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Masses and Radii

Evidence of massive stars: very recent PSR J0740+6620, M=2.14M_,,
" (1904.06759) Stiff EoS!!
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Estimate Confidence Interval (95%)

Other (possible) 7w ==

o (Hz) 02 68-135
. . . 1 (Hz 574 555-593
Intriguing results =% oy
A 0.6 0.4-0.8
Cut-point (Hz) 538 526-548

Bimodal spin distribution in
LMXBs ? ApJ 850 (2017) 106

Bimodal mass distribution in millisecond pulsars? “...not a
result of the recycling process, but rather reflects

differences in the NS birth masses”
(Tauris et al, ApJ 2017)

Are massive compact stars
formed by massive blue giant stars through quark

deconfinement ?
(Fischer et al, nat.astron.2018)

Correlation between neutron skin thickness and radii / tidal
deformability.

A (to be confirmed) tension between lab and astro
measurements: stiff E0S in atomic nuclei, soft EoS implied
by GW170817, PRL 120 (2018) 172702
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Very stiff EoS disfavoured by GW170817.
Nucleonic EoSs (with R, , *12km) such as Sly and
APR4 seem to be fine !
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Really just nucleons?
Hyperons puzzle, delta isobars puzzle...
Stiff ? Soft ? (huge literature)
A firm point: hypernuclei do exist (though unstable) !! A baryons
are bound in nuclear matter.
Those particles must be taken into account in the calculations
and not just artificially excluded.
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Fig. 4. Gravitational mass M wversus central density

pe, for the SLy, FPS, and APR EOS of dense matter.
Maximum on the mass-central density curves is indicated
by a filled circle. On the APR curve, configurations to the
right of the asterisk contain a central core with v.ouna > €.
Configurations to the right of the maxima are unstable
with respect to small radial perturbations, and are de-
noted by a dotted line. The shaded band corresponds to
the range of precisely measured masses of binary radio
pulsars.



Two viable solutions to the

1) Hyperons (and Delta) do take
place but R, ,> 12 km (large

nuclear matter skewness allows to
reach large masses)

See Li & Sedrakian ApJ 2019

hyperon puzzle
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Figure 1. Mass—radius relation for a set of EoSs with varying Ly, (a) and Qg
(b) and assuming purely nucleonic (&), hyperonic (NY), and hyperon-A
admixed (NYA) compositions of stellar matter. Three values of the A-potential
have been used: Ray = Va/Vy =1, 4/3, and 5/3, where V) is the nucleon
potential in isospin-symmetrical matter at saturation density.
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Two families of compact stars?
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Hadronic matter. SFHo+hyperons+deltas
Quark matter: MIT bag model or constant
speed of sound EoS

1) Transition to quark matter only when
enough hyperons are present in the core
(masses larger than about 1.5M_ )

sun

2) Speed of sound does not need to reach
values close to the causal limit (as in all the
one family scenario!!). The conformal limit of
1/3 is naturally obtained.
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Hadronic stars would fulfill the small
radii limits while strange stars would
fulfill the large masses/radii limits.
Note: at fixed baryon mass, strange
stars could be energetically
convenient even if the radius is larger
than the corresponding hadronic star
configuration.



Relation between average tidal deformability and radii:

Estimates of lower limit on the average tidal

deformability from the amount of KN ejecta: dynamical
ejecta+mass of the disk as obtained from numerical

simulations. It should be larger than about 400.

While for the standard one family scenario,

a tidal deformability larger than 400 implies

a radius larger than about 12km, within the -

two families scenario (and the twin stars

scenario) it is possible to fulfill the

constraints on the tidal deformability from :

GW170817 and to obtain at the same time .
radii smaller than about 11km (thus closer to

some observational analyses on radii). This
IS due to the large difference in radii of the -
two components of the mixed binary

system.
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Complicated (rich) merger phenomenology

Astrophys.J 881 (2019) 122

Three types of merger depending on the
total mass and on the mass asymmetry:
1) HS-HS

2) HS-QS

3) QS-QS

These three cases have three different
values for the threshold mass above
which a prompt collapse is obtained.

