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Credits: David van Dyk (ICL), PhyStat-v 2016, 2019

Statisticians “discuss” talks.

I’'m sure | missed some important points. And | may have
misinterpreted your work.

So, feel free to correct me!

And, please, be patient. | know you aim for answers. .. but
| have far more questions.



Physics/Statistics glossary

e parameter determination = estimation

¢ look elsewhere effect = multiple comparison
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Look elsewhere effect
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Look elsewhere effect
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Physics/Statistics glossary

e parameter determination = estimation

¢ look elsewhere effect = multiple comparison

e systematic uncertainty = nuisance parameters

¢ profiled value = constrained estimate

e toy simulation = (boostrap) resampling

e error propagation = delta method

¢ half chi-square distribution = chi-square bar distribution
e chi-square method = least squares criterion

e M(achine) L(earning) = M(aximum) L(ikelihood)



Some possible false friends

marginal likelihood = integrated likelihood

ancillary information # ancillary statistic

recoiling(?) # correlation



ROC & power curves

e CLs = p1/(1-p0) = ROC curve + power curve
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Still looking for a match

blind analySiS [Lyons, Manzani, Loer]
— (validation in machine learning?) finite population
sampling? (other?)

Sal’[ing [Manzani]

— ?

e bias?

— confounding?

power constrained limits
— ?
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ndelkern (2002)

Statistical Science
2002, Vol. 17, No. 2, 149-172

Setting Confidence Intervals for
Bounded Parameters

Mark Mandelkern

Abstract.  Setting confidence bounds is an essential part of the reporting of
experimental results. Current physics experiments are often done to measure
nonnegative parameters that are small and may be zero and to search for small
signals in the presence of backgrounds. These are examples of experiments
which offer the possibility of yielding a result, recognized a priori to be rela-
tively improbable, of a negative estimate for a quantity known to be positive.
The classical Neyman procedure for setting confidence bounds in this situ-
ation is arguably unsatisfactory and several alternatives have been recently
proposed. We compare methods for setting Gaussian and Poisson confidence
intervals for cases in which the parameter to be estimated is bounded. These
procedures lead to substantially different intervals when a relatively improb-
able observation implies a parameter estimate beyond the bound.

Key words and phrases: Confidence bounds, Poisson-with-background,
Gaussian-with-boundary.
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Fraser et al. (2004)

PHYSICAL REVIEW D 69, 033002 (2004)

Inference for bounded parameters

D. A.S. Fraser* and N. Reid"
Department of Statistics, University of Toronto, 100 St. George St., Toronto, Canada M5S 3G3

A. C. M. Wong*
SASIT, Atkinson Faculty, York University, Toronto, Canada M3J 1P3
(Received 10 March 2003; published 23 February 2004)

The estimation of the signal frequency count in the presence of background noise has been widely discussed
in recent physics literature, and Mandelkern [Stat. Sci. 17, 149 (2002)] brings the central issues to the statistical
community, leading in turn to extensive discussion by statisticians. The primary focus however of Mandelkern
and the accompanying discussion is on the construction of a confidence interval. We argue that the likelihood
function and p-value function provide a comprehensive presentation of the information available from the
model and the data. This is illustrated for Gaussian and Poisson models with lower bounds for the mean
parameter.

DOI: 10.1103/PhysRevD.69.033002 PACS number(s): 02.50.Tt, 06.20.Dk
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Take home messages

Great conference!

| learnt that. ..

e experiments are expensive and time-consuming (yons)
e computing time matters [anioeten
e complex models and complex likelihoods (kaninoeten
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Conrad (2014)

is not unique,
example that
1d be «/2). It
)8 that exper-
bservation is
ty, otherwise
ervations into

experimental observation is defined as the probability of obtaining
an observation as likely or less likely than the experimental obser-
vation itself, and the null hypothesis is rejected if the p-value < o,
the most common choice for o being ~ 3 - 107, i.e. the 5¢ tail prob-
ability of a Gaussian distribution. The most common hypothesis
test used in searches for dark matter is based on (variants) of the
likelihood ratio test. For simple (i.e. fully specified) hypotheses the
likelihood ratio:

(12)

5 It is in principle conceivable that this best estimate is not obtained from
maximizing the likelihood, though we are not aware of any studies made what the
implications of such an approach would be.
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Complex data structures

e larger/harder problems

o full joint distribution has complex dependence structure on
the parameter and/or the data

spatial/spatio-temporal processes, clustered/hierarchical
data, time-course observations, . ..

e plausible models exists, but difficult to evaluate or not fully
reliable
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Pseudo likelihoods

regular likelihood provides the starting point

try to retain “good” properties of likelihood (efficiency,
asymptotic normality, .. .)

model-based: ignore part of the data (partial likelihood). . .

e ... or of the parameter (quasi likelihood)
derived from an estimating equation (GEE)
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Examples of pseudo likelihood

partial likelihood (Cox, 1975)
quasi likelihood (Wedderburn, 1974 | Liang & Zeger, 1986)
REML (Patterson & Thompson, 1971)

composite likelihood (Besag, 1974 | Lindsay, 1988 | Varin,
2008)
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Take home messages

Great conference!

| learnt that. ..

e experiments are expensive and time-consuming (uyons)
e computing time matters (kaninoefen
e complex models and complex likelihoods kaninoefer
e background is a problem (conrad, ..., THU + FRI, .., Algeri]
e nuisance parameters are (less?) a problem atey
¢ statistical uncertainty vs systematic uncertainty
(the first weights more than the second) agostini

18



Take home messages

You seem to like. ..

