The Mpaerh Physics of Compact Stars an_d

Vac;uum'"f uxes from am’ate in de
Sltter spac‘etimewh compact
dlmensi‘bns- e

Yerevan,; Armenia,
Séptember 17-21, 2019

A. A. Saharian, D. H. Simonyan, T. A. Petrosyan

Yerevan State University,

Gourgen Sahakyan Chair of Theoretical Physics




B Geometry of the problem and the Hadamard function

B VEV of the field squared

B VEV of the energy momentum tensor: energy flux

@ Conclusions



Geometry of the problem

B We consider combined effects of topology and the presence of a
boundary on the VEVs of the field squared and energy-momentum tensor
for charged scalar field on the background of dS spacetime with an
arbitrary number of toroidally compactified spatial dimensions

B dS spacetime is described by the line ds® = dt* — ¢*'/° Z(d;zﬁ)g,
element: =1
Parameter v is related to the positive cosmological constant A by the
formula «o* = D(D —1)/(2A)

B With conformaltime 7T = —q@e —o0<17<0
the line element takes conformally flat form ds? = (04/7-)2 Nuwdrtde”

—t/a

B Spatial Topology R? x (S1)4,

Uncompact dimensions X, = (.1'1 ey BP) 00K <o, l=1,..., P
Compact dimensions X; = (zp+1 ....;rD) Lp0<at<Lil=p+1,.... D.
qg=D-p L}

Length of the compact dimension
B Physical (comoving) length of compact dimension «L, /n, = 7|



Geometry of the problem

B In addition, we assume planar boundary at 7 = 0 on which the
field obeys the Robin boundary condition

(14+8D,)p=0, 2=0

Special cases: Dirichlet
and Neumann conditions

B We investigate boundary-induced effects



Complex scalar field

B We consider a complex scalar field ¢(x) with a curvature coupling
parameter &, in the presence of a classical abelian gauge field Aﬂ. The
corresponding field equation has the form

(D,DH* + m? + ER) p(z) =0
B In the most important special cases of minimally and conformally coupled
scalarsonehas & =0 and £ =(D—1)/(4D) respectively
<D, =V, +ieA, gauge-covariant derivative

=€ coupling between the scalar and gauge fields
R = D(D + 1)/a® scalar curvature

B One should specify the periodicity conditions along compact

dimensions: ;,:(t.xp.xq + Lie;)) = «?i“lp(f.xp-xq)-

oy = Const, €, is the unit vector along the dimension [ = p+1,.... D



Gauge transformation

B We consider the simplest configuration of the gauge field with A, = const
The gauge field can be excluded from the field equation by the gauge

transformation , . , s }
‘4/_1, — 4"4“ + ()“w, ; (.l.') — & iff(;l'). £ —‘,4#';1','

B Inthe new gaugeonehas A, =0 and D, =V,
B Quasi-periodicity condition after gauge transformation

. -~

@' (t, %p, Xq + Lieg) = €M (t, %5, %)

B The phases in the periodicity conditions and the value of the gauge field

are related to each other through a gauge transformation.

a; = oy + eAjL;



Effect of gauge field

B Although the field strength vanishes, a constant gauge field shifts the

phases in the periodicity conditions along compact dimensions

B This leads to the Aharonov-Bohm-like effects on the expectation values

B The shift due to the gauge field may be written in the form,
eAl, =—eAl, =—-22D, / ®, ,whered, =27 /e
is the flux quantum and CI)I is the flux enclosed by the circle

corresponding to the | -th compact dimension




Complete set of solutions and Hadamard function

B Mode-sum for the Hadamard function — FNlelsloh it e ol o1 specified

GV (z, 2! Z Z o* (')
f o= (kp,ng)ng = (np41,.... np)

Complete set of solutions to the field equation
B We assume that the scalar field is prepared in the Bunch-Davies vacuum

by the set of quantum numbers

() (@) = CSHP2 HD () cos(kya® + alk,))er -1tk

v = (D4 DD + 1)t —m2a2] 2 @7 (%) = 95" (x)

-~

: : (1)
Momentum along uncompactlfled dimensions Hv (%)

Along compactlfled dlmensmns
k‘l — (27{'1”-{-&1) /le ny —O x =i F :*'_'2...., [ = P+ 1,...,D

Hankel function



Complete set of solutions and Hadamard function

B The Hadamard function is split into two parts

GW(z,2") = G\ (x,2") + GV (x, )
/ \

without boundary
boundary-induced part

"\D/2 . . > ! B'U, "I‘ 1
G(l) r.x) = (7777 ) /dk L etkp—18%p-1 oK Axg / duye—t&"+aF').
(@ 7) 2PV, P 1 = Z K 1 Bu—1

Ng

X {K,(ny) 1= (n'y) + L(n'y)] + [L-o(ny) + L (ny)| Ko (0'y) }, - sz



VEV of the field squared

B Given the Hadamard function, the vacuum expectation value of
the field squared is evaluated as the coincidence limit

1
(ppt) = = lim GW(z, 2")

2 ' —z

n (™) = (P o+ (ppT )
— T~

without boundary boundary-induced part

21-p7r—(p+1)/277D /Do
Py = d. 2F r2 + k2 ,2P)h,(nx
¢ = R 2van T 2= Jy F(y/% 41, =2

