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Premise

Credits: David van Dyk (ICL), PhyStat-ν 2016, 2019

• Statisticians “discuss” talks.

• I’m sure I missed some important points. And I may have
misinterpreted your work.

• So, feel free to correct me!

• And, please, be patient. I know you aim for answers. . . but
I have far more questions.
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Physics/Statistics glossary

• parameter determination = estimation

• look elsewhere effect = multiple comparison
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Look elsewhere effect
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Look elsewhere effect
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Look elsewhere effect
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Physics/Statistics glossary

• parameter determination = estimation

• look elsewhere effect = multiple comparison

• systematic uncertainty = nuisance parameters

• profiled value = constrained estimate

• toy simulation = (boostrap) resampling

• error propagation = delta method

• half chi-square distribution = chi-square bar distribution

• chi-square method = least squares criterion

• M(achine) L(earning) = M(aximum) L(ikelihood)

• . . .
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Some possible false friends

• marginal likelihood = integrated likelihood

• ancillary information 6= ancillary statistic

• recoiling(?) 6= correlation

• . . .
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ROC & power curves

• CLs = p1/(1-p0) = ROC curve + power curve
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Errors of 1st and 2nd Kind
• 1st Kind:  Reject H0 when H0 true

Should happen at rate D
• 2nd Kind: Fail to reject H0 when H0 is false 

Rate depends on:
How similar H0 and H1 are
Relative rates of H0 and H1 (for event selector)

For event selector: E1st   = Loss of efficiency
E2nd = Contamination

As D p, efficiency n and contamination p

For result of expt ,  E1st gives incorrect result
E2nd fails to make discovery

D = E1st

E = Prob of failing to exclude
H0, if H1 = true  

1- E = power of test  for H1                           
D

E

[Lyons]

(α,β ,δ ,σ ,n)
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Still looking for a match

• blind analysis [Lyons, Manzani, Loer]

→ (validation in machine learning?) finite population
sampling? (other?)

• salting [Manzani]

→ ?

• bias?
→ confounding?

• power constrained limits
→ ?

• . . .
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Mandelkern (2002)

Statistical Science
2002, Vol. 17, No. 2, 149–172

Setting Confidence Intervals for
Bounded Parameters
Mark Mandelkern

Abstract. Setting confidence bounds is an essential part of the reporting of
experimental results. Current physics experiments are often done to measure
nonnegative parameters that are small and may be zero and to search for small
signals in the presence of backgrounds. These are examples of experiments
which offer the possibility of yielding a result, recognized a priori to be rela-
tively improbable, of a negative estimate for a quantity known to be positive.
The classical Neyman procedure for setting confidence bounds in this situ-
ation is arguably unsatisfactory and several alternatives have been recently
proposed. We compare methods for setting Gaussian and Poisson confidence
intervals for cases in which the parameter to be estimated is bounded. These
procedures lead to substantially different intervals when a relatively improb-
able observation implies a parameter estimate beyond the bound.

Key words and phrases: Confidence bounds, Poisson-with-background,
Gaussian-with-boundary.

1. INTRODUCTION

The testing of theoretical models and the estimation
of parameters are among the principal tasks of exper-
imental science. Statistical theory has given us meth-
ods which work well in most but not all circumstances.
We discuss a problem for which statistics does not give
a solution that is satisfactory to many scientists. That
problem is estimation of a parameter when the data
are known a priori to be relatively improbable for all
parameter values under consideration. Such a problem
arises, for example, when the parameter of interest is
bounded and the result of an experiment suggests a pa-
rameter estimate beyond the bound.

A crucial element of parameter estimation is quan-
tifying the uncertainty in the estimate. We generally
present the uncertainty in the estimate of a parame-
ter by providing an interval based on the data and an
associated measure of confidence that the true value
lies within that interval. In the frequentist theory, we
have the coverage 1 − α, the probability that the inter-
val (the random variable) contains the true value. The

Mark Mandelkern is Professor, Department of Physics
and Astronomy, 3158 Frederick Reines Hall, University
of California, Irvine, California 92697-4575 (e-mail:
markm@uci.edu).

Bayesian confidence interval (credible interval) is con-
structed to contain posterior probability 1 − α. Neither
construction is unique and for the problem I address
here, a number of methods have been proposed. The
Bayesian approach requires specification of a prior dis-
tribution for the parameter and both approaches require
an optimality criterion to uniquely define an interval.

