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Outline
• RBC-UKQCD kaon program:  

– MK, (K)LD, (K LD, Kll (KL )K ( K)LD ( LD  ( L   )
– E&M corrections to  and K  e

• K  decay and  decay a d 
– Quick review of standard model CP
– Overview of 2015 calculation
– Overview of 2019 calculation
– Multi-operator results for  scattering
– K  decay amplitudes (no new result yet for 

• Conclusion
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RBC-UKQCD kaon program
• MK: 153 configs., 1/a=2.38 GeV, 643 x 128,     

all masses physical (Bigeng Wang).
• (K)LD: exploratory calculation done (Ziyuan Bai)

• (K LD: 37 configs., 1/a=2.38 GeV        (   LD 3 g , 3
643 x 128, all masses physical. (Xu Feng)

• Kll : Fionn Ó hÓgáin’s talk on Thurs.

• (KL ) : under study, ee done (Y. Zhao)

• E&M corrections:
–  
– K  e

• QEDL or
• new IVR method without power-law 
corrections, (Feng & Jin: arXiv:1812)
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– K  e
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K K
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Physics of KL  + –

• A second order weak, ``strangeness changing 
neutral current’’

(Cirigliano, et al. , Rev. Mod. Phys., 84, 2012)

• KL  + – decay rate is known:
– BR(KL  + –)  = (6.84 ± 0.11 ) x 10-9

• Large ``background’’ from two photon process:• Large background  from two-photon process:
– Third-order electroweak amplitude
– Optical theorem gives imaginary part.
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– KL   decay rate is known

(1)



Physics of KL  + – (con’t)

• Define:

y L   ( )

• Optical theorem determines:
|Freal | = |(Freal)E&M + (Freal)Weak |=1.167 ± 0.094

St d d d l (F ) 1 82 0 04• Standard model: (Freal)Weak = -1.82 ± 0.04 
• A 10% lattice calculation of (Freal)E&M would allow a 

test of (F l)W k with 6 – 17% accuracytest of (Freal)Weak with 6 17% accuracy
• Lattice calculation more difficult than MK

– 5 vertices, 60 time orders

– many states |n with  En < MK

• First try simpler    e e –
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Consider simpler    e+ e –

• Euclidean non-covariant P.T. difficult: 
– 12 time orders,
– E < M 0E < M0

• Try something different:
– Evaluate in Minkowski space
– Wick rotate internal time integral:
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Lattice Results
(Yidi Zhao)(Yidi Zhao)

• Lattice result is complex:Lattice result is complex:
– Exponentially small FV corrections
– Physical kinematics, 1/a  1.73 GeV :

I (A) 35 94(1 01)(1 09) [E t 35 07(37)]• Im(A) = 35.94(1.01)(1.09)   [Expt: 35.07(37)]
• Re(A) = 20.39(72)(70).       [Expt: 21.51(2.02)]
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K decayK decay
and 'and 
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Cabibbo-Kobayashi-Maskawa mixingy g

• W ± emission scrambles the quark flavors
CP 

violation!
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K0 – K0 mixing
•  S=1 weak decays allow K0 and K0 to decay to 

the same  state.
• Resulting mixing described by Wigner-Weisskopf

• Decaying states are mixtures of K0 and K0Decaying states are mixtures of K and K

Indirect CP 
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CP violation
• CP violating, experimental 

amplitudes:

• Where:
Indirect: || = (2.228 ± 0.011) x 103Indirect:   ||  (2.228 ± 0.011) x 10

Direct:     Re( / ) = (1.66 ± 0.23) x 103
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K   and CP violation

• Final  states can have I = 0 or 2.

I = 3/2

I = 1/2

• CP symmetry requires A0 and A2 be real.

• Direct CP violation in this decay is 
characterized by:

Direct CP 
violation
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Low Energy Effective Theory

• Represent weak interactions 
by local four-quark 
Lagrangian

•

• Vqq – CKM matrix elements

• zi and yi – Wilson Coefficients

• Qi – four-quark operators
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Lattice calculation of   |HW |K W 

• The operator product d(x)s(x) easily 
creates a kaon.

• Use finite-volume energy quantization 
(Lellouch Luscher) and adjust L so(Lellouch-Luscher) and adjust L so 
that nth excited state obeys: E

(n)= MK
.

