Searches for Charged Lepton Flavour Violation with the ATLAS Experiment

Julia Iturbe

KAON2019 Perugia, Italy

12/September/2019

Motivation for LFV searches

- Lepton flavour violation (LFV) occurs in nature (neutrino oscillations) but LFV in the charged sector (cLFV) is extremely suppressed in the SM: BR($\mu \rightarrow e_{\gamma}$)<10⁻⁴⁸
- However, many BSM models predict cLFV decays of the Higgs, Z boson, top quark and other high-mass resonances
- Low-energy results provide indirect constraints
- ATLAS can complement these results

cLFV searches at ATLAS with $\sqrt{s} = 13$ TeV

- This talk will touch on 6 searches:
 - H→eµ ATLAS-CONF-2019-037
 - $H \rightarrow \tau e, H \rightarrow \tau \mu$ arXiv:1907.06131
 - $Z \rightarrow \tau e, Z \rightarrow \tau \mu$ Phys. Rev. D 98 (2018) 092010
 - Heavy particle $\rightarrow \ell \ell'$ Phys. Rev. D 98 (2018) 092008
 - $H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$ Eur. Phys. J. C 78 (2018) 199
 - $t \rightarrow \ell^{\pm} \ell'^{\mp} q$ ATLAS-CONF-2018-044
- Spoiler alert! No significant excesses found <u>but</u> limits are set which are improvements to previous searches

Higgs decaying to e+µ

- Using data collected in full Run2 \Rightarrow $\mathscr{L} = 139 \text{ fb}^{-1}$
- Event selection:
 - Exactly 1 e and 1 µ with opposite charge
 - Reject events containing b-jets and E_T^{miss} /√H_T < 1.75 GeV^{1/2} (to suppress Top bkg)
 - **Signal regions:** baseline selection + 8 categories with different S/B (to improve sensitivity)

1	Low p _T ℓ	$p_T \ell^2 < 27 \text{ GeV}$	
2	VBF	2 jets opposite hemisphere, ŋjj >3, mjj > 500 GeV	
3	Central	η ^ℓ < 1	
4	Non- central	η ^ℓ ≥ 1	
3 and 4 are further split into:			
	Low preed	p⊤ ^{ℓℓ} ≤ 15 GeV	
	Mid p _T ^{ee}	$15 \text{ GeV} < p_T^{\ell \ell} \leq 50$	
	High p _T ^{ℓℓ}	p⊤ ^{ℓℓ} > 50 GeV	

J. Iturbe - Searches for charged LFV decays in ATLAS - KAON2019

Higgs decaying to e+µ

- The m_{eµ} distribution for signal and bkg is modelled by analytical functions
- **Signal**: Narrow resonance with $m_H = 125$ GeV, MC fitted with **Crystal Ball + Gaussian**
- **Bkg:** $Z/\gamma^* \rightarrow \tau\tau$, top quarks, diboson, jets misid as leptons. Data fitted with **Bernstein polynomial 2nd degree**
- Fit performed with S+B model in all categories simultaneously, in the region 110 GeV $< m_{e\mu} < 160$ GeV

RESULTS:

Observed (expected) limit on BR(H \rightarrow eµ)<6.1x10⁻⁵ (5.8x10⁻⁵)

Higgs decaying to τ + (e or μ)

(1)

- Using data collected in 2015-2016 $\Rightarrow \mathscr{L} = 36 \text{ fb}^{-1}$
- Two searches performed:
 H→τe, H→τµ
- Each search has two channels:
 - tau decaying leptonically
 (ℓτ_{lep}: eτ_µ, µτ_e)
 - tau decaying hadronically
 (ℓτ_{had}: eτ_{had}, μτ_{had})
- Leptonic taus: reconstructed as electrons or muons

Hadronic taus:

- Typically 1 (1-prong) or 3 (3-prong) π^{\pm} plus $\leq 2 \pi^{0}$
- Reconstructed as narrow jets: Seeded by jets (anti-kT, R=0.4) + info from ID tracks and energy deposits in calorimeter
- Separated from mis-id jets or hadron decays using a BDT
- eVeto: removes τ_{had} candidate with a track overlapping with a highld electron candidate (BDT-based)