When we do not know a priori whether a particular
observation is relatively probable or not, there is a
natural and intuitively reasonable choice of frequentist
intervals: the central Neyman construction when a two-
sided interval is sought, or the one-sided construction
when an upper or lower limit is sought.

However, it is sometimes possible to identify an ex-
perimental result as relatively improbable for all pos-
sible members of a parametric family of distributions.
There are two specific cases that appear frequently and
lead to difficulty. The first is setting confidence inter-
vals for the mean of a normal pdf n(X;µ) where the
mean is known to be bounded, for example, µ ≥ 0,
and the variance σ 2 is known. (Here, without loss of
generality, σ 2 = 1.) The Neyman confidence interval
in this case is empty when an observation X is suffi-
ciently negative. Any X < 0 yields a shorter interval
than that obtained for X = 0.

This situation occurs frequently in physics, where
many fundamental parameters are intrinsically nonneg-

149
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Fraser et al. (2004)

Inference for bounded parameters

D. A. S. Fraser* and N. Reid†
Department of Statistics, University of Toronto, 100 St. George St., Toronto, Canada M5S 3G3

A. C. M. Wong‡
SASIT, Atkinson Faculty, York University, Toronto, Canada M3J 1P3

!Received 10 March 2003; published 23 February 2004"

The estimation of the signal frequency count in the presence of background noise has been widely discussed
in recent physics literature, and Mandelkern #Stat. Sci. 17, 149 !2002"$ brings the central issues to the statistical
community, leading in turn to extensive discussion by statisticians. The primary focus however of Mandelkern
and the accompanying discussion is on the construction of a confidence interval. We argue that the likelihood
function and p-value function provide a comprehensive presentation of the information available from the
model and the data. This is illustrated for Gaussian and Poisson models with lower bounds for the mean
parameter.

DOI: 10.1103/PhysRevD.69.033002 PACS number!s": 02.50.Tt, 06.20.Dk

I. INTRODUCTION

Mandelkern #1$ brings to the statistical community a
seemingly simple statistical problem that arises in high en-
ergy physics; see for example, Refs. #2$ and #3$. The statis-
tical model is quite elementary but the related inference
problem has substantial scientific presence: as Sinervo, a co-
author of Abe et al. #2,3$ expresses, ‘‘High energy physicists
have struggled with Bayesian and frequentist perspectives,
with delays of several years in certain experimental pro-
grammes hanging in the balance.’’
The problem discussed in Ref. #1$ can be expressed sim-

ply. A variable y follows a distribution with mean %!b
"& , where b#0 is known, the shape of the distribution is
known and the parameter &'0. The goal is to extract the
evidence concerning the parameter & , and in particular
present the evidence on whether & is zero or is greater than
zero. In the physics setting y is often a count and is viewed as
the sum of a count of y1 background events and a count of y2
events from a possible signal. In Refs. #2$ and #3$, the signal
records the presence of a possible top quark and the data
come from the collider detector at Fermilab. The background
count y1 is modelled as Poisson(b) and the count from the
possible signal as Poisson(&). Following Mandelkern #1$ we
write y(Poisson(b"&) and let %!b"& be the Poisson
mean with the restriction %'b . There are additional aspects:
For example, the data are obtained as subsets of more com-
plex counts, the background mean count b is estimated and
so on, but we concentrate on the simpler problem here. We
do however illustrate how the general case with b estimated
from antecedent Poisson counts can be treated within the
general theory.
The Poisson case involves a discrete distribution and this

introduces some minor complications that are best treated
separately from the essential inference aspects. Accordingly

we include a discussion of the continuous case and for sim-
plicity consider the normal distribution for y with mean %
!b"& and known standard deviation.
Much statistical literature and most of the physics propos-

