Hybrid Star Properties within the Nambu-Jona-Lasinio Model for Quark Matter and Relativistic Mean Field Model for Hadronic Matter

Grigor Alaverdyan

galaverdyan@ysu.am

Yerevan State University

The Modern Physics of Compact Stars and Relativistic Gravity 2019 17-21 September 2019, Yerevan, Armenia

Heavy Ion Colliders, Large Hadron Collider

Hot dense QCD matter properties

Neutron Stars as cosmic laboratories

Cold dense QCD matter properties

Tolman, Oppenheimer and Volkoff equations:

Discoveries of massive neutron stars

J. Antoniadis, et al., Science 340, 1233232 (2013) PSR J0348+0432 $\longrightarrow M = 2.01 \pm 0.04 M_{\odot}$

H.T.Cromartie et.al., Nature Astronomy (16 sept. 2019) MSP J0740+6620 $\longrightarrow M = 2.14 \stackrel{+ 0.10}{_{- 0.09}} M_{\odot}$

Quark phase: Local three-flavor NJL model Hadronic phase: RMF model with $\sigma\omega\rho\delta$ meson fields

Quark Matter EOS: Local Nambu-Jona-Lasinio Model

Y.Nambu, G.Jona-Lasinio, Phys. Rev. **122**, 345, 1961 *Y.Nambu, G.Jona-Lasinio*, Phys. Rev. **124**, 246, 1961

$$\mathcal{L}_{NJL} = \overline{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \hat{m}_{0} \right) \psi + G \sum_{a=0}^{8} \left[\left(\overline{\psi} \lambda_{a} \psi \right)^{2} + \left(\overline{\psi} i \gamma_{5} \lambda_{a} \psi \right)^{2} \right] - K \left\{ \det_{f} \left(\overline{\psi} (1 + \gamma_{5}) \psi \right) + \det_{f} \left(\overline{\psi} (1 - \gamma_{5}) \psi \right) \right\} ,$$

 Ψ_f^c Quark spinor fields of flavor f=u, d, s and color c=r, g, b $\hat{m}_0 = diag(m_{0u}, m_{0d}, m_{0s})$ $\lambda_a (a = 1, 2, ...8)$ Gell-Mann SU(3) matrices $\lambda_0 = \sqrt{\frac{2}{3}} \hat{I}$

G four-quark scalar channel interaction constant

K Kobayashi-Maskawa-'t Hooft six-quark interaction constant

Quark chiral condensates:

$$\sigma_{u} = \langle \overline{\psi}_{u} \psi_{u} \rangle, \quad \sigma_{d} = \langle \overline{\psi}_{d} \psi_{d} \rangle, \quad \sigma_{s} = \langle \overline{\psi}_{s} \psi_{s} \rangle$$

Gap equations of quark dynamic mass:

$$m_{u} = m_{0u} - 4G\sigma_{u} + 2K\sigma_{d}\sigma_{s} ,$$

$$m_{d} = m_{0d} - 4G\sigma_{d} + 2K\sigma_{s}\sigma_{u} ,$$

$$m_{s} = m_{0s} - 4G\sigma_{s} + 2K\sigma_{u}\sigma_{d} .$$

$$\sigma_i = -\frac{3}{\pi^2} \int_{p_F(n_i)}^{\Lambda} \frac{m_i}{\sqrt{k^2 + m_i^2}} k^2 dk \qquad p_F(n_i) = (\pi^2 n_i)^{1/3} \qquad (i = u, d, s)$$

Electrical neutrality condition:

 β – equilibrium condition:

$$\frac{2}{3}n_{u} - \frac{1}{3}n_{d} - \frac{1}{3}n_{s} - n_{e} = 0$$

$$\mu_{d}(n_{d}, m_{d}) = \mu_{u}(n_{u}, m_{u}) + \mu_{e}(n_{e}),$$

$$\mu_{s}(n_{s}, m_{s}) = \mu_{d}(n_{d}, m_{d}).$$

$$\begin{split} \varepsilon_{udse}(n_B) &= \frac{3}{\pi^2} \sum_{i=u,d,s} \int_0^{\left(\pi^2 n_i(n_B)\right)^{1/3}} \sqrt{k^2 + m_i(n_B)^2} \, k^2 dk + 2G \Big[\sigma_u(n_B)^2 + \sigma_d(n_B)^2 + \sigma_s(n_B)^2 \Big] - \\ &- 4K \sigma_u(n_B) \, \sigma_d(n_B) \, \sigma_s(n_B) + \frac{1}{\pi^2} \int_0^{\left(3\pi^2 n_e(n_B)\right)^{1/3}} \sqrt{k^2 + m_e^2} \, k^2 dk + \\ &+ \frac{3}{\pi^2} \sum_{i=u,d,s} \int_0^{\Lambda} \Big(\sqrt{k^2 + m_i(0)^2} - \sqrt{k^2 + m_i(n_B)^2} \Big) \, k^2 dk - \\ &- 2G \Big[\sigma_u(0)^2 + \sigma_d(0)^2 + \sigma_s(0)^2 \Big] + 4K \sigma_u(0) \, \sigma_d(0) \, \sigma_s(0) \, , \end{split}$$

$$P_{udse}(n_B) = \sum_{i=u,d,s} n_i(n_B) \sqrt{\left(\pi^2 n_i(n_B)\right)^{2/3} + m_i(n_B)^2} + n_e(n_B) \sqrt{\left(3\pi^2 n_e(n_B)\right)^{2/3} + m_e^2} - \mathcal{E}_{udse}(n_B)$$

Three-flavor NJL model Parameters

P.Rehberg, S.P.Klevansky, J.Hufner, Phys. Rev. C 53, 410, 1996.

$$m_{0u} = m_{0d} = 5,5 MeV, \ m_{0s} = 140,7 MeV, \ \Lambda = 602,3 MeV,$$

 $G = 1.835 / \Lambda^2$ $K = 12,36 / \Lambda^5$.

Deconfined Quark Matter EOS: Three-flavor Local NJL Model

 $\sigma \omega \rho$

J.D.Walecka, Ann.Phys. 87, 4951, 1974 B.D.Serot, J.D.Walecka, Int.J.Mod.Phys. E6, 515, 1997.

	Scalar	Vector
Isoscalar	σ	ω
Isovector	δ	ρ

Neutron stars without quark deconfinement:

 $\sigma \omega \rho \delta$ B.Liu, H.Guo, M.Di Toro, V.Greco, arXiv Nucl-th/0409014 v2, 2005

Neutron stars with quark deconfinement:

G.B.Alaverdyan, Astrophysics 52, 132, 2009.
 G.B.Alaverdyan, Gravitation and Cosmology 15, 5, 2009.
 G.B.Alaverdyan, Research in Astronomy and Astrophysics, 10, 1255, 2010.

Lagrangian density of many-particle system of $p,n.\sigma,\omega,\rho,\delta$

$$\mathcal{L} = \overline{\psi}_{N} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega} \omega_{\mu}(x) - \frac{1}{2} g_{\rho} \vec{\tau}_{N} \cdot \vec{\rho}_{\mu}(x) \right) - \left(m_{N} - g_{\sigma} \sigma(x) - g_{\delta} \vec{\tau}_{N} \cdot \vec{\delta}(x) \right) \right] \psi_{N} + \frac{1}{2} \left(\partial_{\mu} \sigma(x) \partial^{\mu} \sigma(x) - m_{\sigma}^{2} \sigma(x)^{2} \right) - U(\sigma(x)) + \frac{1}{2} m_{\omega}^{2} \omega^{\mu}(x) \omega_{\mu}(x) - \frac{1}{4} \Omega_{\mu\nu}(x) \Omega^{\mu\nu}(x) + \frac{1}{2} \left(\partial_{\mu} \vec{\delta}(x) \partial^{\mu} \vec{\delta}(x) - m_{\delta}^{2} \vec{\delta}(x)^{2} \right) + \frac{1}{2} m_{\rho}^{2} \vec{\rho}^{\mu}(x) \vec{\rho}_{\mu}(x) - \frac{1}{4} R_{\mu\nu}(x) R^{\mu\nu}(x),$$

$$x = x_{\mu} = (t, x, y, z) \qquad \sigma(x), \ \omega_{\mu}(x), \ \vec{\delta}(x), \ \vec{\rho}_{\mu}(x) \qquad \psi_{N} = \begin{pmatrix} \psi_{p} \\ \psi_{n} \end{pmatrix}$$

$$U(\sigma) = \frac{b}{3}m_N(g_\sigma\sigma)^3 + \frac{c}{4}(g_\sigma\sigma)^4,$$

