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ABSTRACT 
Many problems in the experimental estimation of parameters for models can be solved 

through use of the likelihood ratio test. Applications of the likelihood ratio, with particular 
attention to photon counting experiments, are discussed. The procedures presented solve a greater 
range of problems than those currently in use, yet are no more difficult to apply. The procedures 
are proved analytically, and examples from current problems in astronomy are discussed. 
Subject heading: functions: numerical methods 

I. INTRODUCTION 
As high-energy astronomy matures, experiments are producing data of higher quality in order to solve problems 

of greater sophistication. With the advent of the HEAO satellites, the quality of X-ray astronomy data is being 
increased tremendously again, and it is important that the procedures used to analyze the data be sufficiently 
sophisticated to make the best possible use of the results. The purpose of this paper is to extend the procedures 
of a major area of data analysis (parameter estimation) to cover the new problems which will arise in the HEAO 
era. Some related problems in other areas of astronomy are also discussed. 

This paper deals with the problems of point estimation and generation of confidence intervals for parameters 
of a model. Throughout this work, it is assumed that the form of the underlying model is known except for certain 
parameters, e.g., it is known that a spectrum is blackbody and not power law, but the temperature of the spectrum 
remains to be estimated. Lampton, Margon, and Bowyer (1976) refer to this problem as “parameter estimation,” 
although generation of confidence intervals is often referred to as “ composite hypothesis testing.” 

This paper does not address the problem of whether the functional form of a model is consistent with a data set, 
e.g., whether the spectrum is blackbody or power law. This is a problem which is not discussed in depth in statistical 
texts, and hence there is some confusion in terminology. Lampton et al. (1976) refer to testing of the functional form 
of a model as “hypothesis testing,” but to avoid confusion with composite or simple hypothesis testing, it is referred 
to as “model testing” in this paper. 

II. USE OF THE LIKELIHOOD RATIO 
Several recent works have dealt with the problems of parameter estimation in X-ray astronomy, and all of them 

have dealt with binned data sets where each bin contained a sufficient number of observed photons to make the 
deviation of the observed number from the expected number have a Gaussian distribution to good approximation. 
Under these conditions, the behavior of the statistic 

(«i - gj)2 

s= y (i) 

is a natural one to investigate. Lampton, Margon, and Bowyer (1976) presented a clear discussion of how to employ 
S in the joint estimation of parameters. Avni (1976) showed that for linear models one could generate confidence 
intervals on a subset of parameters in a simple manner. In a paper which followed these two (Cash 1976, hereafter 
Paper I), I applied the technique of the likelihood ratio with the fundamental theorem of Wilks (1938, 1963) to 
prove that Avni’s technique was valid for nonlinear models as well. In this paper, I show that the theorem of Wilks 
has a far wider applicability that provides an answer for many of the outstanding problems of parameter estimation 
in astronomy. 

Briefly, the theorem states that if one takes n samples Xi,..., Xn from a probability distribution f(X; 0l9..6P), 
where 0l5..., are the parameters of the probability distribution, one should form the statistic 

L max n<n= i/(^i; A/, • • • > A/, 1, • • •, 6p) 
maxn?=i f(Xi> 0i> • • •> Op) 

where the maxima are found by varying the parameters. In the numerator, the 6T terms represent parameters 
939 
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which are not varied but held constant at their true values. If one then calculates the value of the quantity —2 ln L, 
it will have a probability distribution like x2 with q degrees of freedom, except for a small additive term of size 
about n~112. 

Even more remarkable is the fact that essentially no constraints are set on the probability distributions f(X; 
0l5..6P), only that they be well-behaved and convergent (see Paper I). The probability distribution f(X; 6) need 
not be Gaussian. It can be almost anything. In the limit of large n, — 2 ln L will always be distributed as x«2. This is 
the lever I shall use to generalize the approach to parameter estimation. 