als cited by Mandelkern #1$ are concerned with the construc-
tion of confidence bands for % at some prescribed level of
confidence. It is our view that this leads to procedures that
are essentially decision-theoretic: We ‘‘accept’’ parameter
values within the confidence interval and ‘‘reject’’ parameter
values outside the interval; a 1/0 presentation. This accept or
reject theory evolved from Neyman and Pearson #4$, later
generalized as decision theory by Wald #5$. The decision
theoretic approach dominated statistical theory until the mid
1950s, when Savage #6$ promoted the personalistic Bayesian
approach and Fisher #7$ recommended an inference ap-
proach. Both these approaches make essential use of the like-
lihood function: The Bayesian approach combines this with
prior information, and the inference approach emphasizes the
use of the likelihood function and the observed significance
or p-value function. The p-value function is constructed us-
ing the model and observed data, as we shall describe in
more detail below. One difficulty with the confidence inter-
val approach arises from the presence of the lower bound b
for the parameter space; if y is small then the confidence
interval can be partly or completely outside the permissible
range #b ,)) for the parameter, making apparent nonsense of
an assertion of 95% confidence. Various proposals have been
put forward to modify the confidence approach to overcome
such difficulties; the most prominent being the unified ap-
proach of Feldman and Cousins #8$. These proposals seek an
algorithm for placing a 1/0 valuation on possible parameter
values, in the framework of a prescribed confidence level. By
contrast the p-value function promoted here provides essen-
tial evidence from the data concerning the value of the pa-
rameter; for some background see Fraser #9$.
The discussants of Mandelkern #1$ also focus on the con-

fidence interval approach. An exception is Gleser #10$, who
suggests the use of the ‘‘likelihood function as a measure of
evidence about the parameters of the model used to describe
the data;’’ and Mandelkern #11$ in his rejoinder concurs: ‘‘It

*Email address: dfraser@utstat.toronto.edu
†Email address: reid@utstat.toronto.edu
‡Email address: august@mathstat.yorku.ca

PHYSICAL REVIEW D 69, 033002 !2004"

0556-2821/2004/69!3"/033002!6"/$22.50 ©2004 The American Physical Society69 033002-1
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Take home messages

Great conference!

I learnt that. . .

• experiments are expensive and time-consuming [Lyons]

• computing time matters [Kahlhoefer]

• complex models and complex likelihoods [Kahlhoefer]
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Conrad (2014)
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Ongoings

Complex data structures

• larger/harder problems

• full joint distribution has complex dependence structure on
the parameter and/or the data

spatial/spatio-temporal processes, clustered/hierarchical
data, time-course observations, . . .

• plausible models exists, but difficult to evaluate or not fully
reliable

15



Ongoings

Pseudo likelihoods

• regular likelihood provides the starting point

• try to retain “good” properties of likelihood (efficiency,
asymptotic normality, . . . )

• model-based: ignore part of the data (partial likelihood). . .

• . . . or of the parameter (quasi likelihood)

• derived from an estimating equation (GEE)

16



Ongoings

Examples of pseudo likelihood

• partial likelihood (Cox, 1975)

• quasi likelihood (Wedderburn, 1974 | Liang & Zeger, 1986)

• REML (Patterson & Thompson, 1971)

• composite likelihood (Besag, 1974 | Lindsay, 1988 | Varin,
2008)

17



Take home messages

Great conference!

I learnt that. . .

• experiments are expensive and time-consuming [Lyons]

• computing time matters [Kahlhoefer]

• complex models and complex likelihoods [Kahlhoefer]

• background is a problem [Conrad, . . . , THU + FRI, . . . , Algeri]

• nuisance parameters are (less?) a problem [Battey]

• statistical uncertainty vs systematic uncertainty
(the first weights more than the second) [Agostini]

• . . .
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Take home messages

You seem to like. . .

• Poisson distribution (+ COM-Poisson) [Durnford, Pollmann]

• profile likelihood [Dobson, Wardle, . . . ]

• Wilks’ theorem

• mixture models

• p-values (frequentist/Fisherian inference). . .

• . . . though some seem to prefer Bayes factors

• . . .
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Two or three?

• p-values vs. Bayes factor
→ D. van Dyk, PhyStat-ν 2016, 2019, matching prior

R. A. FISHER IN THE 21ST CENTURY 111

FIG. 8. A barycentric picture of modern statistical research, showing the relative influence of the Bayesian, frequentist and Fisherian
philosophies upon various topics of current interest.

The trouble here is that Fisher wasn’t always a
Fisherian, so it is easy to confuse parentage with
development.

The most difficult and embarrassing case con-
cerns what I have been calling ‘‘objective Bayes’’
methods, among which I included fiducial infer-
ence. One definition of frequentism is the desire to
do well, or at least not to do poorly, against every
possible prior distribution. The Bayesian spirit, as
epitomized by Savage and de Finetti, is to do very
well against one prior distribution, presumably the
right one.