• Use boundary conditions on the quarks: E (gnd) = MKUse boundary conditions on the quarks: E  MK

• For ()I=2 make d anti-periodic

• For () use G-parity boundary conditions: arXiv:1908 08
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• For ()I=0 use G-parity boundary conditions: arXiv:1908.08
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CalculationCalculation 
of Aof A2
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 I = 3/2 – Continuum Results
(M. Lightman, E. Goode T. Janowski)

• Use two large ensembles to• Use two large ensembles to 
remove a2 error (mp=135 MeV, 
L=5.4 fm)
• 483 x 96, 1/a=1.73 GeV
• 643 x 128, 1/a=2.28 GeV

• Continuum results:
• Re(A2) = 1.50(0.04stat) (0.14)syst×10−8 GeV
• Im(A2) = - 6.99(0.20)stat (0.84)syst×10-13 GeVIm(A2)  6.99(0.20)stat (0.84)syst 10 GeV

• Experiment: Re(A2) = 1.479(4) 10-8 GeV
• E  2  = −11.6(2.5)(1.2)o
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• [Phys.Rev. D91, 074502 (2015)]
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Calculation ofCalculation of 
A and  A0 and 
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Overview of 2015 calculation
(Chris Kelly and Daiqian Zhang)

• Use 323 x 64 ensemble
– 1/a = 1.3784(68) GeV, L = 4.53 fm.

G parity boundary condition in 3 directions– G-parity boundary condition in 3 directions
– 216 configurations separated by 4 time units

• Achieve essentially physical kinematics:
– M =  143.1(2.0)
– MK = 490.6(2.2) MeV
– E = 498(11) MeV– E =  498(11) MeV
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I = 0  –  correlatorI  0,   correlator

• Determine normalization of 
 energy

interpolating operator

• Determine energy of finite 

 energy

volume, I = 0, state:       
E =  498(11) MeV

• Obtained consistent results 
from a one-state fit with 
tmin=6 or a two-state fit with 
tmin=4. 

K mass
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I = 0 K   matrix elements
• Vary time separation between HW and operator.
• Show data for all K – HW separations tQ - tK  and   Q

t - tK = 10, 12, 14, 16 and 18.
• Fit correlators with t - tQ 

Obt i i t t lt f t t  5• Obtain consistent results for t - tQ  or 5

Q2 Q6
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Systematic errorsSystematic errors

Description Error
Operator 
renormalization

15%

Wilson coefficients 12%so coe c e ts %
Finite lattice spacing 12%
Lellouch-Luscher factor 11%
Finite volume 7%
Parametric errors 5%
Excited states 5%Excited states 5%
Unphysical kinematics 3%
Total 27%
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2015 Results
[Phys Rev Lett 115 (2015) 212001][Phys. Rev. Lett. 115 (2015) 212001]

• E(499 MeV) determines 0 : 0

• I = 0 phase shift:        0 = 23.8(4.9)(2.2)o

• Dispersion theory result: 0 = 34o [G. Colangelo, et al.]

• Re( /) = (1.38 ± 5.15stat ± 4.59sys ) x 10-4

• Expt.:  (16.6 ± 2.3) x 10-4

2 1 diff• 2.1  difference

• Unanswered questions:
Is this 2 1 difference real? Reduce errors• Is this 2.1  difference real?  Reduce errors

• Why is 0 so different from     
the dispersive result?

Introduce more  operators 
to distinguish excited states
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Extend and improve calculation 
(Ch i K ll d Ti l W )

• Increase statistics: 216 1438 configs.

(Chris Kelly and Tianle Wang)

Increase statistics: 216  1438 configs.
– Reduce statistical errors
– Allow in depth study of systematic errors

• Study operators neglected in our NPR 
implementation

• Use step-scaling to allow perturbative 
matching at a higher energy

• Use an expanded set of operators
• Use X-space NPR to cross charm 

threshold (Masaaki Tomii).
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Adding more statistics

• Increasing statistics: 216  1438 configs.
 correlator well described by a single–  – correlator well-described by a single 
 state

– 0 = 23.8(4.9)(2.2)o  19.1(2.5)(1.2)o
0 ( )( ) ( )( )

2 / DoF = 1.6

KAON2019 - 09/11/2019 (26)



Adding more  operators

• Adding a second -like (uu+dd) operator 
reveals a second state!reveals a second state!

