$K \rightarrow \pi \pi$ decay, epsilon' and the RBC-UKQCD kaon physics program

KAON2019

University of Perugia (Italy)

September 10-13, 2019

N.H. Christ RBC/UKQCD Collaboration

Outline

- RBC-UKQCD kaon program:
 - $\varDelta M_{K}, (\varepsilon_{\mathsf{K}})_{\mathsf{LD}}, (\mathsf{K}^{+} \rightarrow \pi^{+} \nu \,\overline{\nu})_{\mathsf{LD}}, \mathsf{K}^{+} \rightarrow \pi^{+} l^{+} l^{-}, (\mathsf{K}_{L} \rightarrow \mu^{+} \mu^{+})_{\gamma \gamma}$
 - E&M corrections to $\pi \rightarrow \mu \nu$ and $K \rightarrow \mu / e \nu$
- $K \rightarrow \pi \pi$ decay and ε'
 - Quick review of standard model CR
 - Overview of 2015 calculation
 - Overview of 2019 calculation
 - Multi-operator results for $\pi\pi$ scattering

- $K \rightarrow \pi \pi \text{ decay amplitudes}$ (no new result yet for ε)

Conclusion

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) <u>Taku Izubuchi</u> Yong-Chull Jang <u>Chulwoo Jung</u> Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) <u>Amarjit Soni</u>

> <u>UC Boulder</u> Oliver Witzel

<u>CERN</u> Mattia Bruno

<u>Columbia University</u> <u>Ryan Abbot</u> <u>Norman Christ</u> Duo Guo <u>Christopher Kelly</u>

Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang <u>Tianle Wang</u> Yidi Zhao

<u>University of Connecticut</u> <u>Tom Blum</u> <u>Dan Hoying</u> (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi <u>University of Liverpool</u> <u>Nicolas Garron</u>

> <u>MIT</u> David Murphy

<u>Peking University</u> Xu Feng

<u>University of Regensburg</u> <u>Christoph Lehner</u> (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings <u>Chris Sachrajda</u>

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

RBC-UKQCD kaon program

- ΔM_{κ} : 153 configs., 1/a=2.38 GeV, 64³ x 128, all masses physical (Bigeng Wang).
- $(\mathcal{E}_{\mathsf{K}})_{\mathsf{I},\mathsf{D}}$: exploratory calculation done (Ziyuan Bai)
- $(K^+ \rightarrow \pi^+ \nu \overline{\nu})_{ID}$: 37 configs., 1/a=2.38 GeV 64³ x 128, all masses physical. (Xu Feng)
- $K^+ \rightarrow \pi^+ l^+ l^-$: Fionn Ó hÓgáin's talk on Thurs.
- $(K_L \rightarrow \mu^+ \mu^-)_{\nu\nu}$: under study, $\pi \rightarrow e^+ e^-$ done (Y. Zhao)
- E&M corrections:

 - $K \rightarrow \mu/e \nu \gamma$
- $\pi \rightarrow \mu \nu$ $K \rightarrow \mu / e \mu / e \nu$ $K \rightarrow \mu / e \nu$ $K \rightarrow \mu / e \nu$ $K \rightarrow \mu / e \nu$ -

KAON2019 - 09/11/2019 (5)

Physics of $K_L \rightarrow \mu^+ \mu^-$

 A second order weak, ``strangeness changing neutral current''

(Cirigliano, et al., Rev. Mod. Phys., 84, 2012)

• $K_L \rightarrow \mu^+ \mu^-$ decay rate is known:

− BR($K_L \rightarrow \mu^+ \mu^-$) = (6.84 ± 0.11) x 10⁻⁹

- Large ``background'' from two-photon process:
 - Third-order electroweak amplitude
 - Optical theorem gives imaginary part.
 - $K_L \rightarrow \gamma \gamma$ decay rate is known

 μ^{-}

 K_L^0

Physics of $K_L \rightarrow \mu^+ \mu^-$ (con't)

• Define:
$$\frac{\Gamma(K_L \to \mu^+ \mu^-)}{\Gamma(K_L \to \gamma \gamma)} = 2\beta_{\mu} \left(\frac{\alpha}{\pi} \frac{m_{\mu}}{M_{\kappa}}\right)^2 \left(|F_{\text{imag}}|^2 + |F_{\text{real}}|^2\right)$$

• Optical theorem determines:

 $|F_{\text{real}}| = |(F_{\text{real}})_{\text{E&M}} + (F_{\text{real}})_{\text{Weak}}| = 1.167 \pm 0.094$

- Standard model: $(F_{real})_{Weak} = -1.82 \pm 0.04$
- A 10% lattice calculation of (F_{real})_{E&M} would allow a test of (F_{real})_{Weak} with 6 17% accuracy
- Lattice calculation more difficult than ΔM_{K}
 - 5 vertices, 60 time orders
 - many states $|n\rangle$ with $E_n < M_K$
- First try simpler $\pi^0 \rightarrow e^+ e^-$

Consider simpler $\pi^0 \rightarrow e^+ e^-$

- Euclidean non-covariant P.T. difficult:
 - 12 time orders,

$$- E_{\gamma\gamma} < M_{\pi 0}$$

- Try something different:
 - Evaluate in Minkowski space
 - Wick rotate internal time integral:

$$\mathcal{A}_{\pi^0 \to e^+ e^-} \to \int d^4 w \ \widetilde{L}(k_-, k_+, w)_{\mu\nu} \langle 0 | T \Big\{ J_{\mu}(\frac{w}{2}) J_{\nu}(-\frac{w}{2}) \Big\} | \pi^0(\vec{P} = 0) \rangle$$

 γ_{μ}

 e^+

 $J_{\mu}(\vec{u}, u_0)$

 $J_{\mu}(\vec{v}, v_0)$

 π^0

Lattice Results

(Yidi Zhao)

$$\mathcal{A}_{\pi^0
ightarrow e^+ e^-}
ightarrow \int d^4 w \ \widetilde{L}(k_-, k_+, w)_{\mu
u} \langle 0|T\Big\{J_{\mu}(rac{w}{2})J_{
u}(-rac{w}{2})\Big\}|\pi^0(ec{P}=0)ig
angle$$

- Lattice result is complex:
 - Exponentially small FV corrections
 - Physical kinematics, $1/a \le 1.73$ GeV :
 - Im(A) = 35.94(1.01)(1.09) [Expt: 35.07(37)]
 - Re(A) = 20.39(72)(70). [Expt: 21.51(2.02)]

KAON2019 - 09/11/2019 (4)

$K \rightarrow \pi \pi \, \text{decay}$ and ε'

KAON2019 - 09/11/2019 (10)

Cabibbo-Kobayashi-Maskawa mixing

• W[±] emission scrambles the quark flavors

$$\begin{split} \lambda &= 0.22535 \pm 0.00065 \,, \qquad A = 0.811^{+0.022}_{-0.012} \,, \\ \bar{\rho} &= 0.131^{+0.026}_{-0.013} \,, \qquad \bar{\eta} = 0.345^{+0.013}_{-0.014} \,. \end{split}$$

KAON2019 - 09/11/2019 (11)

.

 $K^0 - \overline{K^0}$ mixing

- Δ S=1 weak decays allow K^0 and $\overline{K^0}$ to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

• Decaying states are mixtures of K^0 and $\overline{K^0}$

$$|K_{S}\rangle = \frac{K_{+} + \overline{\epsilon}K_{-}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \overline{\epsilon} = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\}$$
$$|K_{L}\rangle = \frac{K_{-} + \overline{\epsilon}K_{+}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \operatorname{Indirect CP}_{\text{violation}}$$

CP violation

• CP violating, experimental amplitudes:

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$

$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

• Where: $\epsilon = \overline{\epsilon} + i \frac{\text{Im}A_0}{\text{Re}A_0}$ Indirect: $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$ Direct: $\text{Re}(\varepsilon'/\varepsilon) = (1.66 \pm 0.23) \times 10^{-3}$

$K \rightarrow \pi \pi$ and CP violation

• Final $\pi\pi$ states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires A_0 and A_2 be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \quad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

Low Energy Effective Theory

 Represent weak interactions by local four-quark Lagrangian

$$\mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}$$

•
$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} = (1.543 + 0.635i) \times 10^{-3}$$

- $V_{qq'}$ CKM matrix elements
- z_i and y_i Wilson Coefficients
- Q_i four-quark operators

KAON2019 - 09/11/2019 (15)