Higgs decaying to τ + (e or μ)

- **Signal**: Assuming $m_H = 125$ GeV, SM production cross-sections. Inclusive wrt τ decay modes.
- Backgrounds:
 - $Z \rightarrow \tau \tau$ (1st for both channels), Top (2nd for $\ell \tau_{lep}$), Diboson, SM $H \rightarrow \tau \tau$ and $Z \rightarrow \ell \ell$ (from MC)
 - Fake bkg (jets mis-id as τ_{had} or *l*) (2nd for *l*τ_{had}). Calculated from data (Fake Factor method)

Event selection:

٠

- $\ell \tau_{lep}$: exactly 2 light-leptons of different flavour and opposite charge
- $\ell \tau_{had}$: exactly 1 τ_{had} and 1 light-lepton, with opposite charge
- Reject events containing b-jets (suppress Top bkg)
- Baseline selection includes other cuts to reduce other bkgs (BU slides)

selection and...

• **VBF:** $n_{jets} \ge 2$, $m_{jj} > 400$ GeV and $|\eta_{jj}| > 3$

Signal regions: baseline

- nonVBF: fails VBF cuts
- A BDT is trained in each channel to separate signal from bkg using kinematic variables
- A statistical fit is performed using the BDT score

(3)

Higgs decaying to τ + (e or μ)

RESULTS: Observed (expected) limits on

- BR(H→τe)<0.47% (0.34^{+0.13}-0.10%)
- BR(H→τμ)<0.28% (0.37^{+0.14}-0.10 %)

Good improvement from Run1 results, compatible with CMS results $Z \rightarrow Te, Z \rightarrow T\mu$ Phys. Rev. D 98 (2018) 092010

Z decaying to τ + (e or μ)

- Using data collected in 2015-2016 • $\Rightarrow \mathscr{L} = 36 \text{ fb}^{-1}$
- Two searches: $Z \rightarrow e \tau_{had}, Z \rightarrow \mu \tau_{had}$
- **Event selection:**
 - Exactly 1 isolated light-lepton and ≥ 1 • τ_{had} , with opposite charge
 - Reject events with b-jets (suppress Top bkg)
 - Reject events where 1-prong τ_{had} has $|\eta(\tau_{had})|$ • >2.2 for et channel or $|\eta(\tau_{had})| < 0.1$ for $\mu \tau$ channel (suppress $Z\ell\ell$ bkg, high mis-id regions)

() [GeV]

- This **baseline** selection is used to train a **NN**
- **Signal region** is defined with extra cuts to separate from main bkgs

Z decaying to τ + (e or μ)

• Main bkgs:

- Fake bkg (jets mis-id as τ_{had}), estimated from data (fake factor method)
- $Z\ell\ell$ modelled by MC
- ZTT, modelled by MC and normalisation set by the fit
- There's a NN classifier for W+jets, Z*ℓℓ* and Zττ
- A statistical fit is performed using the NN output, in the 1p and 3p signal regions separately

Z decaying to τ + (e or μ)

- RESULTS: Observed (expected) limits on
 - BR(Z \rightarrow et)<5.8(2.8)x10⁻⁵ \Rightarrow 2.3 σ excess
 - BR(Z→μτ)<2.4(2.4)x10⁻⁵
- First limit on BR(Z→eτ) from ATLAS, competitive with LEP's <0.98x10⁻⁵
- BR(Z→μτ)<1.3x10⁻⁵ when combined with ATLAS Run1 result, competitive with LEP's <1.2x10⁻⁵

Heavy particle→ℓℓ' Phys. Rev. D 98 (2018) 092008

LFV decay of high mass resonance

- Using data collected in 2015-2016 $\Rightarrow \mathscr{L} = 36 \text{ fb}^{-1}$
- Testing three main models:
 - Z' (same quark couplings, only one LFV coupling)
 - RPV SUSY (τ sneutrino, coupling to 1st gen quarks)
 - Quantum Black Holes (QBH)
- Search channels: eτ, μτ, eμ
- Event selection:
 - Exactly two different-flavour leptons
 - Leptons are back-to-back ($\Delta \varphi(\ell \ell') > 2.7$)