Since our detectors must wait for events (photons) to arrive, any astrophysical model which is to be tested 
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Cookbook | Ingredients

• sample: y = (y1, . . . ,yn)

• model function: f (y ;q), with q 2 ⇥ ✓ R

• log likelihood: `(q) = log{f (y ;q)}
• maximum likelihood estimate: q̂ = argsupq `(q)

• score function: u(q) = d`(q)/dq
• observed information: j(q) = �d2`(q)/dq 2

• expected information: i(q) = E [j(q ;Y )]
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Cookbook | Recipe 1

• likelihood root

r(q) = sign(q̂ �q)[2{`(q̂)� `(q)}]1/2

• score statistic
s(q) = j(q̂)�1/2

u(q)

• Wald statistic
t(q) = j(q̂)1/2(q̂ �q)

one-sided two-sided

⇠ N(0,1)+O(n�1/2) ⇠ c2
1 +O(n�1)
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But. . . what if

n = 1
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Toy example: exponential

observe y = 1 from f (y ;q) = q exp(�qy), q > 0

2.2 Scalar parameter 9
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Figure 2.1 Likelihood inference for exponential sample of size n = 1. Left: log likelihood ℓ"#$.
Intersection of the function with the two horizontal lines gives two 95% confidence intervals for
#: the upper line is based on the %2

1 approximation to the distribution of w"#$, and the lower line
is based on the Bartlett-adjusted statistic. Right: comparison of simulated values of likelihood ratio
statistic w"#$ with %2

1 quantiles. The %2
1 approximation is shown by the line of unit slope, while the

"1+b/n$%2
1 approximation is shown by the upper straight line.
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Figure 2.2 Approximate pivots and P-values based on an exponential sample of size n = 1. Left:
likelihood root r"#$ (solid), score pivot s"#$ (dots), Wald pivot t"#$ (dashes), modified likelihood
root r∗"#$ (heavy), and exact pivot #

∑
yi indistinguishable from the modified likelihood root. The

horizontal lines are at 0&±1'96. Right: corresponding significance functions, with horizontal lines
at 0.025 and 0.975.

must lie within the parameter space. A further advantage is the invariance of these
intervals to parameter transformation: for example, the likelihood root for #− 1 yields the
95% confidence interval "1/4'403&1/0'057$, which is obtained simply by applying the
reciprocal transformation to the likelihood root interval for #. The interval based on t"#$
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Toy example: Cauchy

n = 1 observation from f (y ;q) = 1
p{1+(y�q)2} , q 2 R

3.2 Cauchy distribution 19

Table 3.1 The exact distribution function for a single observation from the
Cauchy distribution with ! = 0, with three first order and two third order
approximations.

y 0.1 1 3 5 10 15 25

"#s$y%& 0.556 0.760 0.664 0.607 0.555 0.537 0.522
"#t$y%& 0.556 0.921 0.999 1.000 1.000 1.000 1.000
"#r$y%& 0.556 0.880 0.984 0.995 0.999 1.000 1.000

"#r∗$y%& 0.535 0.772 0.918 0.953 0.979 0.987 0.993
Lugannani–Rice 0.535 0.768 0.909 0.944 0.972 0.981 0.989

Exact 0.532 0.750 0.897 0.937 0.968 0.979 0.987

Code 3.1 Code to compare first order and third order approximations for a Cauchy
observation.

score <- function(y) sqrt(2) * (y-theta)/(1+(y-theta)ˆ2)
root <- function(y) sign(y-theta) * sqrt( 2*(log(1+(y-theta)ˆ2)) )
wald <- function(y) sqrt(2) * (y-theta)
lugr <- function(y) pnorm( root(y) ) +

dnorm( root(y) ) * ( 1/root(y) - 1/score(y) )
rstar <- function(y) pnorm( root(y) + log(score(y)/root(y))/root(y) )

y <- seq(from = 0, to = 15, by = 0.1)
theta <- 0

plot(y, pnorm(wald(y)), xlab = "y", ylab = "Distribution function",
type = "l", lty = 6)

lines(y, pnorm(score(y)), lty = 5)
lines(y, pnorm(root(y)), lty = 4)
lines(y, lugr(y), lty = 3)
lines(y, rstar(y), lty = 2)
lines(y, pcauchy(y), lty = 1)
legend(9, 0.9, c("Exact", "rstar", "Lugannani-Rice", "root", "score",

"Wald"), lty = c(1,2,3,4,5,6) bty = "n")

the Lugannani–Rice formula is slightly more accurate than is "$r∗%, but even with
n = 1 both are close enough to the true distribution function for many practical
purposes.