 $\Omega_{\mu\nu}(x) = \partial_{\mu}\omega_{\nu}(x) - \partial_{\nu}\omega_{\mu}(x),$ $\Re_{\mu\nu}(x) = \partial_{\mu}\rho_{\nu}(x) - \partial_{\nu}\rho_{\mu}(x).$

Relativistic mean-field approach

$$\frac{\partial \mathcal{L}}{\partial \phi(x)} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi(x))} = 0$$

$$e_{p}(k) = \sqrt{k^{2} + m_{p}^{*2}} + g_{\omega} \overline{\omega}_{0} + \frac{1}{2} g_{\rho} \overline{\rho}_{0}^{(3)},$$

$$e_{n}(k) = \sqrt{k^{2} + m_{n}^{*2}} + g_{\omega} \overline{\omega}_{0} - \frac{1}{2} g_{\rho} \overline{\rho}_{0}^{(3)},$$

$$m_{\sigma}^{2} \overline{\sigma} = g_{\sigma} \left(n_{sp} + n_{sn} - \frac{dU(\overline{\sigma})}{d\overline{\sigma}} \right),$$

$$m_{\omega}^{2} \overline{\omega} = g_{\omega} \left(n_{p} + n_{n} \right),$$

$$m_{\delta}^{2} \overline{\delta}^{(3)} = g_{\delta} \left(n_{sp} - n_{sn} \right),$$

$$m_{\rho}^{2} \overline{\rho}_{0}^{(3)} = \frac{1}{2} g_{\rho} \left(n_{p} - n_{n} \right),$$

$$m_p^* = m_N - g_\sigma \,\overline{\sigma} - g_\delta \,\overline{\delta}^{(3)},$$
$$m_n^* = m_N - g_\sigma \,\overline{\sigma} + g_\delta \,\overline{\delta}^{(3)}.$$

$$n_{p} = \frac{k_{Fp}^{3}}{3\pi^{2}}, \quad n_{n} = \frac{k_{Fn}^{3}}{3\pi^{2}},$$
$$n_{sp} = \frac{1}{\pi^{2}} \int_{0}^{k_{Fp}} \frac{m_{p}^{*}}{\sqrt{k^{2} + m_{p}^{*2}}} k^{2} dk,$$
$$n_{sp} = \frac{1}{\pi^{2}} \int_{0}^{k_{Fn}} \frac{m_{n}^{*}}{\sqrt{k^{2} + m_{p}^{*2}}} k^{2} dk.$$

$$a_{sn} = \frac{1}{\pi^2} \int_0^{\infty} \frac{m_n}{\sqrt{k^2 + m_n^{*2}}} k^2 dk.$$

$$\mu_{p} = e_{p}(k_{Fp}) = \sqrt{k_{Fp}^{2} + m_{p}^{*2}} + g_{\omega} \,\overline{\omega}_{0} + \frac{1}{2} g_{\rho} \,\overline{\rho}_{0}^{(3)},$$

$$\mu_{n} = e_{n}(k_{Fn}) = \sqrt{k_{Fn}^{2} + m_{n}^{*2}} + g_{\omega} \,\overline{\omega}_{0} - \frac{1}{2} g_{\rho} \,\overline{\rho}_{0}^{(3)}.$$

