$K \rightarrow \pi \pi$ decay, epsilon' and the RBC-UKQCD kaon physics program

KAON2019
University of Perugia (Italy)
September 10-13, 2019
N.H. Christ

RBC/UKQCD Collaboration

Outline

- RBC-UKQCD kaon program:
$-\Delta M_{K},\left(\varepsilon_{\mathrm{K}}\right)_{\mathrm{LD}},\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\mathrm{LD}}, \mathrm{K}^{+} \rightarrow \pi^{+} I^{+} I^{-},\left(K_{L} \rightarrow \mu^{+} \mu^{+}\right)_{\gamma v}$
- E\&M corrections to $\pi \rightarrow \mu \nu$ and $K \rightarrow \mu / e v$
- $K \rightarrow \pi \pi$ decay and ε^{\prime}
- Quick review of standard model CR
- Overview of 2015 calculation
- Overview of 2019 calculation
- Multi-operator results for $\pi \pi$ scattering
$-K \rightarrow \pi \pi$ decay amplitudes (no new result yet for ε^{\prime})
- Conclusion

The RBC \& UKQCD collaborations

$B N L$ and BNL/RBRC	Bigeng Wang
Yasumichi Aoki (KEK) Taku Izubuchi	Tianle Wang
	Yidi Zhao
Yong-Chull Jang	University of Connecticut
Chulwoo Jung	Tom Blum
Meifeng Lin	Dan Hoying (BNL)
Aaron Meyer Hiroshi Ohki	Luchang Jin (RBRC)
Shigemi Ohta (KEK) Cheng Tu	
Amarjit Soni	Edinburgh University
UC Boulder	Peter Boyle
Oliver Witzel	Luigi Del Debbio
CERN	Felix Erben
Mattia Bruno	Vera Gülpers Tadeusz Janowski
Columbia University	Julia Kettle
	Michael Marshall
Ryan Abbot	Fionn Ó hÓgáin
Norman Christ	Antonin Portelli
Duo Guo	Tobias Tsang
Christopher Kelly	Andrew Yong
Bob Mawhinney	Azusa Yamaguchi
Masaaki Tomii	
Jiqun Tu	

University of Liverpool

Nicolas Garron
MIT
David Murphy
$\frac{\text { Peking University }}{\text { Xu Feng }}$
University of Regensburg
Christoph Lehner (BNL)
University of Southampton
Nils Asmussen
Jonathan Flynn
Ryan Hill
Andreas Jüttner
James Richings
Chris Sachrajda
Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

RBC-UKQCD kaon program

- $\Delta M_{K}: 153$ configs., $1 / \mathrm{a}=2.38 \mathrm{GeV}, 64^{3} \times 128$, all masses physical (Bigeng Wang).
- $\left(\varepsilon_{\mathrm{K}}\right)_{\mathrm{LD}}$: exploratory calculation done (Ziyuan Bai)
- $\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\mathrm{LD}}: 37$ configs., $1 / \mathrm{a}=2.38 \mathrm{GeV}$ $64^{3} \times 128$, all masses physical. (Xu Feng)
- $K^{+} \rightarrow \pi^{+} I^{+} I^{-}$: Fionn Ó hÓgáin's talk on Thurs.
- $\left(K_{L} \rightarrow \mu^{+} \mu\right)_{\gamma \gamma}$: under study, $\pi \rightarrow e^{+} e^{-}$done (Y. Zhao)
- E\&M corrections:

$K \rightarrow \mu^{+} \mu^{-}$

Physics of $K_{L} \rightarrow \mu^{+} \mu^{-}$

- A second order weak, " s strangeness changing neutral current"

(Cirigliano, et al. , Rev. Mod. Phys., 84, 2012)
- $K_{L} \rightarrow \mu^{+} \mu^{-}$decay rate is known:
$-\operatorname{BR}\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)=(6.84 \pm 0.11) \times 10^{-9}$
- Large "background" from two-photon process:
- Third-order electroweak amplitude
- Optical theorem gives imaginary part.
- $K_{L} \rightarrow \gamma \gamma$ decay rate is known

Physics of $K_{L} \rightarrow \mu^{+} \mu^{-}$(con't)

- Define: $\frac{\Gamma\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)}{\Gamma\left(K_{L} \rightarrow \gamma \gamma\right)}=2 \beta_{\mu}\left(\frac{\alpha}{\pi} \frac{m_{\mu}}{M_{K}}\right)^{2}\left(\left|F_{\text {imag }}\right|^{2}+\left|F_{\text {real }}\right|^{2}\right)$
- Optical theorem determines:

$$
\left|F_{\text {real }}\right|=\left|\left(F_{\text {real }}\right)_{E \& M}+\left(F_{\text {real }}\right)_{\text {Weak }}\right|=1.167 \pm 0.094
$$

