Kaons at LHCb

Francesco Dettori
on behalf of the LHCb Collaboration

Università degli Studi di Cagliari and INFN Cagliari

International Conference on Kaon Physics 2019
10-13 September 2019
University of Perugia (Italy)
LHCb experiment
• 1250 members, from 79 institutes in 18 countries
• Dedicated experiment for precision measurements of CP violation and rare decays
• Beautiful, charming, strange physics program

• \(pp \) collisions at \(\sqrt{s} = 7, 8(13) \) TeV in Run 1 (Run 2)
• \(b\bar{b} \) quark pairs produced correlated in the forward region
• Luminosity leveled at \(4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \)
LHCb detector

[Int. J. Mod. Phys. A 30, 1530022 (2015)]
Introduction: production

- Huge strange hadrons production cross-section at LHCb
- Production of particles in a minimum bias event within the geometric acceptance (400 mrad)
- About 1 strange hadron per event (compared to $\sim 10^{-3} B^0_s$ mesons)
- Reconstruction and trigger however bring this number down
Introduction: setting the (long) stage

Reconstruction

- Large lifetimes for LHCb... but the peak of an exponential is at zero!
- Different reconstruction methods for the daughter tracks
LHCb Run 1 data-taking

- LHCb trigger designed for heavy flavours
- Muon (hadron) L0 trigger require $p_T > [1 - 5]$ GeV
- Too hard for primary strange hadrons
- Hlt1 and Hlt2 are software and customizable
- No dedicated triggers in 2011, added a $K^0_S \rightarrow \mu^+ \mu^-$ dedicated trigger in 2012
- Several generic (topological) triggers allowed good efficiencies
- Typical events contain more than one strange hadron
- \Rightarrow Strange physics Run 1 analyses mostly based on data triggered by the rest of the event (TIS)
Strange physics at LHCb with Run 1

Despite trigger and detector not designed for it

- World best limit on $K_S^0 \rightarrow \mu^+ \mu^-$ *EPJ.C*, 77 10(2017)678
 (See Miguel’s talk in “hot topics” session for the Run 2 update)
- Evidence for the $\Sigma^+ \rightarrow p\mu^+ \mu^-$ decay and measurement of the branching fraction, challenging to the HyperCP anomaly *PRL* 120, 221803
 (See my other talk for details)
LHCb Run 2 data-taking

LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

450 kHz h^\pm
400 kHz $\mu/\mu\mu$
150 kHz e/γ

Software High Level Trigger

Partial event reconstruction, select displaced tracks/vertices and dimuons

Buffer events to disk, perform online detector calibration and alignment

Full offline-like event selection, mixture of inclusive and exclusive triggers

12.5 kHz (0.6 GB/s) to storage

- Improved farm and algorithms: higher bandwidth
- Real time calibration between Hlt1 and Hlt2
- Factor 2 in cross-section from \sqrt{s}
- L0 still limiting factor for strange physics

Software improvements for strange

- Complement forward tracking for very soft muons implemented
- New Hlt1 inclusive lines developed with focus on strange physics
- Various novel Hlt2 inclusive and exclusive lines written, dedicated to strange

More than 6 fb$^{-1}$ on tape
LHCb Upgrade data-taking

- Upgraded detector for 40 MHz full readout
- $\mathcal{L} = 2 \times 10^{33}\text{cm}^{-2}\text{s}^{-1}$
 \Rightarrow about 5 fb$^{-1}$ per year
- L0 hardware trigger is removed from Run 3
- Hlt1 run directly on collision data

Fundamental step forward for strange physics!
Sensitivity to $K_S^0 \to \pi^0 \mu^+ \mu^-$

- $K_L^0 \to \pi^0 \mu^+ \mu^-$ very sensitive to physics beyond the SM, e.g. extra-dimensions [M. Bauer et al. JHEP 09(2010)017]