Lattice calculation of

$$<\pi\pi|H_W|K>$$

- The operator product $\overline{d}(x)s(x)$ easily creates a kaon.
- Use finite-volume energy quantization (Lellouch-Luscher) and adjust *L* so that n^{th} excited state obeys: $E_{\pi\pi}^{(n)} = M_{K}$

$$p = 2\pi/L$$

 $\langle \pi^+\pi^-|H_W|K^0\rangle \propto \langle \overline{d}u(t_{\pi_1})\overline{u}d(t_{\pi_2}) H_W(t_{\text{op}}) \overline{d}u(t_K) \rangle$

- Use boundary conditions on the quarks: $E_{\pi\pi}^{(gnd)} = M_K$
- For $(\pi\pi)_{l=2}$ make *d* anti-periodic
- For $(\pi\pi)_{l=0}$ use G-parity boundary conditions: <u>arXiv:1908.08</u>

Calculation of A₂

KAON2019 - 09/11/2019 (17)

 $\Delta I = 3/2 - Continuum Results$ (M. Lightman, E. Goode T. Janowski)

- Use two large ensembles to remove a² error (m_π=135 MeV, L=5.4 fm)
 - 48³ x 96, 1/a=1.73 GeV
 - 64³ x 128, 1/a=2.28 GeV
- Continuum results:
 - $\operatorname{Re}(A_2) = 1.50(0.04_{\text{stat}}) (0.14)_{\text{syst}} \times 10^{-8} \text{ GeV}$
 - $Im(A_2) = -6.99(0.20)_{stat} (0.84)_{syst} \times 10^{-13} \text{ GeV}$
- Experiment: Re(A₂) = 1.479(4) 10⁻⁸ GeV
- $E_{\pi\pi} \rightarrow \delta_2 = -11.6(2.5)(1.2)^{\circ}$
- [Phys.Rev. **D91**, 074502 (2015)]

Calculation of A_0 and ε'

KAON2019 - 09/11/2019 (19)

Overview of 2015 calculation (Chris Kelly and Daiqian Zhang)

- Use 32³ x 64 ensemble
 - 1/a = 1.3784(68) GeV, L = 4.53 fm.
 - G-parity boundary condition in 3 directions
 - 216 configurations separated by 4 time units
- Achieve essentially physical kinematics:

$$-M_{\pi} = 143.1(2.0)$$

$$- M_{K} = 490.6(2.2) \text{ MeV}$$

$$- E_{\pi\pi} = 498(11) \text{ MeV}$$

$I = 0, \ \pi\pi - \pi\pi$ correlator

- Determine normalization of $\pi\pi$ interpolating operator
- Determine energy of finite volume, I = 0, $\pi\pi$ state: $E_{\pi\pi} = 498(11)$ MeV
- Obtained consistent results from a one-state fit with t_{min} =6 or a two-state fit with t_{min} =4.

$I = 0 K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_W and $\pi\pi$ operator.
- Show data for all $K H_W$ separations $t_Q t_K \ge 6$ and $t_{\pi\pi} t_K = 10, 12, 14, 16$ and 18.
- Fit correlators with $t_{\pi\pi}$ $t_Q \ge 4$
- Obtain consistent results for $t_{\pi\pi}$ $t_Q \ge 3$ or 5

Systematic errors

Description	Error
Operator	15%
renormalization	
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

2015 Results

[Phys. Rev. Lett. 115 (2015) 212001]

- $E_{\pi\pi}$ (499 MeV) determines δ_0 :
 - $I = 0 \ \pi \pi$ phase shift: $\delta_0 = 23.8(4.9)(2.2)^\circ$
 - Dispersion theory result: $\delta_0 = 34^{\circ}$ [G. Colangelo, *et al.*]
- $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$
 - Expt.: (16.6 ± 2.3) x 10⁻⁴
 - 2.1 σ difference
- Unanswered questions:
 - Is this 2.1 σ difference real? \rightarrow Reduce errors
 - Why is δ_0 so different from \rightarrow Introduce more $\pi\pi$ operators the dispersive result? \rightarrow to distinguish excited states

Extend and improve calculation (Chris Kelly and Tianle Wang)

- ✓ Increase statistics: 216 → 1438 configs.
 Reduce statistical errors
 - Allow in depth study of systematic errors
- Study operators neglected in our NPR implementation
- Use step-scaling to allow perturbative matching at a higher energy
- ✓- Use an expanded set of $\pi\pi$ operators
 - Use X-space NPR to cross charm threshold (Masaaki Tomii).

