

Light HNLs in beam-dump experiments

Inar Timiryasov EPFL, Lausanne

KAON-2019 @ Perugia

13.09.2019

- Generic HNLs: production and decay
- See-saw mechanism and HNLs
- HNLs and baryon asymmetry of the Universe

Generic HNLs: production and decay

HNLs (heavy neutral leptons)

• Neutral singlet fermions. Mixing with neutrinos $\nu_{L_{\alpha}} = U_{\alpha i}^{PMNS} \nu_i + U_{\alpha} N,$

•
$$\mathcal{M}(K \to eN) = U_e \cdot \mathcal{M}(K \to e\nu)$$

HNL production

Leptonic and semileptonic meson decays

 HNL production and decay have been studied in many works, see e.g. Gorbunov, Shaposhnikov 0705.1729 and its update Bondarenko et al, 1805.08567

HNL production

HNL decays

Bondarenko et al, 1805.08567

Open-source implementation: https://github.com/f-thiele/cHNLdecay

HNL decays

Channel	Opens at	Relevant from	Relevant up to	Max BR	Reference
	[MeV]	[MeV]	[MeV]	[%]	in [67]
$N o u_{lpha} u_{eta} ar{ u}_{eta}$	$\sum m_{\nu} \approx 0$	$\sum m_{\nu} \approx 0$		100	(3.5)
$N \to \nu_{\alpha} e^+ e^-$	1.02	1.29		21.8	(3.4)
$N \to \nu_{\alpha} \pi^0$	135	136	3630	57.3	(3.7)
$N \to e^- \pi^+$	140	141	3000	33.5	(3.6)
$N \to \mu^- \pi^+$	245	246	3000	19.7	(3.6)
$N \to e^- \nu_\mu \mu^+$	106	315		5.15	(3.1)
$N \to \mu^- \nu_e e^+$	106	315		5.15	(3.1)
$N \to \nu_{\alpha} \mu^{+} \mu^{-}$	211	441		4.21	(3.4)
$N \to \nu_{\alpha} \eta$	548	641	2330	3.50	(3.7)
$N \to e^- \rho^+$	770	780	4550	10.4	(3.8)
$N o u_{\alpha} \rho^0$	770	780	3300	4.81	(3.9)
$N \to \mu^- \rho^+$	875	885	4600	10.2	(3.8)
$N \to \nu_{\alpha} \omega$	783	997	1730	1.40	(3.9)
$N o u_{\alpha} \eta'$	958	1290	2400	1.86	(3.7)

Table from 1811.00930 [67] = Bondarenko et al, 1805.08567

Constraints on mass and mixing

BBN constraint

HNLs will be thermally produced in the early Universe due to mixing with active neutrinos. Their decays could potentially spoil primordial nucleosynthesis.

Accurate consideration below π mass: Ruchayskiy, Ivashko, 1202.2841

BBN constraint

See-saw mechanism and HNLs

See-saw mechanism for neutrino masses

Minkowski; Yanagida; Gell-Mann, Ramond, Slansky; Glashow; Mohapatra, Senjanovic

 $F_{\alpha I}$ are new Yukawa couplings, M_{IJ} is the mass matrix of RH neutrinos

Neutrino masses: $M_{\nu} = -M_D M_M^{-1} M_D^T$, $[M_D]_{\alpha I} = F_{\alpha I} \langle \Phi \rangle$

Mixing with N_I
$\nu_{L_{\alpha}} = U_{\alpha i}^{PMNS} \nu_i + \Theta_{\alpha I} N_I^c,$
$\Theta_{\alpha I} = \frac{\langle \Phi \rangle F_{\alpha I}}{\Gamma}$
$M M_I$

See-saw mechanism with 2 HNLs

- 6 parameters: two masses, Dirac phase, 1 Majorana phase, two more parameters (a complex angle ω)
- If one wants to be technically natural, 2 HNLs have to be nearly
 degenerate in mass
 Shaposhnikov 2006

Kersten, Smirnov 2007 Moffat, Pascoli, Weiland [1712.07611] Drewes ,Klarić, Klose [1907.13034]