The R code to generate Figure 3.1 is given in Code 3.1.
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Hunting for evidence

STATISTICS

p < 0.05

+

p < 0.00000029
(5s criterion)

(ASTRO)PHYSICS
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Top quark

20 Simple illustrations

3.3 Top quark

In 1995 the Fermi National Accelerator Laboratory announced the discovery of the top
quark, the last of six quarks predicted by the ‘standard model’ of particle physics. Two
simultaneous publications in Physical Review Letters described the experiments and the
results of the analysis. Evidence for the existence of the top quark was based on signals
from the decay of the top quark/antiquark pair created in proton/antiproton collisions.
The analysis reported in one of the papers (Abe et al., 1995) was based on a Poisson
model:

f!y" #$ = #ye−#/y!% y = 0%1%2% & & & % # > b'

Here b is a positive background count of decay events, and we write # = ( + b. Evidence
that ( > 0 would favour the existence of the top quark, if the underlying assumptions are
correct. Table I of Abe et al. (1995) gives the observed values of y as y0 = 27 and of b as
6.7. In fact b is also estimated, but with sufficient precision that this minor complication
may be ignored here.

Under the above model the basis of a test of the null hypothesis that ( = 0 against the
alternative (> 0 is whether the observed value y0 is consistent with a Poisson distribution
having mean # = b. Figure 3.2 shows this distribution function, which is of course a step
function, with the smooth approximations )*r∗!y%b$+ and )*r∗!y + 1

2 %b$+ obtained using
(2.5). In this exponential family model with canonical parametrization we take q to be
the Wald statistic, and r∗!y% #$ is computed using

r!y% #$ = sign!y−#$,2*̂# log!̂#/#$− !̂#−#$+-1/2%

t!y% #$ = #̂1/2 log!̂#/#$%
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Figure 3.2 Cumulative distribution function for Poisson distribution with parameter 6'7 (solid),
with approximations )*r∗!y$+ (dashes) and )*r∗!y + 1/2$+ (dots). The vertical lines are at
0'5%1'5%2'5% & & &
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The Banff challenge

Statistical Science
2008, Vol. 23, No. 3, 354–364
DOI: 10.1214/08-STS260
© Institute of Mathematical Statistics, 2008

The Banff Challenge: Statistical Detection
of a Noisy Signal
A. C. Davison and N. Sartori

Abstract. Particle physics experiments such as those run in the Large
Hadron Collider result in huge quantities of data, which are boiled down
to a few numbers from which it is hoped that a signal will be detected. We
discuss a simple probability model for this and derive frequentist and nonin-
formative Bayesian procedures for inference about the signal. Both are highly
accurate in realistic cases, with the frequentist procedure having the edge for
interval estimation, and the Bayesian procedure yielding slightly better point
estimates. We also argue that the significance, or p-value, function based on
the modified likelihood root provides a comprehensive presentation of the
information in the data and should be used for inference.
Key words and phrases: Bayesian inference, higher-order asymptotics,
Large Hadron Collider, likelihood, noninformative prior, orthogonal para-
meter, particle physics, Poisson distribution, signal detection.

1. INTRODUCTION

Particle physics experiments such as those con-
ducted in the Large Hadron Collider entail the de-
tection of a signal in the presence of background
noise. This essentially statistical topic has been dis-
cussed intensively in the recent literature (Mandelkern,
2002, Fraser, Reid and Wong, 2004, and the references
therein) and at a series of meetings involving statisti-
cians and physicists; see Lyons (2008) for more details
and further references. One key issue is the setting of
confidence limits on the underlying signal, based on
data from independent observation channels.