- SM prediction with large uncertainty
 \[\mathcal{B}_{SM}(K_L^0 \to \pi^0 \mu^+ \mu^-) = \{1.4 \pm 0.3, 0.9 \pm 0.2\} \times 10^{-11} \]

- Limited by knowledge of ChPT parameter $|a_S|$ extracted from $K_S^0 \to \pi^0 \mu^+ \mu^-$ branching fraction

- $\mathcal{B}(K_S^0 \to \pi^0 \mu^+ \mu^-) = (2.9^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}$ measured by NA48 Collaboration [J.R. Batley et al. PLB599 (2011) 197]
Sensitivity to $K^0_S \to \pi^0 \mu^+ \mu^-$

- Studied sensitivity of LHCb to this channel in Run 2 and Upgrade scenarios
- Difficult reconstruction due to soft π^0
- π^0 reconstruction non essential as constrained by very low q-value
- Double strategy: without π^0 (Partial) and with π^0 reconstructed from γ pairs
- Combinatorial background estimated with real data TIS events
- Peaking backgrounds studied with MC: none found to contribute in LHCb
- Statistical uncertainty on $\mathcal{B}(K^0_S \to \pi^0 \mu^+ \mu^-)$ as a function of luminosity times trigger efficiency
- LHCb will be competitive with NA48 for trigger efficiencies of $\sim 50\%$ or larger
$K^0 \to \ell^+ \ell^- \ell^+ \ell^-$

- $K^0 \to \ell^+ \ell^- \ell^+ \ell^-$ short distance sensitive to NP, dominated by the long distance contribution uncertainty
- Interference of $A(K^0_S \to \ell^+ \ell^- \ell^+ \ell^-)$ and $A(K^0_L \to \ell^+ \ell^- \ell^+ \ell^-)$ would give a measurement of the sign of $A(K^0_L \to \gamma \gamma)$ which is a stringent test of CKM
- $K^0_L \to \ell^+ \ell^- \ell^+ \ell^-$ studied by different experiments but no experimental constraints on K^0_S modes

 \[\mathcal{B}(K^0_S \to e^+e^-e^+e^-) \sim 10^{-10} \]

 \[\mathcal{B}(K^0_S \to \mu^+\mu^-e^+e^-) \sim 10^{-11} \]

 \[\mathcal{B}(K^0_S \to \mu^+\mu^-\mu^+\mu^-) \sim 10^{-14} \]

- Sensitive to NP at same order of SM
Sensitivity to $K^0_S \to \pi^+\pi^-e^+e^-$

- $K^0_S \to \pi^+\pi^-e^+e^-$ is a proxy channel for $K^0_S \to \ell^+\ell^-\ell^+\ell^-$
- Sensitivity study at LHCb with MC
- $\varepsilon \sim 0.2\%$, limited by L0 trigger
- $\mathcal{B}(K^0_S \to \pi^+\pi^-e^+e^-) = (4.79 \pm 0.15) \times 10^{-5}$

With Run 1 conditions expected $N = 120^{+280}_{-100}$ events per fb$^{-1}$ of 8 TeV data on top of about $3 \cdot 10^3$ background events. No multivariate selection applied.

- Dedicated Hlt2 trigger line deployed in Run 2, still limited by Hlt1 and L0
- Upgrade trigger will improve the efficiency on this and related channels sensibly
- In the ideal scenario of $\sim 100\%$ w.r.t. offline selection

$$N_{exp} = 5 \cdot 10^4 \text{ per fb}^{-1}$$

- Similar efficiencies are expected for the $K^0_S \to \ell^+\ell^-\ell^+\ell^-$ rare channels
- Single event sensitivities of order $9.6 \cdot 10^{-10}$ per each fb$^{-1}$ in Upgrade conditions
A glimpse into LHCb possibilities

- Dedicated paper with some of us + theorists to explore future possibilities
- Approximate simulations (validated on published ones) to get sensitivities
- Countless channels to be probed

Channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>(R)</th>
<th>(\epsilon_L)</th>
<th>(\epsilon_D)</th>
<th>(\sigma_L (\text{MeV/c}^2))</th>
<th>(\sigma_D (\text{MeV/c}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_S^0 \to \mu^+\mu^-)</td>
<td>1</td>
<td>1.0 (1.0)</td>
<td>1.8 (1.8)</td>
<td>(\sim 3.0)</td>
<td>(\sim 8.0)</td>
</tr>
<tr>
<td>(K_S^0 \to \pi^+\pi^-)</td>
<td>1</td>
<td>1.1 (0.30)</td>
<td>1.9 (0.91)</td>
<td>(\sim 2.5)</td>
<td>(\sim 7.0)</td>
</tr>
<tr>
<td>(K_S^0 \to \pi^0\mu^+\mu^-)</td>
<td>1</td>
<td>0.93 (0.93)</td>
<td>1.5 (1.5)</td>
<td>(\sim 35)</td>
<td>(\sim 45)</td>
</tr>
<tr>
<td>(K_S^0 \to \gamma\mu^+\mu^-)</td>
<td>1</td>
<td>0.85 (0.85)</td>
<td>1.4 (1.4)</td>
<td>(\sim 60)</td>
<td>(\sim 60)</td>
</tr>
<tr>
<td>(K_S^0 \to \mu^+\mu^-\mu^+\mu^-)</td>
<td>1</td>
<td>0.37 (0.37)</td>
<td>1.1 (1.1)</td>
<td>(\sim 1.0)</td>
<td>(\sim 6.0)</td>
</tr>
<tr>
<td>(K_L^0 \to \mu^+\mu^-)</td>
<td>(\sim 1)</td>
<td>2.7 (2.7) (\times 10^{-3})</td>
<td>0.014 (0.014)</td>
<td>(\sim 3.0)</td>
<td>(\sim 7.0)</td>
</tr>
<tr>
<td>(K^+ \to \pi^+\pi^+\pi^-)</td>
<td>(\sim 2)</td>
<td>9.0 (0.75) (\times 10^{-3})</td>
<td>41 (8.6) (\times 10^{-3})</td>
<td>(\sim 1.0)</td>
<td>(\sim 4.0)</td>
</tr>
<tr>
<td>(K^+ \to \pi^+\mu^+\mu^-)</td>
<td>(\sim 2)</td>
<td>6.3 (2.3) (\times 10^{-3})</td>
<td>0.030 (0.014)</td>
<td>(\sim 1.5)</td>
<td>(\sim 4.5)</td>
</tr>
<tr>
<td>(\Sigma^+ \to p\mu^+\mu^-)</td>
<td>(\sim 0.13)</td>
<td>0.28 (0.28)</td>
<td>0.64 (0.64)</td>
<td>(\sim 1.0)</td>
<td>(\sim 3.0)</td>
</tr>
<tr>
<td>(\Lambda \to p\pi^-)</td>
<td>(\sim 0.45)</td>
<td>0.41 (0.075)</td>
<td>1.3 (0.39)</td>
<td>(\sim 1.5)</td>
<td>(\sim 5.0)</td>
</tr>
<tr>
<td>(\Lambda \to p\mu^-\nu_{\mu})</td>
<td>(\sim 0.45)</td>
<td>0.32 (0.31)</td>
<td>0.88 (0.86)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\Xi^- \to \Lambda\mu^-\nu_{\mu})</td>
<td>(\sim 0.04)</td>
<td>39 (5.7) (\times 10^{-3})</td>
<td>0.27 (0.09)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\Xi^- \to \Sigma^0\mu^-\nu_{\mu})</td>
<td>(\sim 0.03)</td>
<td>24 (4.9) (\times 10^{-3})</td>
<td>0.21 (0.068)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\Xi^- \to p\pi^-\pi^-)</td>
<td>(\sim 0.03)</td>
<td>0.41 (0.05)</td>
<td>0.94 (0.20)</td>
<td>(\sim 3.0)</td>
<td>(\sim 9.0)</td>
</tr>
<tr>
<td>(\Xi^0 \to p\pi^-)</td>
<td>(\sim 0.03)</td>
<td>1.0 (0.48)</td>
<td>2.0 (1.3)</td>
<td>(\sim 5.0)</td>
<td>(\sim 10)</td>
</tr>
<tr>
<td>(\Omega^- \to \Lambda\pi^-)</td>
<td>(\sim 0.001)</td>
<td>95 (6.7) (\times 10^{-3})</td>
<td>0.32 (0.10)</td>
<td>(\sim 7.0)</td>
<td>(\sim 20)</td>
</tr>
</tbody>
</table>