There have been a variety of objective Bayes
compromises between these two poles. Working near
the frequentist end of the spectrum, Welch and
Peers showed how to calculate priors whose a pos-
teriori credibility intervals coincide closely with
standard confidence intervals. Jeffreys’s work,
which has led to vigorous modern development of
Bayesian model selection, is less frequentistic. In a
bivariate normal situation Jeffreys would recom-
mend the same prior distribution for estimating the
correlation coefficient or for the ratio of expecta-
tions, while the Welch!Peers theory would use two
different priors in order to separately match each of
the frequentist solutions.

Nevertheless Jeffreys’s Bayesianism has an un-
Ždeniable objectivist flavor. Erich Lehmann per-

.sonal communication had this to say: ‘‘If one sepa-
!rates the two Bayesian concepts Savage!de Finetti

"and Jeffreys and puts only the subjective version

in your Bayesian corner, it seems to me that some-
thing interesting happens: the Jeffreys concept
moves to the right and winds up much closer to the
frequency corner than to the Bayesian one. For
example, you contrasted Bayes as optimistic and
risk-taking with frequentist as pessimistic and
playing it safe. On both of these scales Jeffreys is
much closer to the frequentist end of the spectrum.
In fact, the concept of uninformative prior is philo-
sophically close to Wald’s least favorable distribu-
tion, and the two often coincide.’’

Lehmann’s advice is followed a bit in Figure 8,
Ž .where the Bayesian model selection BIC point, a

direct legacy of Jeffreys’s work, has been moved a
little ways toward the frequentist pole. However, I
have located fiducial inference, Fisher’s form of
objective Bayesianism, near the center of the trian-
gle. There isn’t much work in that area right now
but there is a lot of demand coming from all three
directions.

The point of my examples, and the main point of
this talk, was to show that Fisherian statistics, is
not a dead language and that it continues to inspire
new research. I think this is clear in Figure 8, even
allowing for its inaccuracies. But Fisher’s language
is not the only language in town, and it is not even
the dominant language of our research journals.
That prize would have to go to a rather casual
frequentism, not usually as hard-edged as pure
decision theory these days. We might ask what
Figure 8 will look like 20 or 30 years from now, and
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Take home messages

You know that. . .

• p-values difficult to calculate

• simulation not always feasible [Kahlhoefer]

• challenges with discrete data [Agostini]

• issues with Bayesian construction [Agostini]

• nonregular problems [Kahlhoefer]

• . . .
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Cash (1979)

940 CASH Vol. 228 

which are not varied but held constant at their true values. If one then calculates the value of the quantity —2 ln L, 
it will have a probability distribution like x2 with q degrees of freedom, except for a small additive term of size 
about n~112. 

Even more remarkable is the fact that essentially no constraints are set on the probability distributions f(X; 
0l5..6P), only that they be well-behaved and convergent (see Paper I). The probability distribution f(X; 6) need 
not be Gaussian. It can be almost anything. In the limit of large n, — 2 ln L will always be distributed as x«2. This is 
the lever I shall use to generalize the approach to parameter estimation. 

Since our detectors must wait for events (photons) to arrive, any astrophysical model which is to be tested 
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. . . well behaved and convergent

STATISTICS, HANDLE WITH CARE: DETECTING MULTIPLE MODEL COMPONENTS
WITH THE LIKELIHOOD RATIO TEST

Rostislav Protassov and David A. van Dyk
Department of Statistics, Harvard University, 1 Oxford Street, Cambridge,MA 02138; protasso@stat.harvard.edu, vandyk@stat.harvard.edu

Alanna Connors
Eureka Scientific, 2452Delmer Street, Suite 100, Oakland, CA 94602-3017; connors@frances.astro.wellesley.edu
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Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge,MA 02138;

kashyap@head-cfa.harvard.edu, aneta@head-cfa.harvard.edu
Received 2001 June 1; accepted 2002 January 25