M. _..q Scales almost linearly with the

compactness of the maximum mass
configuration ( see Bauswein MNRAS 2017).
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Population synthesis analysis:

HS-HS

GWT170817-like

all mergers

0.7<qg<1.0

0.7<q<0.85

Model HS-HS | HS-QS | QS-QS || HS-HS | HS-QS | QS-QS

HS-HS | HS-QS | Q5-QS

1) QS-QS rare

MH =15M; 0.1 3.1 0.2 6.4 0.4 0.01 0.03

2) GW170817 plausible
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0.2
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12.8 - -

M3 =
one-family 6.6 - 0.3

103/year within D=100Mpc



HS-HS merger simulations

-Simulations by using the Einstein toolkit &
Lorene

-Polytropic approximation for the EoS
-Thermal adiabatic index

- Two EoSs: SFHo and SFHo with the
Inclusion of hyperons and delta resonances
-) Symmetric systems with 7+13 total mass
values
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Key points of the two families

scenario:

Conversion of a cold, non-rotating
1) A merger would always produce at some hadronic star
stage a strange star (stable or unstable) but (Pagliara et al 2013)
for the case of the prompt collapse |
2) In the cases of prompt collapse, the ‘ . 1 [
remnant collapses within t_~ few ms which is 1
comparable with the time needed for the 1/ T e b |
turbulent conversion of the hadronic star, t_

(again few ms, brago et al 2015) |
3) In the cases of prompt collapse the relevant |

1 7 o o, ,
M__ is not the maximum mass of strange 1EE w I

stars but the maximum mass of hadronic stars
which is in our scenario of the order of N L et
1.5 = 1.6 M (c) t =12ms (d) £ = 4.0ms

FIG. 8. (color online) Model B150_192: Conversion front (red) and surface of the neutron star (yellow) at different times t. In
] pr

(a) a close-up of the central region is added. Spatial units 10° cm

We expect therefore to have a large number
of cases in which the prompt collapse occurs.



Estimates of mass dynamically ejected and mass left in the
disk.
Values up to 0.01 M__ (SFHo and SFHo-HD)for the first and

up to 0.1M_  for the latter (for SFHo).

Non linear relation between the maximum of ejected mass
and the total mass of the system.

Main prediction of the two families scenario:
Threshold mass for the prompt collapse of about 2.5M_  for

HS-HS systems thus smaller than the mass associated with
GW170817 (2.73M_ ).

1) GW170817 is interpreted as a HS-QS system
2) A single detection of a merger with total mass
smaller than 2.73 M__ but lacking the EM counterpart

(no shortGRB + no or very faint KN) would be
interpreted as due to a HS-HS merger
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When a prompt collapse is not realised, the remnant lives for a time scale larger than about a
few ms, the formation of hyperons would trigger the conversion to quark matter which helps to
stabilize the star and would result in a dramatic change of its structure.

Strangeness fraction
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Postmerger GWs

If the postmerger signal will be detected in the
future:
For HS-HS systems the frequency of the f, mode is

about 1kHz higher than the frequency of the same
mode in the case of the one-family scenario (SFHO0)
and it should evolve towards smaller frequencies
during the formation of the quark star.
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Strangelets released by the merger

Bucciantini et al. 1908.02501

1)Condition to create a fragment: Weber number We larger than 1. We=(p/c) v? . d (mass
density, surface tension, turbulent velocity and drop size). By assuming v, to scale
(Kolmogorov) with v2, (d/d,)>* where d, ~1km and v, ~0.1c , we obtain d ~1mm and thus A ~

10%* very big fragments. Those fragments are part of the tidal ejecta (cold matter, order of 10
M_ ), the corresponding flux is so small that it is very unlikely to directly detect strangelets or to

allow for capture by MS stars.

2) Ejecta produced by the shock waves and evaporation of the accretion torus. Several
processes: neutron evaporation and absorption, neutrino cooling and absortpion, chemical
unbalances w.r.t. the strangeness...
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For T<5MeV neutron

reabsorption

dominates over

evaporation.