1 ,l:?l — Z (27 +d-1)2 /L‘,2
hy(u) = / 2 2(1 — 22)P=3)/2g (u2) S
! g2 Bur -1
u Pu-—1

0u(2) = Ko@) Ta() + L) flu,a?) =



VEV of the field squared

B For a conformally coupled massless scalar field
(n/a)”” f’” > o a1 e BT+ 1
d* : _ k p/ xral |
(E’Q@ b= (411-);:/21“(1}/2) L v (x nq) € Br—1
Conformal factor Conformally related to the

result in Minkwoski bulk
B For Dirichlet and Neumann boundary conditions

2nP (227)%
O ¥ G Py an- 1/ dy yg, (ny) pr;z 1227 /y? + k)

g Ng




VEV of the energy-momentum tensor

B Vacuum expectation value of the energy-momentum tensor

1 1 1
(Tik)pg = = 11111 O; dk,(’ (T, T)4+ = l(f — —) gikvlvl < &NV~ ngz'k/agl Gpqlz, )

n (L) = (Tik)o + (Lir)o
— ~

without boundary boundary induced part

= T

ng

K [Fik('l))hl(/o)(l]l) n°z?FrFh) (771)] ;

® The only nonzero off-diagonal component (17)

B Boundary-induced part obeys the covariant continuity equation

VilTl}), =0



VEV of the energy-momentum tensor

m Off-diagonal component (T(); appears (energy flux)

—(p+1)/2 D+l o0
5 T (77/0 Z N 2,
P 2»31‘ + 1 2Py
X /(; dw w™ [))U, 0 1 luz\/yg-é-w?-&—k%q 2
I D
where F(z) = [(& _ z) 2, + (D + 1)¢ - Z] 0.()

B |In special cases of Dirichlet and Neumann boundary conditions

4(n/a)"! /°“ S na
TP — d , . 2 P , 2+k2 E/ P
< 0> :F(Q’r‘)p/g_*-l ‘/:](QIP)P—l ;‘ : yyfp/Z( I Y q) (Uy)

q

B For Dirichlet and Neumann boundary conditions the energy flux has
opposite signs



Asymptotic behavior

B Fora?/n < 1 (xP/nisthe proper distance from the boundary
in units of the curvature radius 1/a)

the influence of the gravitational field is weak
B ForxP/n0 1
@2 > 0,in additionz? > I

DB ) pf2 — v
(27T)p/2+1 VqQ,.D—1(__I,p):gp/2—1—2y

— Foray=0,l=p+1,...,D
Power-law decay

(e = F

221/—])F(V) ,.}D—Ql/k(g—l)/2—’/6—2;177’&(0) N
. If,atleastone & =0

(2’/T) = ‘/qa..D—l(Ip)p—y—l/Z

' it] E tial d
@ v2 <0,in additionz? > L xponential decay

For(ll—o l—p—l—lD

—p/‘2—1‘4 D |
. Pl cos 2|v| In (22P /n) + ¢1] T

op+1 V aP-1 ( TP )

If, at least one &, =0

~ cos [|v|In (4P /n?ko) + &2 e
b R F op+1Y, an 1(llp)(p+1)/2 \/|V|Sillh(v77|l/|)

p/ZUDA p—1)/2 ,—2xPk g




Asymptotic behavior

B At early stages of the expansion (t — —oo)

2D (€ — £p) ’7/0
<T0> R :F(QTF)(P+1)/ ‘)Ip Z fp-i-l /2 pAllq)

ng
B At late stages of the expansion (t — +o)

@ v’ >0 Decayis monotonically
w(l/4=€&)+(D+1)¢-D/4

('471,)17/2"'”1 a.QI/Vq (Qrp)p+l—21/

<T6)> ~ :‘:2p/2+y+2r(1/)(77/G)D+1_2V Z gp/?-*-l—l/(QIPkllq)

n,

B v> <0 Decayis oscillatory

. v D+1
<T6)> ~ — (7}/(' ) :
Hi—1 ‘7T(P+1)/2 ‘q

> A(aP, ky,) sin[2|v| In(n/2) — ¢(aP, ky,)]

g



Energy flux

D =14
Model with a single
compact dimension

Dirichlet boundary
condition

ma =1, a = 7(/4

10%25<T,

1.0 1.5 2.0 2.5 3.0 3.5 4.0

xPlp

Energy flux is directed from the boundary (to the boundary for
Neumann b.c.)



Energy flux

D =4

: 1 Model with a single
or o5 e L/ ] compact dimension
: 1 Dirichlet boundary
condition

;I_Tp/y] — 1 ma =1

104a25<T,

-0.4 -0.2 0.0 0.2 0.4

dl2m



Energy flux

D =14
~ 1 Model with a single
1 compact dimension




Conclusion

B The presence of a planar boundary give rise to the energy flux in the
vacuum state along the direction normal to the plate

B Vacuum expectation values are decomposed into the boundary-free and
boundary-induced parts

B The flux is an even periodic function of magnetic fluxes enclosed by
compact dimensions with the period equal to flux quantum

B Near the boundary the inuence of the gravitational field on
boundary-induced quantum effects is weak
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