ABSTRACT

The likelihood ratio test (LRT) and the related F-test, popularized in astrophysics by Eadie and coworkers
in 1971, Bevington in 1969, Lampton, Margon, & Bowyer, in 1976, Cash in 1979, and Avni in 1978, do not
(even asymptotically) adhere to their nominal !2 and F-distributions in many statistical tests common in
astrophysics, thereby casting many marginal line or source detections and nondetections into doubt.
Although the above authors illustrate the many legitimate uses of these statistics, in some important cases it
can be impossible to compute the correct false positive rate. For example, it has become common practice to
use the LRT or the F-test to detect a line in a spectral model or a source above background despite the lack of
certain required regularity conditions. (These applications were not originally suggested by Cash or by Bev-
ington.) In these and other settings that involve testing a hypothesis that is on the boundary of the parameter
space, contrary to common practice, the nominal !2 distribution for the LRT or the F-distribution for the F-test
should not be used. In this paper, we characterize an important class of problems in which the LRT and the F-
test fail and illustrate this nonstandard behavior. We briefly sketch several possible acceptable alternatives,
focusing on Bayesian posterior predictive probability values. We present this method in some detail since it is
a simple, robust, and intuitive approach. This alternative method is illustrated using the gamma-ray burst of
1997 May 8 (GRB 970508) to investigate the presence of an Fe K emission line during the initial phase of the
observation. There are many legitimate uses of the LRT and the F-test in astrophysics, and even when these
tests are inappropriate, there remain several statistical alternatives (e.g., judicious use of error bars and Bayes
factors). Nevertheless, there are numerous cases of the inappropriate use of the LRT and similar tests in the
literature, bringing substantive scientific results into question.
Subject heading:methods: statistical

1. INTRODUCTION

Distinguishing a faint spectral line or a new source from a
chance fluctuation in data, especially with low photon
counts, is a challenging statistical task. As described in x 2,
these are but two examples in a class of problems that can
be characterized in statistical terms as a test for the presence
of a component in a finite-mixture distribution. It is com-
mon practice to address such tests with a likelihood ratio
test (LRT) statistic or the related F-statistic1 and to appeal
to the nominal asymptotic distributions or reference distri-

bution2 of these statistics (Murakami et al. 1988; Fenimore
et al. 1988; Yoshida et al. 1992; Palmer et al. 1994; Band et
al. 1995, 1996, 1997; Freeman et al. 1999; Piro et al. 1999,
etc); see Band et al. (1997) for a discussion of the close rela-
tionship between the LRT and the F-test. The underlying
assumption is that in some asymptotic limit the statistic
being used to describe the data is distributed in an under-
standable way, and hence useful bounds may be placed on
the estimated parameters. Unfortunately, the standard
asymptotic theory does not always apply to goodness-of-fit
tests of this nature even with a large sample size or high

1 The F-statistic for testing for an additional term in a model, as defined
in Bevington (1969, pp. 208–209), is the ratio F! ¼ !2ðmÞ $ !2ðm þ 1Þ½ '=
!2ðmÞ=ðN $ m $ 1Þ½ ' ¼ D!2=!2

" ; where !2(m) and !2ðm þ 1Þ are the values
of the !2 statistic resulting from fittingm andm þ 1 free parameters, respec-
tively, and !2

" , in the notation of Bevington (1969), stands for a !2 random
variable with " degrees of freedom divided by the number of degrees of free-
dom ". In the remainder of this paper we use !2

" to denote a !2 random vari-
able with " degrees of freedom since this notation is more standard. See
also Eadie et al. (1971) and Lampton,Margon, & Bower (1976).

2 As detailed below, the reference distribution is used to calibrate a test
statistic. When choosing between two models, we assume that the simpler
or more parsimonious model holds and look for evidence that this assump-
tion is faulty. Such evidence is calibrated via the reference distribution, the
known distribution of the test statistic under the simple model. If the
observed test statistic (e.g., LRT or F-test) is extreme according to the refer-
ence distribution (e.g., !2

1 > 10:83Þ, the simple model is rejected in favor of
the more complex model.