In the simplest version of the problem there is just
one channel, the observation from which is the num-
ber of times a particular event in a particle accelerator
has been observed. This is supposed to have a Pois-
son distribution with mean γψ + β , where the posi-
tive known constants β and γ represent respectively
a background rate at which the event occurs and the
efficiency of the measurement device. There is a sub-

Anthony Davison is Professor of Statistics, Institute of
Mathematics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland (e-mail:
Anthony.Davison@epfl.ch). Nicola Sartori is Assistant
Professor of Statistics, Dipartimento di Statistica,
Università “Ca’ Foscari” Venezia, Venezia, Italy and SSAV
(e-mail: sartori@unive.it).

stantial physical literature about inference for the focus
of interest, the unknown parameter ψ . Typically fre-
quentist inference is preferred to Bayesian approaches,
but this is the subject of a lively debate among the
scientists involved. In order to compare properties of
various procedures for inference about ψ , it was de-
cided at the workshop on Statistical Inference Prob-
lems in High Energy Physics and Astronomy held at
the Banff International Research Station in 2006 that
one participant would create artificial data that should
mimic those that might arise when the Large Hadron
Collider is running, and that other participants would
attempt to set confidence limits for the known un-
derlying signal. Thus was the Banff Challenge (http:
//newton.hep.upenn.edu/~heinrich/birs/) born.

For a single channel the challenge may be stated as
follows: the available data y1, y2, y3 are assumed to be
realizations of independent Poisson random variables
with means γψ + β,βt,γu, where t, u are known and
the parameters ψ,β,γ are unknown. This expands the
formulation above to allow for uncertainty about the
values of the background β and the efficiency γ , which
are supposed to be estimable from subsidiary experi-
ments of known lengths t and u. The goal is to sum-
marize the evidence concerning ψ , large estimates of
which will suggest presence of the signal. The parame-
ters β and γ are necessary for realism, but their values
are only of concern to the extent that they impinge on

354
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Modern likelihood inference

LARGE-SAMPLE THEORY
(asymptotic approximation)

+
SMALL-SAMPLE THEORY

(higher order asymptotics)
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Edgeworth expansions

2018 JINST 13 P12011
P�������� �� IOP P��������� ��� S���� M�������

R�������: July 27, 2018
R������: October 17, 2018

A�������: November 20, 2018
P��������: December 6, 2018

Improved inference for the signal significance

I. Voloboueva,1 and A. Trindadeb

aDepartment of Physics & Astronomy, Texas Tech University,
Lubbock, TX, 79409-1051, U.S.A.

bDepartment of Mathematics & Statistics, Texas Tech University,
Lubbock, TX, 79409-1042, U.S.A.

E-mail: i.volobouev@ttu.edu

A�������: We study the properties of several likelihood-based statistics commonly used in testing
for the presence of a known signal under a mixture model with known background, but unknown
signal fraction. Under the null hypothesis of no signal, all statistics follow a standard normal
distribution in large samples, but substantial deviations can occur at practically relevant sample
sizes. Approximations for respective p-values are derived to various orders of accuracy using the
methodology of Edgeworth expansions. Adherence to normality is studied, and the magnitude
of deviations is quantified according to resulting p-value inflation or deflation. We find that
approximations to third-order accuracy are generally su�cient to guarantee p-values with nominal
false positive error rates in the 5� range (p-value = 2.87 ⇥ 10�7

) for the classic Wald, score,
and likelihood ratio (LR) statistics at relatively low sample sizes. Not only does LR have better
adherence to normality, but it also consistently outperforms all other statistics in terms of false
negative error rates. The reasons for this are shown to be connected with high-order cumulant
behavior gleaned from fourth order Edgeworth expansions. Finally, a conservative procedure is
suggested for making finite sample adjustments while accounting for the look elsewhere e�ect via
the theory of random fields.