LFV decay of high mass resonance

- Main bkgs:
 - Ζττ, Top quark and diboson. Modelled by MC.
 - Fake bkg (mis-id jets), estimated from data (5% in eµ, 50-60% in eτ, µτ (fake τ_{had}))

J. Iturbe - Searches for charged LFV decays in ATLAS - KAON2019

LFV decay of high mass resonance

J. Iturbe - Searches for charged LFV decays in ATLAS - KAON2019

$H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$

- Using data collected in 2015-2016 $\Rightarrow \mathscr{L} = 36 \text{ fb}^{-1}$
- Many BSM theories predict doubly-charged Higgs (LSR, Higgs triplet, little Higgs, ...) $_{\bar{q}}$
- Search limited to leptonic decays (electrons or muons) and pair production via Drell-Yan

• Event selection:

- Veto events with b-jets
- Events with 2, 3 leptons (one same-sign pair) or 4 leptons (2 same-sign pairs, sum of charges = 0)
- $m_{\ell\ell} > 200 \text{ GeV}$ (from same-sign pair, $< m_{\ell\ell} > \text{ for } 4\ell$)

 $H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$

- Signal: LRS model, excluding H^{±±}→WW decays, with different H^{±±} masses (200 - 1300 GeV)
- Backgrounds:
 - Irreducible: SM processes (diboson, ttbar X, from MC)
 - Reducible:
 - SM processes with charge mis-id electrons $(Z/\gamma^* \rightarrow \ell^+ \ell^-)$ and ttbar, from MC with SFs for charge reco from data)
 - Fake bkg (jets mis-id as e or μ). "Fake factor" method used (data-driven)

10

0.5

 $H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$

RESULT: Lower limits set on the mass of H^{±±} (300 GeV higher ۲ than previous ATLAS search)

 10^{-2}

300

400

500

600

700

800

900 1000 1100 1200

 $m(H^{\pm\pm})$ [GeV]

A statistical fit to $m_{\ell\ell}$ (same-sign leptons) is performed

t→ℓ±ℓ'∓q

- Using data collected in 2015-2017 $\Rightarrow \mathscr{L} = 80 \text{ fb}^{-1}$
- Searching for decay t→ℓ[±]ℓ'[∓]q where q = {u,c} and ℓ={e,µ,τ} in ttbar events with the other top decays semileptonically (SM)
- Many ttbar events at LHC well suited for this search
- Event selection:
 - Exactly three light leptons (e,µ)
 - n_{jets}≥2, n_{bjets}≤1
 - Veto events with OS DF lepton pair with $|m_{\ell\ell}-m_Z|<10$ GeV (suppress $Z\ell\ell$ bkg)

• Signal region:

- $\geq 1 \text{ e and } \geq 1 \mu$
- cLFV reco from OS OF lepton pair + jet with inv. mass closest to top-quark mass

t→ℓ±ℓ'∓q

- Main bkgs: ttbar with extra non-prompt lepton $\frac{g}{2}$ and $Z\ell\ell$ (60%), WZ and ZZ (25%)
- Fakes estimated with data-driven approach (matrix method)
- A BDT is trained in the signal region to discriminate S/B
- A statistical fit is performed using the BDT score
- RESULTS: Observed (expected) limits on
 - BR(t→ℓℓ'q)<1.86(1.36)x10⁻⁵
 - BR(t→eµq)<6.6(4.8)x10⁻⁶ (no τ in cLFV vertex)

Conclusion

- Various searches for charged LFV decays in ATLAS were presented
 - For Higgs, Z and top quark
 - Heavy particles and doubly-charged Higgs
- No significant excess above the SM was found
- Limits were set for these searches, which are more stringent or are firsts (in some cases) and which complement low-energy results

Thank you!