• If only one state, 2 x 2 correlator matrix will 
have determinant = 0 For t t = 5:have determinant = 0.  For tf - ti = 5:

= 0.439(50)

• Add a third operator giving each pion a larger 
momentum: p = ± (3 1 1) /Lmomentum: p = ± (3,1,1) /L

• Label operators as (111),  (311)
Onl 741 config rations ith ne operators• Only 741 configurations with new operators
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I = 0  scattering with three operators







 




• Third (311) operator not important. 
 31 7(6)° s 34° prediction (5 15 fit



• 0 = 31.7(6)° vs 34° prediction (5-15 fit, 
statistical errors only).
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I = 0  scattering with Pcm  0
(preliminary)(preliminary)

Colangelo et al Nuc PhysColangelo et al, Nuc Phys 
B603 (2001) 125-179

Pcm = (0, 0, 0)

Pcm = (2, 0, 0)

P (2 2 0)Pcm = (2, 2, 0)
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I = 0  scattering with Pcm 
• Expect increased difficulty separating excited 

states for Pcm  0.
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I = 0  scattering with Pcm 

• Failure of 3-operator fit easy to recognize:

Pcm = (222) /L

• Plateau does not extend to smaller t when 
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I = 0  scattering with Pcm 

• Plateau does not extend to smaller t when 
dd dextra operators are added.

• The matrix of amplitudes A|a>,Ob is largely 
di ldiagonal.

• The fit to each operator is effectively a 
single state fit with the same problems assingle-state fit with the same problems as 
those in 2015.

• Perhaps the result having no moving • Perhaps the result having no moving 
operator implemented (yet)?
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K   from 3-operator fits (case I)

• Fit using up to 3 operators and 3 states with 
energies and amplitudes from  scattering:energies and amplitudes from  scattering:

<|Q|K>

2&3 operators,   
2&3 states

one operator 
one state

2&3 states

one state
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K   from 3-operator fits (case II)

• Fit using up to 3 operators and 3 states with 
energies and amplitudes from  scattering:

<|Q|K>

energies and amplitudes from  scattering:

<|Q|K>

one operatorone operator,
one state

2&3 t2&3 operators,  
2&3 states
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Two data analysis challenges

• Auto-correlations – we must be careful 
h

y g

that our errors are accurate
• We need estimates of goodness of fit    

( l )(p-values)
– Demonstrate that our fits describe the data.

Decide if alternative fits used to estimate– Decide if alternative fits used to estimate 
systematic errors are plausible.

– However, our lattice QCD p-values are p
traditionally unreasonably small! 
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Auto-correlations
• Our measurements are made every 4 MD 

time units and are mildly correlatedtime units and are mildly correlated.  
• While we have N=741 configurations, the 

covariance matrix for three operators andcovariance matrix for three operators and    
t = 5-15 time slices is 66 x 66!

• Noise grows as we bin the data and have• Noise grows as we bin the data and have 
fewer samples to measure the fluctuations.

• Solved by the blocked jackknife method:Solved by the blocked jackknife method:
– Identify N/B blocks of size B.
– Sequentially remove each block and analyze the q y y

remaining N-B (not N/B-1) samples
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I=0  two-point function errors
ro

r

or

Binned data errors Binned scrambled data errors

el
at
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bin size bin size

re re
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ro
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Blocked jackknife errors

re
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tiv
e 

e
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Poor p-values

• We obtain p-values of 0.1– 0.2 for most p
“best fits”!

• Last spring, Tanmoy Bhattacharya pointed p g y y p
out that this is often caused by ignoring 
fluctuations in the covariance matrix.

• This broadens the  2 distribution into the 
Hotelling T 2 distribution (related to F distrib.).

KAON2019 - 09/11/2019 (38)



Hotelling T 2 is insufficient

H t lli th t th d t ( t th i

Hotelling T 2 is insufficient

• Hotelling assumes that the data (not their 
averages) are Gaussian and uncorrelated.
Not true for our case• Not true for our case.

• Use a bootstrap analysis to determine the 
correct generalized  2 distribution from thecorrect generalized  2 distribution from the 
data. (C. Kelly)

• Use this correct  2 distribution to determine• Use this correct  distribution to determine 
the p-value for the fit.
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Conclusions
• Calculation of K  decay substantially 

improved over 2015 result.
• 216  741 configurations.
• Three  interpolating operators: 

discriminate between ground and excited 
states  0 (E=MK) = 31.7(6)°

• Errors reduced by using correlated fits.
• Auto-correlations are taken into account.
• Bootstrap-determined  2 distribution gives 

correct p-values. [p=0.261(BS) vs 0.037( 2)]
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• Final results available very soon.
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