• Mixings
$$|U_{\alpha}|^2 = |\Theta_{\alpha 1}|^2 + |\Theta_{\alpha 2}|^2$$

- Not all values of $|U_{\alpha}|^2$ are compatible with oscillation data!
- There are lower bounds on $U^2 = \Sigma_{\alpha} |U_{\alpha}|^2$ and $|U_{\alpha}|^2$

See-saw mechanism with 2 HNLs: Mixings

15

* no constraints on δ phase were assumed

HNLs and baryon asymmetry of the Universe

Baryon asymmetry of the Universe (BAU)

$$\eta \equiv \frac{n_B}{n_{\gamma}} = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq 6.2 \times 10^{-10}$$

see, e.g. hep-ph/1204.4186

Lepton asymmetry -> baryon asymmetry by the sphaleron processes Kuzmin, Rubakov Shaposhnikov 1986

2 right-handed neutrinos (HNLs) with almost degenerate mass M_N

vMSM

(neutrino Minimal Standard Model)

Asaka, Blanchet, Shaposhnikov 2005

	N_1	DM candidate	$m \sim few \times keV$	
(N ₂	v masses via see-saw		Akhmedov, Rubakov,
I		BAU	$m \sim 0.1 - 10 GeV$	Smirnov, 1998
	N_3 J	DM production	almost degenerate	Asaka, Shaposhnikov 2005

• •

HNLs in the vMSM

- 6 parameters: two masses, Dirac phase, 1 Majorana phase, two more parameters (a complex angle ω)
- Degenerate in mass (leptogenesis requirement)

• Mixings
$$|U_{\alpha}|^2 = |\Theta_{\alpha 1}|^2 + |\Theta_{\alpha 2}|^2$$

- Not all values of $|U_{\alpha}|^2$ are compatible with oscillation data!
- There are lower bounds on $U^2 = \Sigma_\alpha \,|\, U_\alpha \,|^2$ and $\,|\, U_\alpha \,|^2$ from seesaw
- Upper bounds from BAU

BAU in the vMSM

- Initial idea: Akhmedov, Rubakov, Smirnov
- Formulation of kinetic theory: Asaka, Shaposhnikov.
- Analysis of baryon asymmetry generation in the vMSM: Asaka, Shaposhnikov, Canetti, Drewes, Frossard; Abada, Arcadi, Domcke, Lucente; Hernández, Kekic, J. López-Pavón, Racker, J. Salvado; Drewes, Garbrech, Guetera, Klariç; Hambye, Teresi; Eijima, IT; Ghiglieri, Laine,...

BAU in the vMSM

- Generation of asymmetry is described by a system of kinetic equations: (3 + 4 + 4) differential equations
- Recent improvements
 Incorporated in
 Eijima, Shaposhnikov, IT
 - * Accurate computation of rates 1012.3784, 1202.1288, 1403.2755, 1605.07720
 - Fermion number violating processes

1703.06085, 1703.06087

Neutrality of plasma

1401.2459, 1605.07720, 1709.07834

* Gradual freeze-out of sphalerons

1709.07834, 1711.08469

Studies of the parameter space
 1208.4607, 1606.06690, 1606.06719, 1609.09069, 1710.03744

HNLs in the vMSM (BAU requirements)

HNLs in the vMSM (BAU requirements)

HNLs in the vMSM (BAU requirements)

Indirect tests of the vMSM

In short: no way (apart from, maybe, $0\nu\beta\beta$)

Gorbunov, IT, 1412.7751

High intensity experiments and LHC: Synergy

1902.04535

Current luminosity

High intensity experiments and LHC: Synergy

1902.04535

HL LHC

Useful links

- HNL production and decay formulas: 1805.08567
- An open source package to calculate HNL decays: https://github.com/f-thiele/cHNLdecay
- An example of a search at fixed target experiments: 1811.00930
- Most recent BAU limits, mixings compatible with see-saw: 1808.10833
- Helicity effects in beam-dump experiments: 1905.00284 and Tastet&IT (coming soon)

Conclusions

- HNLs appear in many models
- High-intensity frontier accelerator experiments are ideal for HNL searches
- The freedom in mixings is limited if one wants to explain active neutrino data with two HNLs
- It is limited further if one wants to explain BAU

Thank you!

1ª