K�������: Analysis and statistical methods; Data processing methods

A�X�� �P����: 1609.00752

1Corresponding author.

c� 2018 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/13/12/P12011
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Cookbook – Recipe 2

Modified likelihood root

r
⇤(q ) = r(q )+ 1

r(q )
log

⇢
q(q )
r(q )

�

⇠ N(0,1)+O(n�3/2)

Lugannani-Rice tail approximation

�⇤(r) = �(r)+f(r)

✓
1
r

� 1
q

◆
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q(q ) correction term

Saddlepoint approximation

• invariant wrt interest-respecting reparametrizations
• simplifies for special classes of models

(exponential family, regression-scale model, . . . )

• nuisance parameters (y,l ): several formulations
(Skovgaard, 1996 | Fraser et al. 1999 | . . . )

• vector q : w⇤ (Bartlett, 1937 | Skovgaard, 2001)
• directional p-values (Fraser et al., 2014, 2016)

• Bayesian counterparts (Tierney & Kadane, 1986 | . . . )

21



Amuse-bouche

r
⇤(y) = r(y)+

1
r(y)

log
⇢

q(y)

r(y)

�

q(y) =
|j(q̂)�j(q̂y) jl (q̂y)|

|jq (q̂)|

(
|j(q̂)|

|jll (q̂y)|

)1/2

j(q)> =
K

Â
k=1

∂`(q ;y)

∂yk

|y=y0 Vk

Vk =
∂E [Yk ;q ]

∂q> |q=q̂
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Today’s special: two-for-one

• nuisance parameters: q = (y,l )

INCIDENTAL PARAMETERS !

p

n
�! 0

r
⇤(y) = r(y) + rinf (y) + rnp(y)
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INF & NP correction terms
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Model diagnostics
5.4 Radioimmunoassay data 75
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Figure 5.6 RIA data: profile and approximate bivariate contour plots obtained using the contour
method of the nlreg package with ! = 0"05 ( , w/r; , w∗/r∗; , Wald). See explanation
starting on page 73.

w∗ are missing in the corresponding panels and four bullets indicate where they would
intersect the profile traces. The calculation of profile pair sketches is computationally very
demanding, as the model has to be refitted many times to obtain the constrained estimates.

Table 5.7 reports the 95% confidence intervals for all parameters, obtained from a
summary of the ria.prof object. To assess their reliability we ran a parametric bootstrap
simulation with 4,999 replicate data sets generated from the fitted model obtained by
maximum likelihood estimation, and computed the coverages of the higher order intervals;
these are given in Table 5.7. We also calculated the 95% percentile and studentized
bootstrap confidence intervals and estimated their coverages using a nested bootstrap
simulation with 499×149 replicates; these results should be treated gingerly as the number
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Contour plots
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Rolke et al. (2005)
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Conrad (2014)
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Cookbook – Recipe 3

Adjusted likelihood function

La(y) = Lp(y)M(y)

derived from profile likelihood function

Lp(y) = max
l

L(y,l )

• approximates exact conditional/marginal likelihood function
(where available) to the order O(n�1)

• behaves like an ordinary likelihood function
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Adjusted MLE

5.4 Radioimmunoassay data 77

Code 5.5 R code for analysis of RIA data.

# Compute maximum adjusted profile likelihood estimates of variance
# parameters

> ria.mpl <- mpl( ria.nl )
> summary( ria.mpl )
Higher order method used: Skovgaard’s r*

Variance parameters
MMPLE MLE Std. Error

g 1.785 2.095 0.703
logs -6.947 -8.094 2.027

Regression coefficients
MMPLE MLE Std. Error

b1 1.780 1.802 0.248
b2 24.583 24.575 0.224
b3 1.891 1.899 0.086
b4 335.017 334.956 7.036

Total number of observations: 16
Total number of parameters: 6
-2*Log Lmp 17.54
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Figure 5.7 RIA data: profile and adjusted profile log likelihoods for the variance parameters ! and
" = log#2, maximum likelihood estimates, and corresponding 95% confidence regions. Based on
the output of the mpl fitting routine of the nlreg package.

the corresponding panel of Figure 5.6 (last row, second from the right). The two points
show the maximum likelihood and maximum adjusted likelihood estimates, the distance
between which gives an idea of the bias of the usual maximum likelihood estimator.
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Code

packages

• cond | marg | nlreg | csampling (Bellio & Brazzale)

• hoa (Fortin & Davison, Bellio & Brazzale)

https://ruggerobellio.weebly.com/software.html

• likelihoodAsy

• hoacoxph

• . . .
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Want to know more?
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Thank you for your attention!
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