The Astrophysical Journal, 571:545–559, 2002May 20
# 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

545
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Protassov et al. (2002)

APPENDIX A

REGULARITY CONDITIONS FOR THE LRT

Here we state the regularity conditions required for the standard asymptotic behavior of the LRT. (Our presentation fol-
lows Serfling 1980, pp. 138–160, which should be consulted for details.) Let X1; . . . ;Xn be independent identically distributed
random variables with distribution Fðx; hÞ belonging to a family fFðx; hÞ; h 2 !g, where ! # Rk is open and
h ¼ ð!1; . . . ; !kÞ. Fðx; hÞ are assumed to possess densities or mass functions f ðx; hÞ that satisfy the following conditions:
1. For each h 2 !, each i ¼ 1; . . . ; k, each j ¼ 1; . . . ; k, and each l ¼ 1; . . . ; k, the derivatives

@ log f ðx; hÞ
@!i

;
@2 log f ðx; hÞ

@!i@!j
;

@3 log f ðx; hÞ
@!i@!j@!l

ðA1Þ

exist, all x.21

2. For each h% 2 !, there exist functions h1(x), h2(x), and h3(x) (possibly depending on h%) such that for h in a neighborhood
Nðh%Þ # !, the relations

@f ðx; hÞ
@!i

!!!!

!!!! & h1ðxÞ;
@2f ðx; hÞ
@!i@!j

!!!!

!!!! & h2ðxÞ;
@3 log f ðx; hÞ
@!i@!j@!l

!!!!

!!!! & h3ðxÞ ðA2Þ

hold, for all x and all 1 & i; j; l & k, with
Z

h1ðxÞdx < 1;

Z
h2ðxÞdx < 1;

Z
h3ðxÞf ðx; hÞdx < 1 for h 2 Nðh%Þ : ðA3Þ

3. For each h 2 !, the information matrix

IðhÞ ¼ E
@ log f ðx; hÞ

@!i

@ log f ðx; hÞ
@!j

!!!h
" #$ %

k'k

ðA4Þ

exists and is positive definite.

Consider!0 # ! such that the specification of!0 may be equivalently given as a transformation

!1 ¼ g1ð"1; . . . ; "k( rÞ; . . . ; !k ¼ gkð"1; . . . ; "k( rÞ ; ðA5Þ

where " ¼ ð"1; . . . ; "k( rÞ ranges through an open set N # Rk( r. For example, if k ¼ 3 and !0 ¼ fh : !1 ¼ !%1 g, we then may
takeN ¼ fð"1; "2Þ : ð!%1 ; "1; "2Þ 2 !0g and the functions g1, g2, g3 to be

g1ð"1; "2Þ ¼ !%1 ; g2ð"1; "2Þ ¼ "1; g3ð"1; "2Þ ¼ "2 :

Assume further that gi possess continuous first-order partial derivatives and that the matrix

D" ¼
@gi
@"j

& '

k'ðk( rÞ

is of rank k ( r. Alternatively, if!0 is defined by a set of r (r & k) restrictions given by equations

~ggiðhÞ ¼ 0; 1 & i & r

[e.g., in the case of a simple hypothesis !0 ¼ fð!01; !02; !03Þg, we have ~ggiðhÞ ¼ !i ( !0i , i ¼ 1, 2, 3], we require that ~ggiðhÞ possess
continuous first-order derivatives and that the matrix

Ch ¼
@~ggi
@!j

& '

r'k

is of rank r. Let h% 2 ! denote the true unknown value of the parameter h. Define the null hypothesis to beH0 : h
% 2 !0. Then

ifH0 is true, the LRT statistic (see eq. [4]) is asymptotically distributed as #2 with r degrees of freedom.

APPENDIX B

TESTING FOR LINES: A MISAPPLICATION OF THE LRT

Under the required regularity conditions, the asymptotic #2 distribution of the LRT is based on the asymptotic normality of
the maximum likelihood estimate22 with mean equal to the true parameter value. If the true value is on the boundary of the

21 Implicit here is the requirement that the support of the distribution be independent of h; otherwise, there would be a h and an x for which the derivatives
in eq. (A1) would not exist.

22 Themaximum likelihood estimate is a statistic with a sampling distribution. A theorem in mathematical statistics establishes that under the same regular-
ity conditions required for the LRT to be asymptotically #2 the distribution of the maximum likelihood estimate becomesGaussian (i.e., normal) as the sample
size increases; see Serfling (1980).

No. 1, 2002 FALLIBLE F-TEST 557
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Nonregular problems

Working Paper Series, N. 4, September 2018

Likelihood Asymptotics in Nonregular Settings
A Review with Emphasis on the Likelihood Ratio

Brazzale Alessandra R.