T>5 MeV:

efficient evaporation

et (time scales of ms)

e —, for the typical

! Evaporation excluded region temperatu res

reached in shock
heated material.
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FIG. 3: Evaporation time-scale computed by assuming that
neutrino absorption is the only re-heating mechanism and
that the nucleon density is determined by the evaporated nu-
cleons. Solid lines and color shading refer to I = 50 MeV, the
dashed lines correspond to I = 70 MeV.



Conclusions

* The two-families scenario is a phenomenological model aiming at
explaining the possible existence of very massive and very small
compact stars.

* It has several distinctive sighatures. At variance with the one-
family scenario and the twin-star (hybrid stars) scenario:

-) massive stars have large radii (at variance with one-family or
twin-stars scenario in which the radius gets smaller and smaller
for increasing mass )

-) merger of two compact stars can lead to a prompt collapse
even for total masses below 2.73M,, (i.e the mass of the source

of GW170817 ) if the two stars are hadronic stars

-) bimodal distributions (for masses, spin, moment of inertia) are
expected (work in progress)
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Parameters space of two-families

Drago et al, Astr.Nach. 2019
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FIGURE 1 Comparison between the equation of state (EoS) of hadronic

matter and of quark matter (with a specific choice of the free parameters of

the model). The blue and the orange points on the hadronic EoS correspond

to the central pressure of the maximum mass hadronic configuration and to

the onset of formation of hyperons, respectively
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FIGURE 2 Left panel: mass radius curves of HSs and (QSs (same
parameters of Figure 1). Right panel: relations between gravitational mass
and baryonic mass for HSs and QSs. While radii of (QSs could be smaller or
larger than the radii of HSs at fixed gravitational mass, at fixed baryonic
mass QSs are always lighter than HSs and thus energetically favored

A simple study with constant speed of
sound quark matter
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FIGURE 3 Parameter space of the two-families scenario with
constant-speed-of-sound quark equation of state with 2 = 1/3. The black
and red areas are excluded (see text). The green line determines the
parameters for which the maximum mass is 2.2M_ and the blue box encloses
the values for which the two-families scenario is in agreement with the data
on the average tidal deformability obtained from the analysis of GW 170817



Constraints from
the amount of
matter ejected

Comparison between a soft and
stiff equation of state (Shibata et
al 2017)

Computations of mass ejected

not yet completely under control:

for instance the neutrino
transport is modeled by simple
leakage schemes.

TABLE 1. Equations of state employed, the maximum mass for cold spherical neutron stars, M., In units of the solar mass,
the radius, Ry, and the dimensionless tidal deformability Ays of spherical neutron stars of gravitational mass M = 1.20, 1.30,
1.40, and 1.50M,. Ry is listed in units of km. The last five data show the binary tidal deformability for 5 = 0.250, 0.248,
0.246, 0.244, and 0.242 with M = 1.19M,.

EOS Muax Risn Riso Rpge Riso Moo Ms Avan Asso A
38R, 387, 387, 386, 385

SFHo 2.06 11.96 11.93 (Q1.88 )I11.83 864 533 332 208 388, 38
DD2 2,42 1314 13.18¢13.21 )13.24 1622 1053 694 467 797, TBE, TR0, 772, 764

TABLE II. Merger remnants and properties of dynamical ejecta for two finite-temperature neutron-star EOS, SFHo and DD2
and for the cases with different mass. The quantities for the remnants are determined at = 30 ms after the onset of merger.
HMNS, BH, and MNS denote hypermassive neutron star, black hole, and massive neutron star, respectively. The torus mass
for the DD?2 EOS is determined from the mass located outside the central region of MNS with density p < 10'? g/em®. The
values of mass are shown in units of M. The BH spin means the dimensionless spin of the remnant black hole. ¥, and o;
are the average value of the electron fraction, Y., and average velocity of the dynamiecal ejecta, respectively. We note that ¥,
1s broadly distributed between ~ 0.05 and ~ 0.5, irrespective of the models (see Refs. [34, 35]).