Channels (Continued)

<table>
<thead>
<tr>
<th>Channel</th>
<th>(R)</th>
<th>(\epsilon_L)</th>
<th>(\epsilon_D)</th>
<th>(\sigma_L (\text{MeV/c}^2))</th>
<th>(\sigma_D (\text{MeV/c}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_S^0 \to \pi^+\pi^- e^+e^-)</td>
<td>1</td>
<td>1.0 (0.18)</td>
<td>2.83 (1.1)</td>
<td>(\sim 2.0)</td>
<td>(\sim 10)</td>
</tr>
<tr>
<td>(K_S^0 \to \mu^+\mu^- e^+e^-)</td>
<td>1</td>
<td>1.18 (0.48)</td>
<td>2.93 (1.4)</td>
<td>(\sim 2.0)</td>
<td>(\sim 11)</td>
</tr>
<tr>
<td>(K^+ \to \pi^+ e^- e^-)</td>
<td>(\sim 2)</td>
<td>0.04 (0.01)</td>
<td>0.17 (0.06)</td>
<td>(\sim 3.0)</td>
<td>(\sim 13)</td>
</tr>
<tr>
<td>(\Sigma^+ \to p e^- e^-)</td>
<td>(\sim 0.13)</td>
<td>1.76 (0.56)</td>
<td>3.2 (1.3)</td>
<td>(\sim 3.5)</td>
<td>(\sim 11)</td>
</tr>
<tr>
<td>(\Lambda \to p e^- e^-)</td>
<td>(\sim 0.45)</td>
<td>(< 2.2 \times 10^{-4})</td>
<td>(\sim 17 (< 2.2) \times 10^{-4})</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Channels (Continued)

<table>
<thead>
<tr>
<th>Channel</th>
<th>(R)</th>
<th>(\epsilon_L)</th>
<th>(\epsilon_D)</th>
<th>(\sigma_L (\text{MeV/c}^2))</th>
<th>(\sigma_D (\text{MeV/c}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_L^0 \to \mu^+ e^-)</td>
<td>1</td>
<td>1.0 (0.84)</td>
<td>1.5 (1.3)</td>
<td>(\sim 3.0)</td>
<td>(\sim 8.0)</td>
</tr>
<tr>
<td>(K_S^0 \to \mu^+ e^-)</td>
<td>1</td>
<td>3.1 (2.6) (\times 10^{-3})</td>
<td>13 (11) (\times 10^{-3})</td>
<td>(\sim 3.0)</td>
<td>(\sim 7.0)</td>
</tr>
<tr>
<td>(K^+ \to \pi^+\mu^- e^-)</td>
<td>(\sim 2)</td>
<td>3.1 (1.1) (\times 10^{-3})</td>
<td>16 (8.5) (\times 10^{-3})</td>
<td>(\sim 2.0)</td>
<td>(\sim 8.0)</td>
</tr>
</tbody>
</table>
Prospects for charged kaons

- Enormous K^+ production but small acceptance
- Run 1 has 1 M $K^+ \rightarrow \pi^+ \pi^- \pi^+$ fully TIS
- Measurement of the charged kaon mass is under way to solve long standing disagreement
- With full software trigger $O(10^{-10})$ single event sensitivity per fb$^{-1}$ obtainable
- $K^+ \rightarrow \pi^+ \mu^- \mu^+$ and $K^+ \rightarrow \pi^+ e^- e^+$ become accessible