Department of Statistical Sciences
University of Padua
Italy

Valentina Mameli

Department of Environmental Sciences, Informatics and Statistics
Ca’ Foscari University of Venice
Italy

Abstract: We review the most common situations where one or some of

the regularity conditions which underlie likelihood based parametric inference

fail. Three main classes of problems will be treated: boundary problems, in-

determinate parameters and singular information matrices, and change-point

problems. The review is focused on the large- and small-sample properties of

the likelihood ratio, though other approaches to hypothesis testing and con-

nections to estimation will be mentioned in passing.

Keywords: boundary point, change-point, finite mixture, first and higher

order theory, identifiability, large- and small-sample inference, singular infor-

mation

http://paduaresearch.cab.unipd.it/11306/
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Regularity conditions

Condition 1 All components of θ are identifiable. That is, two model

functions, f (y ;θ 1) and f (y ;θ 2), defined by any two

different values θ 1 6= θ 2 of θ , are distinct almost surely.

FINITE MIXTURE MODELS

Condition 2 The support of f (y ;θ) does not depend on any

component of θ .

CHANGE-POINT DETECTION

Condition 3 The parameter space Θ is a compact subspace of Rp,

for a fixed value of p ∈ N\{0}, and the true value θ 0 of

θ is an interior point of Θ.

BOUNDARY PROBLEMS
26



Regularity conditions

Condition 4 The partial derivatives of the log-likelihood function

`(θ ;y) with respect to θ up to the order three exist in a

neighbourhood of the true parameter value θ 0 almost

surely. Furthermore, in such a neighbourhood, n−1

times the absolute value of the log-likelihood

derivatives of order three are bounded above by a

function of Y whose expectation is finite.

NON GAUSSIANITY

Condition 5 The first two Bartlett identities hold, which imply that

E [u(θ ;Y )] = 0 and i(θ) = Var(u(θ ;Y )).

FINITE MIXTURE MODELS

27



Curiouser and curiouser!

Limiting distributions

• chi-bar squared

Pr(χ̄
2≤ c) =

N

∑
ν=0

ωνPr(χ
2
ν ≤ c)

• supremum of Gaussian
random process

{sup
|t |≤M

Z (t)}2 +W , W ∼ χ
2
1

• extreme value theory

• may need to bound parameter space

28



Algeri et al. (2016)
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ABSTRACT
Searches for unknown physics and decisions between competing astrophysical models to
explain data both rely on statistical hypothesis testing. The usual approach in searches for
new physical phenomena is based on the statistical likelihood ratio test and its asymptotic
properties. In the common situation, when neither of the two models under comparison is a
special case of the other i.e. when the hypotheses are non-nested, this test is not applicable.
In astrophysics, this problem occurs when two models that reside in different parameter
spaces are to be compared. An important example is the recently reported excess emission in
astrophysical γ -rays and the question whether its origin is known astrophysics or dark matter.
We develop and study a new, simple, generally applicable, frequentist method and validate its
statistical properties using a suite of simulations studies. We exemplify it on realistic simulated
data of the Fermi-Large Area Telescope γ -ray satellite, where non-nested hypotheses testing
appears in the search for particle dark matter.

Key words: astroparticle physics – methods: data analysis – methods: statistical – dark matter.

1 MO D E L C O M PA R I S O N IN A S T RO PA RTI C L E
PHYSICS

In astrophysics, hypothesis testing is ubiquitous, because progress
is made by comparing competing models to experimental data. In
the special case, where new physical phenomena are searched for,
the most common choice of hypothesis test is the likelihood ratio
test (LRT), whose popularity is partly motivated by the fact that,
assuming H0 is true, the asymptotic distribution of the LRT statis-
tic is a χ2. Such result holds if the regularity conditions specified
in Wilks’s theorem hold (Wilks 1938). A key necessary condition
is ‘nested-ness’, meaning that there is a full model of which both
the models under H0 and the alternative hypothesis, H1, are special
cases. This is obviously the case for the search for new particles
where the null hypothesis (or baseline model), H0, is given by
‘background’ and H1 is given by ‘background+signal of new par-
ticle’. However, cases where model comparison is non-nested are
common: for instance, when a known astrophysical signal can be
confused with new physics, see Ackermann et al. (2012) for an ex-
ample from astroparticle physics, or if the models to be compared
reside in different parameter spaces (Profumo & Linden 2012); as in
γ -ray bursts (Guiriec et al. 2015). In these situations, Monte Carlo

⋆ E-mail: s.algeri14@imperial.ac.uk
† Wallenberg Academy Fellow.

simulations of the measurement process are often the only possi-
bility, but are challenged by stringent significance requirements,
e.g. at the 5σ level. We present a solution that allows evaluation of
accurate statistical significances for non-nested model comparison
while avoiding extensive Monte Carlo simulations. As a concrete
example, we apply the proposed procedure to the search for particle
dark matter, where the method has particular importance.