- Standard model: $\left(F_{\text {real }}\right)_{\text {Weak }}=-1.82 \pm 0.04$
- A 10% lattice calculation of $\left(F_{\text {real }}\right)_{E \& M}$ would allow a test of $\left(F_{\text {real }}\right)_{\text {Weak }}$ with $6-17 \%$ accuracy
- Lattice calculation more difficult than ΔM_{K}
- 5 vertices, 60 time orders
- many states $\mid \mathrm{n}>$ with $E_{\mathrm{n}}<M_{K}$
- First try simpler $\pi^{0} \rightarrow e^{+} e^{-}$

Consider simpler $\pi^{0} \rightarrow e^{+} e^{-}$

- Euclidean non-covariant P.T. difficult:
- 12 time orders,
- $E_{\gamma \gamma}<M_{\pi 0}$
- Try something different:
- Evaluate in Minkowski space
- Wick rotate internal time integral:
$\mathcal{A}_{\pi^{0} \rightarrow e^{+} e^{-}} \rightarrow \int d^{4} w \widetilde{L}\left(K_{-}, K_{+}, W\right)_{\mu \nu}\langle 0| T\left\{J_{\mu}\left(\frac{W}{2}\right) J_{\nu}\left(-\frac{W}{2}\right)\right\}\left|\pi^{0}(\vec{P}=0)\right\rangle$

Lattice Results

(Yidi Zhao)

$$
\mathcal{A}_{\pi^{0} \rightarrow e^{+} e^{-}} \rightarrow \int d^{4} w \widetilde{L}\left(k_{-}, k_{+}, w\right)_{\mu \nu}\langle 0| T\left\{J_{\mu}\left(\frac{W}{2}\right) J_{\nu}\left(-\frac{W}{2}\right)\right\}\left|\pi^{0}(\vec{P}=0)\right\rangle
$$

- Lattice result is complex:
- Exponentially small FV corrections
- Physical kinematics, $1 / a \leq 1.73 \mathrm{GeV}$:
- $\operatorname{Im}(A)=35.94(1.01)(1.09) \quad[E x p t: 35.07(37)]$
- $\operatorname{Re}(A)=20.39(72)(70) . \quad$ [Expt: 21.51(2.02)]

$K \rightarrow \pi \pi$ decay and ε^{\prime}

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\begin{gathered}
\left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
\lambda=0.22535 \pm 0.00065, \\
\bar{\rho}=0.131_{-0.013}^{+0.026},
\end{gathered} \quad \begin{gathered}
\text { CP } \\
\lambda=0.811_{-0.012}^{+0.022}
\end{gathered}
$$

$K^{0}-\overline{K^{0}}$ mixing

- $\Delta S=1$ weak decays allow K^{0} and $\overline{K^{0}}$ to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left\{\left(\begin{array}{ll}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{00}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{00}} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

- Decaying states are mixtures of K^{0} and $\overline{K^{0}}$

$$
\begin{array}{lc}
\left|K_{S}\right\rangle=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \bar{\epsilon}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\} \\
\left|K_{L}\right\rangle=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \begin{array}{c}
\text { Indirect CP } \\
\text { violation }
\end{array}
\end{array}
$$

CP violation

- CP violating, experimental amplitudes:

$$
\begin{aligned}
\eta_{+-} & \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Where: $\epsilon=\bar{\epsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}$

Indirect: $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
Direct: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.66 \pm 0.23) \times 10^{-3}$

$K \rightarrow \pi \pi$ and CP violation

- Final $\pi \pi$ states can have $/=0$ or 2 .

$$
\begin{array}{rlrl}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle & =A_{2} e^{i \delta_{2}} & \Delta I=3 / 2 \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}} & & \Delta I=1 / 2
\end{array}
$$

- CP symmetry requires A_{0} and A_{2} be real.
- Direct CP violation in this decay is characterized by:

$$
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} \boldsymbol{A}_{2}}-\frac{\operatorname{Im} \boldsymbol{A}_{0}}{\operatorname{Re} \boldsymbol{A}_{0}}\right) \quad \begin{array}{|c|}
\begin{array}{c}
\text { Direct CP } \\
\text { violation }
\end{array} \\
\hline
\end{array}
$$

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian $\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}$
- $\tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=(1.543+0.635 i) \times 10^{-3}$
- $V_{q q^{\prime}}$ - CKM matrix elements
- z_{i} and $y_{i}-$ Wilson Coefficients
- Q_{i} - four-quark operators

Lattice calculation of $\langle\pi \pi| H_{W}|K\rangle$

- The operator product $\bar{d}(x) s(x)$ easily creates a kaon.
- Use finite-volume energy quantization (Lellouch-Luscher) and adjust L so that $n^{\text {th }}$ excited state obeys: $E_{\pi \pi}{ }^{(n)}=M_{K}$