Higgs decaying to τ + (e or μ)

Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$		
Baseline	exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{had-vis}$, OS		
	$p_{\mathrm{T}}^{\ell_1} > 45 \mathrm{GeV}$	$p_{\mathrm{T}}^{\ell} > 27.3 \mathrm{GeV}$		
	$p_{\mathrm{T}}^{\ell_2} > 15 \mathrm{GeV}$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 25 \mathrm{GeV}, \eta^{\tau_{\mathrm{had-vis}}} < 2.4$		
	$30 \mathrm{GeV} < m_{\mathrm{vis}} < 150 \mathrm{GeV}$	$\sum_{i=\ell,\tau_{\text{had-vis}}} \cos \Delta \phi(i, E_{\text{T}}^{\text{miss}}) > -0.35$		
	$p_{\rm T}^{e}({\rm track})/p_{\rm T}^{e}({\rm cluster}) < 1.2 \ (\mu \tau_{e} \text{ only})$	$ \Delta \eta(\ell, \tau_{\text{had-vis}}) < 2$		
	<i>b</i> -veto (for jets with $p_{\rm T} > 25 \text{GeV}$ and $ \eta < 2.4$)			
VBF	Baseline			
	≥ 2 jets, $p_T^{j_1} > 40$ GeV, $p_T^{j_2} > 30$ GeV			
	$ \Delta \eta(j_1, j_2) > 3, m(j_1, j_2) > 400 \text{ GeV}$			
	_	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 45 \mathrm{GeV}$		
Non-VBF	Baseline plus fail VBF categorization			
	$m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss}) > 50 {\rm GeV}$	_		
	$m_{\rm T}(\ell_2, E_{\rm T}^{\rm miss}) < 40 {\rm GeV}$	_		
	$ \Delta \phi(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}}) < 1.0$	_		
	$p_{\rm T}^{ au}/p_{\rm T}^{\hat{\ell_1}} > 0.5$	_		
Top-quark CR	inverted <i>b</i> -veto:			
VBF and non-VBF	non-VBF ≥ 1 <i>b</i> -tagged jet ($p_T > 25$ GeV and $ \eta < 2.4$)			
$Z \rightarrow \tau \tau CR$	inverted $p_{\rm T}^{\ell_1}$ requirement:			
VBF and non-VBF	$35 \mathrm{GeV} < p_{\mathrm{T}}^{\ell_1} < 45 \mathrm{GeV}$			

Fake factor method

•

• The number of events from fakes in SR is:

• $N_{SR,fakes}^{Id} = (N_{SR,data}^{anti-Id} - N_{SR,MC,notjet \rightarrow \tau}^{anti-Id}) \times FF$, where Id (anti-Id) = τ_{had} passes (fails) Id cut (anti-Id is fake dominated and o

• $FF = \frac{N_{CR,data}^{Ia}}{N_{CR,data}^{anti-Id}}$, CR is similar to SR except for the inversion of one (or more) cut to

make them orthogonal and is designed to be bkg dominated

Since there are a few sources of fake background, $FF = \sum_{i} R_i FF_i$, where i = i

W+jets, QCD, Top, ZII, ... and R_i is the fractional contribution from a particular source

FF are usually measured as a function of the τ_{had} pT and prongness

Matrix method

- Define two lepton selection: *tight* (nominal selection) and *loose* (looser id and iso requirements)
- Define an inclusive data sample S with one loose lepton and n_{jets}
- S = T(tight)+L(loose) = R(real)+F(fake)
- Bkg events in signal region are intersection of T and F
- Matrix method equation: $\begin{pmatrix} \langle n_T \rangle \\ \langle n_L \rangle \end{pmatrix} = \begin{pmatrix} \varepsilon_r & \varepsilon_f \\ \overline{\varepsilon_r} & \overline{\varepsilon_f} \end{pmatrix} \begin{pmatrix} n_R \\ n_F \end{pmatrix}$
- Where ϵ_r (ϵ_f) probability of a real (fake) lepton pass the tight criteria, measured in data CRs
- Number of fake leptons in tight selection estimated as:

$$\hat{n}_{TF} = \varepsilon_f \hat{n}_F = \frac{\varepsilon_f}{\varepsilon_r - \varepsilon_f} \left(\varepsilon_r (n_T + n_L) - n_T \right)$$