One way to search for dark matter is to consider its hypothesized
annihilation products, i.e. γ -rays, that can be detected by space-
borne or ground-based γ -rays telescopes (Conrad 2005; Cohen-
Tanugi & Stigari 2015). Here, the issue of source confusion is one
of the most challenging aspects of claiming discovery of a dark
matter induced signal. A detected excess of γ -rays may either orig-
inate from dark matter annihilation or be caused by conventional,
known astrophysical sources. Discrimination can be performed us-
ing their spectral distributions, however these are not necessar-
ily part of the same parameter space (see below). This situation
arises for example in the search for dark matter sources among the
unidentified sources found by Fermi-Large Area Telescope (LAT;
Ackermann et al. 2012), the claimed detection of a signal consistent
with dark matter in our own galaxy, which has gained much atten-
tion recently (Daylan et al. 2014), or (once a detection has been
made) in the search for dark matter in dwarf galaxies (Ackermann
et al. 2011, 2014, 2015; Geringer-Sameth & Koushiappas 2011;
Geringer-Sameth et al. 2015). In the recent claims, the existence
of a source of γ -rays (over some background) is established by
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To wind up

Some statistics landmarks

• Fisher (1925): contains most of the main elements of
Fisherian inference

sufficiency, likelihood, MLE, consistency, Fisher
information, efficiency, asymptotic normality, . . .

• Fisher (1934): fully develops concept of ancillarity

• Wilks (1938): asymptotic distribution of the likelihood ratio

30



To wind up

Fisherian inference

• central role of likelihood function

• evaluation under repeated sampling

• conditioning on the relevant aspects of the data. . .

• . . . and to eliminate nuisance parameters

• practice-oriented
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To wind up

Neo-Fisherian inference

• Fisherian statistics is not a dead language: it continues to
inspire new research.

• Yet, Fisher’s language is not the only language in town. . .
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To wind up

Bayesian/Frequentis dialogue

• both use the likelihood

• empirical Bayes (meta analysis, hierarchical models, . . . )

• matching priors

a posteriori credible intervals = standard confindence
intervals
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To wind up

Data mining/machine learning [Kieseler]

• different modes of attack on different types of inferential
problems
(“case-to-case expediency”)

34



Simola et al. (2019)
2
0
1
9
 
J
I
N
S
T
 
1
4
 
P
0
3
0
0
4

P�������� �� IOP P��������� ��� S���� M�������

R�������: October 23, 2018
R������: January 11, 2019

A�������: February 22, 2019
P��������: March 6, 2019

Machine learning accelerated likelihood-free event
reconstruction in dark matter direct detection
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aDepartment of Mathematics and Statistics, University of Helsinki,
Pietari Kalmin katu 5, Helsinki, Finland
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A�������: Reconstructing the position of an interaction for any dual-phase time projection chamber
(TPC) with the best precision is key to directly detecting Dark Matter. Using the likelihood-free
framework, a new algorithm to reconstruct the 2-D (x, y) position and the size of the charge signal (e)
of an interaction is presented. The algorithm uses the secondary scintillation light distribution (S2)
obtained by simulating events using a waveform generator. To deal with the computational e�ort
required by the likelihood-free approach, we employ the Bayesian Optimization for Likelihood-
Free Inference (BOLFI) algorithm. Together with BOLFI, prior distributions for the parameters of
interest (x, y, e) and highly informative discrepancy measures to perform the analyses are introduced.
We evaluate the quality of the proposed algorithm by a comparison against the currently existing
alternative methods using a large-scale simulation study. BOLFI provides a natural probabilistic
uncertainty measure for the reconstruction and it improved the accuracy of the reconstruction over
the next best algorithm by up to 15% when focusing on events at large radii (R > 30 cm, the outer
37% of the detector). In addition, BOLFI provides the smallest uncertainties among all the tested
methods.

K�������: Analysis and statistical methods; Dark Matter detectors (WIMPs, axions, etc.); Simu-
lation methods and programs; Time projection Chambers (TPC)
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