$p=2 \pi / L$

$$
\left\langle\pi^{+} \pi^{-}\right| H_{W}\left|K^{0}\right\rangle \quad \propto \quad\left\langle\bar{d} u\left(t_{\pi_{1}}\right) \bar{u} d\left(t_{\pi_{2}}\right) H_{W}\left(t_{\mathrm{op}}\right) \bar{d} u\left(t_{K}\right)\right\rangle
$$

- Use boundary conditions on the quarks: $E_{\pi \pi}{ }^{\text {(gnd) }}=M_{K}$
- For $(\pi \pi)_{l=2}$ make d anti-periodic
- For $(\pi \pi)_{l=0}$ use G-parity boundary conditions: $\underline{\text { arXiv:1908.08 }}$

Calculation

 of A_{2}
$\Delta I=3 / 2$ - Continuum Results

(M. Lightman, E. Goode T. Janowski)

- Use two large ensembles to remove a^{2} error ($m_{\pi}=135 \mathrm{MeV}$, $\mathrm{L}=5.4 \mathrm{fm}$)
- $48^{3} \times 96,1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128,1 / a=2.28 \mathrm{GeV}$
- Continuum results:
- $\operatorname{Re}\left(A_{2}\right)=1.50\left(0.04_{\text {stat }}\right)(0.14)_{\text {syst }} \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-6.99(0.20)_{\text {stat }}(0.84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}$
- Experiment: $\operatorname{Re}\left(A_{2}\right)=1.479(4) 10^{-8} \mathrm{GeV}$
- $E_{\pi \pi} \rightarrow \delta_{2}=-11.6(2.5)(1.2)^{0}$
- [Phys.Rev. D91, 074502 (2015)]

Calculation of A_{0} and ε^{\prime}

Overview of 2015 calculation

(Chris Kelly and Daiqian Zhang)

- Use $32^{3} \times 64$ ensemble
$-1 / a=1.3784(68) \mathrm{GeV}, L=4.53 \mathrm{fm}$.
- G-parity boundary condition in 3 directions
- 216 configurations separated by 4 time units
- Achieve essentially physical kinematics:
- $M_{\pi}=143.1(2.0)$
- $M_{K}=490.6(2.2) \mathrm{MeV}$
- $E_{\pi \pi}=498(11) \mathrm{MeV}$

$I=0, \pi \pi-\pi \pi$ correlator

- Determine normalization of $\pi \pi$ interpolating operator
- Determine energy of finite volume, $I=0, \pi \pi$ state:

$$
E_{\pi \pi}=498(11) \mathrm{MeV}
$$

- Obtained consistent results from a one-state fit with $t_{\text {min }}=6$ or a two-state fit with $t_{\text {min }}=4$.

$I=0 K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_{w} and $\pi \pi$ operator.
- Show data for all $K-H_{W}$ separations $t_{Q}-t_{K} \geq 6$ and $t_{\pi \pi}-t_{K}=10,12,14,16$ and 18.
- Fit correlators with $t_{\pi \pi}-t_{Q} \geq 4$
- Obtain consistent results for $t_{\pi \pi}-t_{Q} \geq 3$ or 5

Systematic errors

Description	Error
Operator renormalization	15%
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

2015 Results

[Phys. Rev. Lett. 115 (2015) 212001]

- $E_{\pi \pi}(499 \mathrm{MeV})$ determines δ_{0} :
- $I=0 \pi \pi$ phase shift: $\quad \delta_{0}=23.8(4.9)(2.2)^{\circ}$
- Dispersion theory result: $\delta_{0}=34^{\circ}$ [G. Colangelo, et al.]
- $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\left(1.38 \pm 5.15_{\text {stat }} \pm 4.59_{\text {sys }}\right) \times 10^{-4}$
- Expt.: (16.6 ± 2.3) x 10^{-4}
- 2.1σ difference
- Unanswered questions:
- Is this 2.1σ difference real? \rightarrow Reduce errors
- Why is δ_{0} so different from \rightarrow Introduce more $\pi \pi$ operators the dispersive result? to distinguish excited states

Extend and improve calculation

 (Chris Kelly and Tianle Wang)\checkmark - Increase statistics: $216 \rightarrow 1438$ configs.

- Reduce statistical errors
- Allow in depth study of systematic errors
\checkmark - Study operators neglected in our NPR implementation
$\checkmark \quad$ Use step-scaling to allow perturbative matching at a higher energy
$\checkmark \quad$ Use an expanded set of $\pi \pi$ operators
- Use X-space NPR to cross charm threshold (Masaaki Tomii).