Parametric EOS for hadronic matter

$$g_{\sigma}\bar{\sigma} \equiv \sigma, \quad g_{\omega}\bar{\omega}_{0} \equiv \omega, \quad g_{\delta}\bar{\delta}^{(3)} \equiv \delta, \qquad g_{\rho}\bar{\rho}^{(3)} \equiv \rho, \\ \left(\frac{g_{\sigma}}{m_{\sigma}}\right)^{2} \equiv a_{\sigma}, \quad \left(\frac{g_{\omega}}{m_{\sigma}}\right)^{2} \equiv a_{\omega}, \quad \left(\frac{g_{\delta}}{m_{\delta}}\right)^{2} \equiv a_{\delta}, \quad \left(\frac{g_{\rho}}{m_{\rho}}\right)^{2} \equiv a_{\rho} \qquad \alpha = \frac{n_{n} - n_{p}}{n}, \text{ the asymmetry parameter} \\ P(n,\alpha) = \frac{1}{\pi^{2}} \int_{0}^{k_{F}(n)(1-\alpha)^{\frac{1}{3}}} \left(\sqrt{k_{F}(n)^{2}(1-\alpha)^{\frac{2}{3}} + (m_{N} - \sigma - \delta)^{2}} - \sqrt{k^{2} + (m_{N} - \sigma - \delta)^{2}}\right) k^{2} dk + \\ + \frac{1}{\pi^{2}} \int_{0}^{k_{F}(n)(1+\alpha)^{\frac{1}{3}}} \left(\sqrt{k_{F}(n)^{2}(1+\alpha)^{\frac{2}{3}} + (m_{N} - \sigma + \delta)^{2}} - \sqrt{k^{2} + (m_{N} - \sigma + \delta)^{2}}\right) k^{2} dk - \\ - \tilde{U}(\sigma) + \frac{1}{2} \left(-\frac{\sigma^{2}}{a_{\sigma}} + \frac{\omega^{2}}{a_{\omega}} - \frac{\delta^{2}}{a_{\delta}} + \frac{\rho^{2}}{a_{\rho}}\right).$$

$$\varepsilon(n,\alpha) = \frac{1}{\pi^2} \int_{0}^{k_F(n)(1-\alpha)^{\frac{1}{3}}} \sqrt{k^2 + (m_N - \sigma - \delta)^2} k^2 dk + \frac{1}{\pi^2} \int_{0}^{k_F(n)(1+\alpha)^{\frac{1}{3}}} \sqrt{k^2 + (m_N - \sigma + \delta)^2} k^2 dk + \tilde{U}(\sigma) + \frac{1}{2} \left(\frac{\sigma^2}{a_\sigma} + \frac{\omega^2}{a_\omega} + \frac{\delta^2}{a_\delta} + \frac{\rho^2}{a_\rho}\right),$$

Parameters of RMF theory

$$a_{\sigma}, a_{\omega}, a_{\delta}, a_{\rho}, b, c$$

Symmetric nuclear matter ($\alpha = 0$)

Saturation density $(n = n_0)$

$$m_N^* = \gamma m_N, \qquad \sigma_0 = (1-\gamma) m_N$$

$$\frac{d\varepsilon(n,\alpha)}{dn}\Big|_{\substack{n=n_0\\\alpha=0}} = \frac{\varepsilon(n_0,0)}{n_0} = m_N + f_0, \qquad f_0 = \frac{B}{A}, \quad \text{Binding energy per baryon}$$

$$a_{\omega} = \frac{1}{n_0} \left(m_N + f_0 - \sqrt{k_F (n_0)^2 + (m_N - \sigma_0)^2} \right)$$

$$\omega_0 = a_{\omega} n_0 = m_N + f_0 - \sqrt{k_F (n_0)^2 + (m_N - \sigma_0)^2}$$

$$\frac{\sigma_0}{a_{\sigma}} = \frac{2}{\pi^2} \int_0^{k_F(n_0)} \frac{(m_N - \sigma_0)}{\sqrt{k^2 + (m_N - \sigma_0)^2}} k^2 dk - bm_N \sigma_0^2 - c\sigma_0^3$$

Parameters of RMF theory

$$\varepsilon_{0} = n_{0}(m_{N} + f_{0}) = \frac{2}{\pi^{2}} \int_{0}^{k_{F}(n_{0})} \sqrt{k^{2} + (m_{N} - \sigma_{0})^{2}} k^{2} dk + \frac{b}{3} m_{N} \sigma_{0}^{3} + \frac{c}{4} \sigma_{0}^{4} + \frac{1}{2} \left(\frac{\sigma_{0}^{2}}{a_{\sigma}} + n_{0}^{2} a_{\omega} \right)$$

$$K = 9 n_0^2 \frac{d^2}{dn^2} \left(\frac{\varepsilon(n,\alpha)}{n}\right) \Big|_{\substack{n=n_0\\\alpha=0}}$$

compressibility module

$$\frac{\varepsilon_{sym}}{n} = E_{sym}(n) \alpha^2$$

$$E_{sym}(n) = \frac{1}{2n} \frac{d^2 \varepsilon(n, \alpha)}{d\alpha^2} \bigg|_{\alpha=0}$$