[ ] POiSSOh diStribUtion (+ COM'POiSSOﬂ) [Durnford, Pollmann]

prOfile likelihood [Dobson, Wardle, ...]
Wilks’ theorem

mixture models

p-values (frequentist/Fisherian inference). ..
...though some seem to prefer Bayes factors
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Two or three?

e p-values vs. Bayes factor
— D. van Dyk, PhyStat-v 2016, 2019, matching prior

FISHERIAN

Partial Likelihood

Conditional Inference

Gibbs Sampler Gfiparametrics

Multiple Empirical  Model Selection: FREQUENTIST
BAYESIAN Imputation Bayes Cp, AIC, Cross-validation QUE

F1G. 8. A barycentric picture of modern statistical research, showing the relative influence of the Bayesian, frequentist and Fisherian
philosophies upon various topics of current interest.
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Take home messages

You know that. ..

e p-values difficult to calculate

simulation not always feasible kanhoefer

challenges with discrete data agostini

issues with Bayesian construction (agostini

nonregular problems (kaninoeten

21



940 CASH Vol. 228

which are not varied but held constant at their true values. If one then calculates the value of the quantity —2 In L,
it will ha:'g a probability distribution like x? with ¢ degrees of freedom, except for a small additive term of size
about n~1/2,

Even more remarkable is the fact that essentially no constraints are set on the probability distributions f(X;
6,, . .., 0,), only that they be well-behaved and convergent (see Paper I). The probability distribution f(X; 6) need
not be Gaussian. It can be almost anything. In the limit of large n, —2 In L will always be distributed as x,2. This is
the lever I shall use to generalize the approach to parameter estimation.
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... well behaved and converg

THE ASTROPHYSICAL JOURNAL, 571:545-559, 2002 May 20

© 2002. The American Astronomical Society. Al rights reserved. Printed in U.S.A

STATISTICS, HANDLE WITH CARE: DETECTING MULTIPLE MODEL COMPONENTS
WITH THE LIKELIHOOD RATIO TEST

ROSTISLAV PROTASSOV AND DAVID A. VAN DYK
Department of Statistics, Harvard University, | Oxford Street, Cambridge, MA 02138; prota at.harvard.edu, harvard.edu

ALANNA CONNORS
Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017; connors@frances.astro.wellesley.edu
AND
VINAY L. KASHYAP AND ANETA SIEMIGINOWSKA
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138;
kashyap@head-cfa.harvard.edu, aneta@head-cfa.harvard.edu
Received 2001 June 1; accepted 2002 January 25

ABSTRACT

The likelihood ratio test (LRT) and the related F-test, popularized in astrophysics by Eadie and coworkers
in 1971, Bevington in 1969, Lampton, Margon, & Bowyer, in 1976, Cash in 1979, and Avni in 1978, do not
(even asymptotically) adhere to their nominal y? and F-distributions in many statistical tests common in
astrophysics, thereby casting many marginal line or source detections and nondetections into doubt.
Although the above authors illustrate the many legitimate uses of these statistics, in some important cases it
can be impossible to compute the correct false positive rate. For example, it has become common practice to
use the LRT or the F-test to detect a line in a spectral model or a source above background despite the lack of

23



Protassov et al. (2002)

No. 1. 2002 FALLIBLE F-TEST 557
APPENDIX A
REGULARITY CONDITIONS FOR THE LRT
Here we state the regularity conditions required for the standard asymptotic behavior of the LRT. (Our presentation fol-

lows Serfling 1980, pp. 138-160, which should be consulted for details.) Let X, ..., X, be independent identically distributed
random variables with distribution F(x; @) belonging to a family {F(x; 6), § € ©}, where © C #* is open and

0=(0,..., ,0k). F(x; 0) are assumed to possess densities or mass functions f(x; ) that satisfy the following conditions:
1.Foreach® € ©,eachi=1,..., k,eachj=1,..., k,andeach/ = 1,...,k, the derivatives
dlogf(x:0) i 0 logf(x:0) , P logf(x:0) (A1)
90, 90;00; 90,00;00;

exist, all x.2!
2. For each 0« € ©, there exist functions /2;(x), (), and /13(x) (possibly depending on @) such that for @ in a neighborhood
N(0x) C O, the relations

If (x; 0) & (x; 0) & logf(x; 0)
S T <y (x L <y (x ==l T
‘ o6 | =M, 0,00, | = (), 90,00,00, = hs(x) (A2)
hold, forall xandall I <1, j, I <k, with
//u(x)d.\’ < o0, //X:(.\’)IL\' < o0, //n 0)dx < oo for @ € N(0x) . (A3)