Adding more statistics

- Increasing statistics: $216 \rightarrow 1438$ configs.
 - $\pi\pi \pi\pi$ correlator well-described by a single $\pi\pi$ state
 - $\delta_0 = 23.8(4.9)(2.2)^\circ → 19.1(2.5)(1.2)^\circ$ χ^2 / DoF = 1.6

Adding more $\pi\pi$ operators

- Adding a second *σ*-like (*ūu+dd*) operator reveals a second state!
- If only one state, 2 x 2 correlator matrix will have determinant = 0. For $t_f t_i = 5$:
- $\det \begin{pmatrix} \langle \pi \pi(t_f) \pi \pi(t_i) \rangle & \langle \pi \pi(t_f) \sigma(t_i) \rangle \\ \langle \sigma(t_f) \pi \pi(t_i) \rangle & \langle \sigma(t_f) \sigma(t_i) \rangle \end{pmatrix} = 0.439(50)$
 - Add a third operator giving each pion a larger momentum: $p = \pm (3,1,1) \pi/L$
 - Label operators as $\pi\pi(111)$, σ , $\pi\pi(311)$
 - Only 741 configurations with new operators

$I = 0 \pi \pi$ scattering with three operators

- Third $\pi\pi(311)$ operator not important.
- $\delta_0 = 31.7(6)^\circ$ vs 34° prediction (5-15 fit, statistical errors only).

(28)

$I = 0 \pi \pi$ scattering with $P_{cm} \ge 0$ (preliminary)

KAON2019 - 09/11/2019 (29)

$I = 0 \pi \pi$ scattering with $P_{\rm cm} \ge 0$

• Expect increased difficulty separating excited states for $P_{cm} \ge 0$.

(30)

$I = 0 \pi \pi$ scattering with $P_{\rm cm} \ge 0$

• Failure of 3-operator fit easy to recognize:

 Plateau does not extend to smaller t when extra operators are added.

$I = 0 \pi \pi$ scattering with $P_{\rm cm} \ge 0$

- Plateau does not extend to smaller *t* when extra operators are added.
- The matrix of amplitudes A_{|a>,Ob} is largely diagonal.
- The fit to each operator is effectively a single-state fit with the same problems as those in 2015.
- Perhaps the result having no moving σ operator implemented (yet)?

$K \rightarrow \pi\pi$ from 3-operator fits (case I)

• Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi\pi$ scattering:

 $K \rightarrow \pi\pi$ from 3-operator fits (case II)

• Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi\pi$ scattering:

Two data analysis challenges

- Auto-correlations we must be careful that our errors are accurate
- We need estimates of goodness of fit (p-values)
 - Demonstrate that our fits describe the data.
 - Decide if alternative fits used to estimate systematic errors are plausible.
 - However, our lattice QCD *p*-values are traditionally unreasonably small!

Auto-correlations

- Our measurements are made every 4 MD time units and are mildly correlated.
- While we have N=741 configurations, the covariance matrix for three operators and t = 5-15 time slices is 66 x 66!
- Noise grows as we bin the data and have fewer samples to measure the fluctuations.
- Solved by the *blocked jackknife* method:
 - Identify N/B blocks of size B.
 - Sequentially remove each block and analyze the remaining N-B (not N/B-1) samples

I=0 $\pi\pi$ two-point function errors

Poor *p*-values

- We obtain *p*-values of 0.1– 0.2 for most "best fits"!
- Last spring, Tanmoy Bhattacharya pointed out that this is often caused by ignoring fluctuations in the covariance matrix.
- This broadens the χ^2 distribution into the Hotelling T^2 distribution (related to *F* distrib.).

Hotelling *T*² is *insufficient*

- Hotelling assumes that the data (not their averages) are Gaussian and uncorrelated.
- Not true for our case.
- Use a bootstrap analysis to determine the correct generalized χ^2 distribution from the data. (C. Kelly)
- Use this correct χ^2 distribution to determine the *p*-value for the fit.

Conclusions

- Calculation of $K \rightarrow \pi \pi$ decay substantially improved over 2015 result.
- 216 \rightarrow 741 configurations.
- Three $\pi\pi$ interpolating operators: discriminate between ground and excited states $\rightarrow \delta_0 (E=M_K) = 31.7(6)^\circ$
- Errors reduced by using correlated fits.
- Auto-correlations are taken into account.
- Bootstrap-determined χ^2 distribution gives correct *p*-values. [*p*=0.261(BS) vs 0.037(χ^2)] -
- Final results available very soon.