Symmetry energy

Parameter s	σωρ	σωρδ
${\sf a}_{ m \sigma}$, fm ²	9.154	9.154
${\sf a}_{_{\scriptscriptstyle \!$	4.828	4.828
${\sf a}_\delta$, ${\sf fm}^2$	0	2.5
$a_{ ho}$, fm ²	4.794	13.621
b , fm ⁻¹	1.654 10 ⁻²	1.654 10 ⁻²
С	1.319 10 ⁻²	1.319 10 ⁻²

Meson mean-fields: $\sigma \omega \rho \delta$

EOS of neutron star matter in hadronic phase

EOS of Neutron star matter with firs-order hadron-quark phase transition

Maxwell construction parameters

	P_0 , MeV/fm ³	n_B , fm ⁻³	${\cal E}$, MeV/fm ³
Hadronic matter	150,5	$n_B^H = 0,584$	$\varepsilon^{H} = 647,1$
Quark matter	150,5	$n_B^Q = 0,814$	$\varepsilon^{\mathcal{Q}} = 960, 9$

Parameters of some of the characteristic configurationsions

- A Star with mass 1.44 M_{\odot} (PSR B1913+16)
- B Critical configuration with central pressure P_0
- C Hybrid star with maximal mass

Configurations	P_c MeV/fm ³	$ ho_c$ 10^{15} g/cm ³	<i>R</i> km	R _{core} km	M M_{\odot}	M_{core} $10^{-4} M_{\odot}$	I $10^{45}\mathrm{g~sm^2}$	Z_s	Z_c
A	38	0.586	14.25	0	1.44	0	2	0.194	0.444
В	150.5	1.71	13.313	0	2.0506	0	2.860	0.354	0.996
С	152	1.73	13.309	0.64	2.0509	9.56	2.858	0.355	0.998

Neutron stars with quark core: Model RMF + MIT

Summary

- > The integral parameters of neutron stars are investigated by taking into account the hadron-quark phase transition, as a result of which in the central part of the star is formed quark matter core. To describe the quark matter, the local three-flavor Nambu-Jona-Lasinio (NJL) model is used. The thermodynamic characteristics of the hadronic matter are calculated within the framework of the extended version of the relativistic mean field (RMF) model, in which the contribution of the scalar-isovector δ -meson effective field also taken into account.
- > It has been shown that Witten's hypothesis that the true ground state of matter at zero pressure is a β -equilibrium three-flavor quark matter does not hold in this case. As opposed to the MIT quark bag model, the version of the NJL model examined here, does not allow the existence of such exotic stellar objects as strange stars.
- > The parameters of the phase transition have been calculated assuming that the phase transition proceeds in accordance with a Maxwell construction and it has been shown that in the variant of the model considered here, the phase transition between hadron and quark matter takes place at fairly high concentrations $n_B^H = 0.584 fm^{-3}$, $n_B^Q = 0.814 fm^{-3}$.
- ➤ Integral characteristics of compact stars, such as the gravitational mass M, radius R, quark core mass M_{core} and radius R_{core} , moment of inertia I, and gravitational red shifts Z_c for photons from the star's center and Z_s from its surface, have been calculated for different values of the central pressure. It has been shown that, for the EOS examined here, stable hybrid stars correspond to a fairly narrow range of central densities $\rho_c \in (1.71 \div 1.73]10^{15} \text{g/cm}^3$.
- → The maximum gravitational mass of a stable hybrid star, $M_{max} = 2.05 M_{\odot}$, is attained for a central density of $\rho_m = 1.73]10^{15} \text{g/cm}^3$. Our result for the maximum mass of a hybrid star satisfies the criterion $M_{max} > 2 M_{\odot}$, in agreement with observations that indicate the existence of pulsars with masses on the order of twice the sun's.
- > The configuration with a maximum mass in our case has a quark core with a mass on the order of $M_{core} \approx 10^{-3} M_{\odot}$ and a radius on the order of $R_{core} \approx 0.6 \ km$.

CUULCHORSON COULTHANK YOU