[Alves et al. arXiv/1808.03477]
Prospects for LFV modes

- Tests of lepton flavour violation are always important SM null tests
- Limits on kaon LFV are stringent but decades old

\[\mathcal{B}(K_L \rightarrow e^\pm \mu^\mp) < 4.7 \times 10^{-12} \quad \mathcal{B}(K_L \rightarrow \pi^0 e^\pm \mu^\mp) < 7.6 \times 10^{-11} \]

[E871 PRL81,5734] [KTeV PRL100,131803]
\[\mathcal{B}(K^+ \rightarrow \pi^+ e^- \mu^+) < 1.3 \times 10^{-11} \quad \mathcal{B}(K^+ \rightarrow \pi^+ e^+ \mu^-) < 5.2 \times 10^{-10} \]

[Sher et al. PRD 72, 012005] [Appel et al. PRL85, 2877]

- Using B-physics LFU constraints, branching fractions of order \(10^{-13}\) can be predicted for \(K_S\) LFV decays [Borsato et al. PRD 99, 055017 (2019)]
Prospects for LFV modes

- Electron reconstruction in LHCb is more difficult than muon due to bremsstrahlung and lower trigger efficiency
- LHCb could improve limits and maybe touch the 10^{-13} region with full Upgrade (2030s)
- Detailed full simulation studies are however not there yet

![Graph showing branching fractions for $B(K^+ \rightarrow \pi^+ \mu^+ e^-)$ and $B(K^+ \rightarrow \pi^+ \mu^+ e^-)$ as a function of LHCb integrated luminosity.]
A quick word on hyperons

LHCb can probe different hyperons and decays

- Σ^+: Besides the $\Sigma^+ \to p\mu^+\mu^-$, LHCb could improve the $\Sigma^+ \to p\gamma$ and try to access the $\Sigma^+ \to pe^+e^-$ decay

- Λ
 * LHCb could improve the $\Lambda \to p\pi\gamma$ branching fraction and try to access $\Lambda \to p\pi e^+e^-$
 * Large number of BNV / LFV decays constrained by the CLAS collaboration [CLAS PRD.92.072002] could be also tested and improved

- For higher S number baryons LHCb could test $\Delta S = 2$ processes, such as $\Xi^0 \to p\pi$ and $\Omega \to \Lambda\pi$ improving limits by orders of magnitude

See also Alexandre’s talk in the “hyperon” session.
Summary and conclusions

- **LHCb expanding its physics reach towards strange physics complementary to the core program**
- Encouraging Run 1 results on $K_S^0 \rightarrow \mu^+\mu^-$ and $\Sigma^+ \rightarrow p\mu^+\mu^-$
- Large samples available already on tape fully exploiting existing data
- **LHCb major player for K_S^0 and hyperons rare decays**
- Complementary to K_L^0 and K^+ dedicated experiments
- Run 2 giving new results with improved trigger
- Upgrade trigger will allow unprecedented sensitivities on many channels
Bibliography

LHCb Collaboration

Papers

• Evidence for the rare decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ [Phys. Rev. Lett. 120, 221803 (2018)] [LHCb-PAPER-2017-049] [hep-ex/1712.08606]

• Improved limit on the branching fraction of the rare decay $K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$ [LHCb-PAPER-2017-009] [hep-ex/1706.00758] [Eur. Phys. J. C, 77 10 (2017) 678]

• Search for the CP-violating strong decays $\eta \rightarrow \pi^{+}\pi^{-}$ and $\eta' \rightarrow \pi^{+}\pi^{-}$ [LHCb-PAPER-2016-046] [hep-ex/1610.03666] [Physics Letters B 764 (2017) 233-240]

