H. S. and Cox, D. R. (2019), High-dimensional nuisance parameters: an example from parametric survival analysis. *Under review*.

and (for the last slide)

Cox, D. R. and Battey, H. S. (2017), Large numbers of explanatory variables, a semi-descriptive analysis. *Proc. Nat. Acad. Sci.*, 114, 8592–8595. Battey, H. S. and Cox, D. R. (2018), Large numbers of explanatory variables: a probabilistic assessment. *Proc. R. Soc. Lond. A*, 474, 20170631.

Other papers referenced:

- Barndorff-Nielsen, O. and Cox, D. R. (1994). Inference and Asymptotics. Chapman and Hall, London.
- Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. A, 160, 268–282.
- Barndorff-Nielsen, O. (1983). On a formula for the distribution of a maximum likelihood estimator. Biometrika, 70, 343–365.
- Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion). J. R. Statist. Soc. B, 49, 1–39.
- Cox, D. R. and Reid, N. (1992). A note on the difference between profile and modified profile likelihood. Biometrika, 79, 408–4011.