EOQOS  my & ma ma/my Remnant BH mass BH spin Torus mass M Y. Uej/
SFHo 1.35,1.35 1.00 HMNS — BH 259 0.69 pos ool 0.3 0.22
SFHo 1.37.1.33 097 HMNS — BH 259 0.70 0.06 0.008 0.30 0.21
SFHo 1.40,1.30 093 HMNS — BH 258 0.67 0.090 0.006 0.27 0.20
SFHo 1.45,1.25 086 HMNS — BH 258 0.69 0.12 0.011 0.18 0.24
SFHo 1.55,1.25 081 HMNS — BH 269 0.76 0.07 0.016 0.13 0.25
SFHo 1.65,1.25 0.76 EH 2.76 0.77 0.09 0.007 0.16 0.23
DD2 1.35,1.35 1.00 MNS 023 (o02) 030 016
DD2  1.40, 1.30 093 MNS 0.23 0.003 0.26 0.18
DD2 1.45,1.25 086 MNS 0.30 0.005 0.20 0.19
DD2 140, 1.40 1.00 MNS 0.17 0.002 0.31 0.16

THE ELECTROMAGNETIC COUNTERPART OF THE BINARY NEUTRON STAR MERGER LIGO/VIRGO GW 170817.
III. OPTICAL AND UV SPECTRA OF A BLUE KILONOVA FROM FAST POLAR EJECTA

M. NichorL', E. BERGER', D. Kasen’*, B. D. MeTzGER®, J. ELias”, C. BRICERO®, K. D. ALEXANDER!, P. K. BLANCHARD',

R. CHORNOLK P. 5. CD“I’I-RT]—{“A[T[—I T. EFTEKHARI', W. FONG?, R MARGUTTIE, V. A. VILLAR', P. K. G. WILLIAMS',

W. BRown!, 1. Annis?, A. BaHrRAMIAN" D, BROUT” D.A. Brown' S HoY. CHEN', T, C. CLEMENS . E, DENNIHY ™,

B. DuNLAP™, D.E. Horz "8 B Magrcuesing® 19292132 F Massaro™ N. MoskoviTz*, 1. PELISOLIZ®, A, RESTY
F.Riccr?™ M. Sako'!', M. SoARES-SANTOS", J. STRADER "

ABSTRACT

We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW)
source, the binary neutron star merger GW 170817. Spectra were obtained nightly between 1.5 and 9.5 days
post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the Hubble Space
Telescope at 5.5 days. Our data reveal a rapidly-fading blue component (7T = 5500 K at 1.5 days) that quickly
reddens; spectra later than = 4.5 days peak beyond the optical regime. The spectra are mostly featureless,
although we identify a possible weak emission line at ~ 7900 A at t < 4.5 days. The colours, rapid evolution
and featureless spectrum are consistent with a “blue™ kilonova from polar ejecta comprised mainly of light
r-process nuclei with atomic mass number A < 140. This indicates a sight-line within #.ps < 45° of the orbital
axis. Comparison to models suggests ~ 0.03 M, of blue ejecta, with a velocity of ~ 0.3c. The required
lanthanide fraction is ~ 107, but this drops to < 107> in the outermost ejecta. The large velocities point to
a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents
are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta,
the high mass favors a small neutron star radius of < 12 km. This mass also supports the idea that neutron star
mergers are a major contributor to r-process nucleosynthesis.




Average tidal deformability
16 | (M4 + 12MB)M24 A4

A=13 (M4 + Mg)S

+ (A & B)

From numerical simulations: an empirical
relation between the average tidal deformability
and the sum of the mass ejected and the mass
of the accreting disk.

Estimate of the lower limit on the average tidal
deformability ~ 400

Use of chiral effective theory results for subsaturation
densities and pQCD calculations at (very) high densities
and interpolate between them with pieceweise polytropes

2M_ limit and constraints on the tidal deformability

obtained with GW170817 : 400< A <800 fora 1.4
M

It:rnadius 12.2km<R1_ . <13.4km

(tension with small radii measurements)
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FIG. 1: The mass-radius clouds corresponding to our EoSs.
The cyan area corresponds to EoSs that cannot support a

2M s star, while the rest denote EoSs that fulfill this re-
quirement and in addition have A(1.4Mgs) < 400 (green),
400 << A(1.4Ms) < 800 (violet), or A(1.4Ms) = 800 (red), so
that the red region is excluded by the LIGO/Virgo measure-
ment at 90% credence. This color coding is used in all of our
figures. The dotted black lines denote the result that would
have been obtained with bitropic interpolation only.