• Search for the rare decay $K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$ [LHCb-PAPER-2012-023] [hep-ex/1209.4029] [JHEP 01 (2013) 090]

Public notes

• Physics case for an LHCb Upgrade II [LHCb-PUB-2018-009] [arXiv/1808.08865]

• Low p_T dimuon triggers at LHCb in Run 2 [LHCb-PUB-2017-023]

• Sensitivity of LHCb and its upgrade in the measurement of $\mathcal{B}(K_{S}^{0} \rightarrow \pi^{0}\mu^{+}\mu^{-})$ [LHCb-PUB-2016-017]

• Feasibility study of $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ at LHCb [LHCb-PUB-2016-016]

Others

• Alves A. A. et al. “Prospects for Measurements with Strange Hadrons at LHCb” [JHEP05(2019)048]

Backup
Search for CP violating strong decays $\eta^{(')} \rightarrow \pi^+\pi^-$

- QCD should violate CP symmetry (with a term $\mathcal{L}_\theta = -\frac{\theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$) but none is observed experimentally
- $\theta < 10^{-10}$ from neutron electric dipole moment (strong CP problem)
- $\eta^{(')} \rightarrow \pi^+\pi^-$ would be strong CP violating decays
- nEDM limit constraints SM branching fractions to $< 3 \cdot 10^{-17}$ any evidence higher than this would be NP
- Best limits at 90% CL
 - $\mathcal{B}(\eta \rightarrow \pi^+\pi^-) < 1.3 \cdot 10^{-5}$ (KLOE $\phi \rightarrow \eta\gamma$ [PLB606 (2005) 276])
 - $\mathcal{B}(\eta' \rightarrow \pi^+\pi^-) < 5.5 \cdot 10^{-5}$ (BESIII $J/\psi \rightarrow \gamma\pi^+\pi^-$ [PRD84(2011)032006])
Search for CP violating strong decays $\eta' \to \pi^+\pi^-$

- LHCb strategy:
 look for peaks in $\pi\pi$ mass from $D_{(s)}^+ \to \pi^+\pi^-\pi^+$ decays (i.e. $D_{(s)}^+ \to \pi^+\eta'$)
- MVA operator to reduce background
- Normalisation: $B(\eta' \to \pi^+\pi^-) = \frac{N_{\eta'}(r)}{N_{D_{(s)}^+ \to \pi^+\pi^-\pi^+}} \frac{1}{\varepsilon_{\eta'}(r)} \frac{B(D_{(s)}^+ \to \pi^+\pi^-\pi^+)}{B(D_{(s)}^+ \to \pi^+\eta')}$
- Constrained D masses and origin vertex improves resolution significantly
- $\varepsilon_{\eta'}(r)$ small correction to efficiency versus $m_{\pi\pi}$
- 3 fb$^{-1}$ of Run 1 and 0.3 fb$^{-1}$ of Run 2 data from Turbo stream
- Run 2 contribution enhanced by larger cross-section and trigger efficiency
Search for CP violating strong decays $\eta' \to \pi^+\pi^-$

- No excess on top of the background (signal phase space plus combinatorial)
- Upper limit on branching fractions with CLs method at 90% CL:
 \[B(\eta \to \pi^+\pi^-) < 1.6 \times 10^{-5} \]
 \[B(\eta' \to \pi^+\pi^-) < 1.8 \times 10^{-5} \]
- η limit compatible with previous results, η' limit improved by factor three
Kaon physics from ϕ decays

- Huge ϕ production at LHC
- Exploit $\phi \to K^+K^-$ decays in which one of the kaons is fully reconstructed
- Study final state of second kaon, also partially reconstructed thanks to the ϕ constraint
- $O(10^{10})$ tagged $\phi \to KK$ decays per year in the upgrade *
- For example study $K^+ \to e\nu$ (tag also initial Kaon leg with RICH1)

*See talk by Vava Gligorov, Rare’n’Strange workshop https://indico.cern.ch/event/590880/