Adding more statistics

- Increasing statistics: $216 \rightarrow 1438$ configs.
- $\pi \pi-\pi \pi$ correlator well-described by a single $\pi \pi$ state

$$
\begin{aligned}
- & \delta_{0}=23.8(4.9)(2.2)^{\circ} \rightarrow 19.1(2.5)(1.2)^{\circ} \\
& \chi^{2} / \operatorname{DoF}=1.6
\end{aligned}
$$

Adding more $\pi \pi$ operators

- Adding a second σ-like ($\bar{u} u+d d)$) operator reveals a second state!
- If only one state, 2×2 correlator matrix will have determinant $=0$. For $t_{f}-t_{i}=5$:
$\operatorname{det}\left(\begin{array}{cc}\left\langle\pi \pi\left(t_{f}\right) \pi \pi\left(t_{i}\right)\right\rangle & \left\langle\pi \pi\left(t_{f}\right) \sigma\left(t_{i}\right)\right\rangle \\ \left\langle\sigma\left(t_{f}\right) \pi \pi\left(t_{i}\right)\right\rangle & \left\langle\sigma\left(t_{f}\right) \sigma\left(t_{i}\right)\right\rangle\end{array}\right)=0.439(50)$
- Add a third operator giving each pion a larger momentum: $p= \pm(3,1,1) \pi / L$
- Label operators as $\pi \pi(111), \sigma, \pi \pi(311)$
- Only 741 configurations with new operators

$I=0 \pi \pi$ scattering with three operators

- Third $\pi \pi(311)$ operator not important.
- $\delta_{0}=31.7(6)^{\circ}$ vs 34° prediction (5-15 fit, statistical errors only).

$I=0 \pi \pi$ scattering with $P_{\mathrm{cm}} \geq 0$ (preliminary)

$I=0 \pi \pi$ scattering with $P_{\mathrm{cm}} \geq 0$

- Expect increased difficulty separating excited states for $P_{\mathrm{cm}} \geq 0$.

$I=0 \pi \pi$ scattering with $P_{\mathrm{cm}} \geq 0$

- Failure of 3-operator fit easy to recognize:

$$
P_{\mathrm{cm}}=(222) \pi / \mathrm{L}
$$

- Plateau does not extend to smaller t when extra operators are added.

$I=0 \pi \pi$ scattering with $P_{\mathrm{cm}} \geq 0$

- Plateau does not extend to smaller t when extra operators are added.
- The matrix of amplitudes $A_{l a>, O_{b}}$ is largely diagonal.
- The fit to each operator is effectively a single-state fit with the same problems as those in 2015.
- Perhaps the result having no moving σ operator implemented (yet)?

$\mathrm{K} \rightarrow \pi \pi$ from 3-operator fits (case I)

- Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi \pi$ scattering:

$\mathrm{K} \rightarrow \pi \pi$ from 3-operator fits (case II)

- Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi \pi$ scattering:

Two data analysis challenges

- Auto-correlations - we must be careful that our errors are accurate
- We need estimates of goodness of fit (p-values)
- Demonstrate that our fits describe the data.
- Decide if alternative fits used to estimate systematic errors are plausible.
- However, our lattice QCD p-values are traditionally unreasonably small!

Auto-correlations

- Our measurements are made every 4 MD time units and are mildly correlated.
- While we have $\mathrm{N}=741$ configurations, the covariance matrix for three operators and $\mathrm{t}=5-15$ time slices is 66×66 !
- Noise grows as we bin the data and have fewer samples to measure the fluctuations.
- Solved by the blocked jackknife method:
- Identify N/B blocks of size B.
- Sequentially remove each block and analyze the remaining N-B (not N/B-1) samples

I=0 $\pi \pi$ two-point function errors

Binned scrambled data errors

Poor p-values

- We obtain p-values of $0.1-0.2$ for most "best fits"!
- Last spring, Tanmoy Bhattacharya pointed out that this is often caused by ignoring fluctuations in the covariance matrix.
- This broadens the χ^{2} distribution into the Hotelling T^{2} distribution (related to F distrib.).

Hotelling T^{2} is insufficient

- Hotelling assumes that the data (not their averages) are Gaussian and uncorrelated.
- Not true for our case.
- Use a bootstrap analysis to determine the correct generalized χ^{2} distribution from the data. (C. Kelly)
- Use this correct χ^{2} distribution to determine the p-value for the fit.

Conclusions

- Calculation of $K \rightarrow \pi \pi$ decay substantially improved over 2015 result.
- $216 \rightarrow 741$ configurations.
- Three $\pi \pi$ interpolating operators: discriminate between ground and excited states $\rightarrow \delta_{0}\left(E=M_{k}\right)=31.7(6)^{\circ}$
- Errors reduced by using correlated fits.
- Auto-correlations are taken into account.
- Bootstrap-determined χ^{2} distribution gives correct p-values. [$p=0.261$ (BS) vs $\left.0.037\left(\chi^{2}\right)\right]$
- Final results available very soon.