3. Foreach @ € ©, the information matrix
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Nonregular problems

Working Paper Series, N. 4, September 2018

Likelihood Asymptotics in Nonregular Settings
A Review with Emphasis on the Likelihood Ratio

Brazzale Alessandra R.
Department of Statistical Sciences
University of Padua

Italy

Valentina Mameli

Department of Environmental Sciences, Informatics and Statistics
Ca’ Foscari University of Venice

Italy
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http://paduaresearch.cab.unipd.it/11306/
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Regularity conditions

Condition 1 All components of 6 are identifiable. That is, two model
functions, f(y;0") and f(y; 62), defined by any two
different values 6" 62 of 6, are distinct almost surely.

FINITE MIXTURE MODELS

Condition 2 The support of f(y;8) does not depend on any
component of 6.

CHANGE-POINT DETECTION

Condition 3 The parameter space © is a compact subspace of R,
for a fixed value of p € N\ {0}, and the true value 6° of
0 is an interior point of ©.

BOUNDARY PROBLEMS
26



Regularity conditions

Condition 4 The partial derivatives of the log-likelihood function
£(6;y) with respect to 6 up to the order three exist in a
neighbourhood of the true parameter value 6° almost
surely. Furthermore, in such a neighbourhood, n—?
times the absolute value of the log-likelihood
derivatives of order three are bounded above by a
function of Y whose expectation is finite.

NON GAUSSIANITY

Condition 5 The first two Bartlett identities hold, which imply that
E[u(6;Y)]=0 and i(8) = Var(u(;Y)).

FINITE MIXTURE MODELS
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Curiouser and curiouser!

Limiting distributions

e chi-bar squared

N
Pr(}®<c)= ) aoPr(x5<c)
v=0

e supremum of Gaussian
random process

{sup Z()}2+W, W~p?
[tI<M

e extreme value theory
e may need to bound parameter space

28



Algeri et al. (2016)

ofthe
ROYAL ASTRONOMICAL SOCIETY
MNRAS 458, L84-L88 (2016)

®

doi:10.1093/mnrasl/slw025

Advance Access publication 2016 February 15

A method for comparing non-nested models with application
to astrophysical searches for new physics

Sara Algeri,'>* Jan Conrad"?>*f and David A. van Dyk!

' Statistics Section, Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
2Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

3The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, S|

106 91 Stockholm, Sweden

Accepted 2016 February 10. Received 2016 February 10; in original form 2015 December 25

ABSTRACT

Searches for unknown physics and decisions between competing astrophysical models to
explain data both rely on statistical hypothesis testing. The usual approach in searches for
new physical phenomena is based on the statistical likelihood ratio test and its asymptotic
properties. In the common situation, when neither of the two models under comparison is a
special case of the other i.e. when the hypotheses are non-nested, this test is not applicable.
In astrophysics, this problem occurs when two models that reside in different parameter
spaces are to be compared. An important example is the recently reported excess emission in
astrophysical y-rays and the question whether its origin is known astrophysics or dark matter.
‘We develop and study a new, simple, generally applicable, frequentist method and validate its
statistical properties using a suite of simulations studies. We exemplify it on realistic simulated
data of the Fermi-Large Area Telescope y-ray satellite, where non-nested hypotheses testing
appears in the search for particle dark matter.

Key words: astroparticle physics — methods: data analysis — methods: statistical — dark matter.
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Some statistics landmarks

e Fisher (1925): contains most of the main elements of
Fisherian inference

sufficiency, likelihood, MLE, consistency, Fisher
information, efficiency, asymptotic normality, . . .

e Fisher (1934): fully develops concept of ancillarity
e Wilks (1938): asymptotic distribution of the likelihood ratio
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Fisherian inference

central role of likelihood function

evaluation under repeated sampling

conditioning on the relevant aspects of the data. ..

e ... and to eliminate nuisance parameters

practice-oriented
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Neo-Fisherian inference
e Fisherian statistics is not a dead language: it continues to

inspire new research.

e Yet, Fisher’s language is not the only language in town. ..
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Bayesian/Frequentis dialogue

e both use the likelihood
e empirical Bayes (meta analysis, hierarchical models, ...)
e matching priors

a posteriori credible intervals = standard confindence
intervals
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Data mining/machine learning ieseter

o different modes of attack on different types of inferential
problems
(“case-to-case expediency”)
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Simola et al. (2019)
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Machine learning accelerated likelihood-free event
reconstruction in dark matter direct detection

U. Simola,” B. Pelssers,”! D. Barge,” J. Conrad” and J. Corander®
“Department of Mathematics and Statistics, University of Helsinki,

Pietari Kalmin katu 5, Helsinki, Finland
b Department of Physics, Stockholm University,

Roslagstullsbacken 21 A, Stockholm, Sweden

E-mail: bart.pelssers@fysik.su.se
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