Mass threshold for prompt collapse
By using the binary mass RPN S wy e B
distribution (rom Kiziltan 2013) 5 a h
we can calculate
the probabillities
of prompt collapses in the two
families scenario and in the one
family scenario.
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In the two families scenario, if the two stars are both hadronic
stars, It Is very easy to obtain a prompt collapse.

The possibility of mixed systems, a quark star and a hadronic
star, could lead to a non-monotonic behavior of the threshold
mass as a function of the total mass (same total mass could
lead to a prompt collapse or to a hypermassive/supramassive
remnant).



If post-merger signhal will be detected.:

4 :
3.5} i
) Bauswein et al 2016
iﬁ 3} i
The GW frequency of the leading o
oscillation mode of the remnant as a | |
function of the total mass of the RS pomnTT

binary: jump in correspondence of 24 Z:E‘ml N 2.8
the threshold mass of the HS-HS tot ©'sun

System F‘ig. 17. Domilmpl postmf-rgm‘ (?] W [1‘+:qlut3nc3—' J.f‘pcf,.k aa a func-
tion of the total binary mass for symmetric mergers with a two-
family scenario [46]. For low binary masses the merger remnant
is composed of hadronuc matter (black curve), whereas higher
binary masses lead to the formation of a strange matter rem-
nant with a lower peak frequency (dashed blue curve). The
vertical dashed line marks a lower limit on the binary mass
which is expected to vield a remnant that is stable against
gravitational collapse (see text).



Speed of sound
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Two families of compact stars?

(exercise with constant speed of sound quark EoS, Dondi et al 2016)

c’=1/3 - E/A=870 MeV - n =1.15n_ Three
25— — —— parameters:
I s T | Speed of
N | —— SFHo tdeltat+thyperons Sound’ energy
— Hyp formation ] c
1 density and

baryon density

RMF model for g1 T 1 at pressure=0
hadronic matter ; - 1 p=cile—eo)
1 - o . ec
B ] ko= 142
0.5 : E_ p = k((n/no)"* = 1)
i 1 D L 1]

9500 1200 1500

0 . | l | . | | | | M[MeV]

10 11 12 131.2 1.5 1.8 2.1 24 27 3
R[km] M, M_

1

Hadronic stars would fulfill the small radii limits while strange stars would fulfill
the large masses limits. Note: at fixed baryon mass, strange stars could be
energetically convenient even if the radius is larger than the corresponding
hadronic star configuration.
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Fragmentation — “»,
2y,
0049

Condition to create a fragment: Weber number We larger than 1

We=(p/0) v*__d (mass density, surface tension, turbulent velocity and
drop size). By assuming v* _ to scale (Kolmogorov) with
v?, (d/d,)*” where d, ~1km and v, ~0.1c, we obtain d ~1mm and thus

A ~ 10% very big fragments. There will be a further “reprocessing” via
collisions, turbulence, evaporation ... very difficult problem!!

There will be a distribution of mass number, with a minimum value
which is probably much higher than 10-.

Depending on the size, different strangelets can act as seeds for the
conversion of stars into strange stars (astrophysical argument againts
the Witten's hyp.).



Capture of strangelets by stars and conversion
g4 OUI INitial A
me () 282 = — ap ()0 200+ CHI _ crne
/ ¢ i
Interaction with the ion | MS 10 M.

Stopping force due elastic interaction lattice
with atoms //r.?

Main sequence stars: the most important limit. A
strangelet can sit in the center of the star and “wait” for
the core collapse SN and the neutronization. This
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would trigger the conversion of all protoneutron stars 1

Into strange stars.
But: N
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GWD+SC

Madsen 1989

1) due to the 10 MeV temperature of the SN they oL . '°§m PV
could evaporate

2) Not clear If fragmentation can work over ten

orders of magnitude. Work in progress. Our upper limit on

the strange matter
densitv



Strange star mergers from population synthesis

(Wiktorowicz et al 2017)
StarTrack code by Belczynski 2002

Simulation of 2 millions binaries with three different metallicities, statistical distributions
of progenitor masses, binary separation, eccentricities and natal kicks.
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