A Sedrakian miroducii Dense OC Constructin EoS Sequentia phase transitions Low-mass twin and GW # The fourth family of comapct stars Armen Sedrakian Frankfurt Institute for Advanced Studies Institute for Theoretical Physics, Wroclaw University In collaboration with Jia-Jie Li and Mark Alford MPCS 2019, September 21, 2019 FIAS Frankfurt Institute for Advanced Studies ### A Sedrakian Introduct Dense QC Constructin EoS phase transitions Low-mass twin and GW ### Outline - Introduction to compact star equilibria - Dense QCD and the construction of EoS - New equilibria via sequential phase transitions within QCD - Low-mass twins and GW - Remarks on cooling - Conclusions ### A Sedrakian Introduction Dense OCD Constructin EoS Sequentia phase transitions Low-mass twin and GW ### **Equilibria of compact objects** 150 Figure 6.2 Schematic diagram showing the turning points in the mass versus central density diagram for equilibrium configurations of cold matter. S. Shapiro, S. Teukolsky, "Black holes, White dwarfs and Neutron Stars" - -White dwarfs -first family, $M \le 1.5 M_{\odot}$, [S. Chandrasekhar, L. Landau (1930-32)] - -Neutron Stars second family, $M \le 2M_{\odot}$, [Oppenhimer-Volkoff (1939)] - -Hybrid Stars third family, $M \le 2M_{\odot}$, [Gerlach (1968), Glendenning-Kettner (2000)] - Fourth Family? M. Alford and A. Sedrakian, Phys. Rev. Lett. 119, 161104 (2017). ### A Sedrakian #### Introduction miroduction Constructing EoS phase transitions Low-mass twin and GW • Einstein's field equations: $$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = -8\pi T_{\mu\nu},$$ • Energy-momentum tensor: $$T_{\mu\nu} = -P(r)g_{\mu\nu} + [P(r) + \epsilon(r)] u_{\mu}u_{\nu}$$ TOV equations: $$\begin{array}{lcl} \frac{dP(r)}{dr} & = & -\frac{G\epsilon(r)M(r)}{c^2r^2}\left(1+\frac{P(r)}{\epsilon(r)}\right)\left(1+\frac{4\pi r^3P(r)}{M(r)c^2}\right)\left(1-\frac{2GM(r)}{c^2r}\right)^{-1}.\\ \\ M(r) & = & 4\pi\int\limits_0^r r^2\epsilon(r)dr. \end{array}$$ A Sedrakian miroduciic Dense QCD EoS Sequential phase transitions Low-mass twin and GW The Lagrangian of QCD is written for $\psi_q = (\psi_{qR}, \psi_{qG}, \psi_{qB})^T$ as $$\mathcal{L}_{QCD} = \underbrace{\bar{\psi}_q^i(i\gamma^\mu)(D_\mu)_{ij}\psi_q^j - \textit{m}_q\bar{\psi}_q^i\psi_{qi}}_{quarks} - \underbrace{\frac{1}{4}F_{\mu\nu}^aF^{a\mu\nu}}_{gluons(Yang-Mills)} \; ,$$ where $$(D_{\mu})_{ij} = \delta_{ij}\partial_{\mu} - ig_s t^a_{ij}A^a_{\mu}$$, and $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - 2q(A^{\mu} \times A^{\nu})$ covarinat derivative gluonic field (Yang-Mills) field tensor #### A Sedrakian Introducti #### Dense QCD Constructin EoS Sequential phase transitions Low-mass twin and GW ### Color-superconductivity within the NJL model $$\mathcal{L}_{NJL} = \underbrace{\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - \hat{m})\psi}_{\text{quarks}} + \underbrace{G_{V}(\bar{\psi}i\gamma^{\mu}\psi)^{2}}_{\text{vector}} + \underbrace{G_{S}\sum_{a=0}^{8}[(\bar{\psi}\lambda_{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda_{a}\psi)^{2}]}_{\text{scalar-pseudoscalar}}$$ $$+ \underbrace{G_{D}\sum_{\gamma,c}[\bar{\psi}_{\alpha}^{a}i\gamma_{5}\epsilon^{\alpha\beta\gamma}\epsilon_{abc}(\psi_{C})_{\beta}^{b}][(\bar{\psi}_{C})_{\rho}^{r}i\gamma_{5}\epsilon^{\rho\sigma\gamma}\epsilon_{rsc}\psi_{\sigma}^{s}]}_{\text{pairing}}$$ $$- \underbrace{K\left\{\det_{f}[\bar{\psi}(1+\gamma_{5})\psi] + \det_{f}[\bar{\psi}(1-\gamma_{5})\psi]\right\},}_{t'\text{Hooft interaction}}$$ - quarks: ψ_{α}^{a} , color a = r, g, b, flavor $(\alpha = u, d, s)$; mass matrix: $\hat{m} = \text{diag}_{f}(m_{u}, m_{d}, m_{s})$; - other notations: λ_a , a=1,...,8, $\psi_C=C\bar{\psi}^T$ and $\bar{\psi}_C=\psi^T C$, $C=i\gamma^2\gamma^0$. ### Parameters of the model: - G_S the scalar coupling and cut-off Λ are fixed from vacuum physics - G_D is the di-quark coupling $\simeq 0.75G_S$ (via Fierz) but free to change - G_V and $ho_{ m tr}$ are treated as free parameters ### A Sedrakian mtroducti Dense QCD Constructin EoS Sequential phase transitions Low-mass twin and GW # QCD interactions pairing interactions and gaps $$\Delta \propto \langle 0 | \psi^a_{\alpha\sigma} \psi^b_{\beta\tau} | 0 \rangle$$ - Symmetric in space wave function (isotropic interaction) - Antisymmetry in colors *a*, *b* for attraction - Antisymmetry in spins σ , τ (Cooper pairs as spin-0 objects) - Antisymmetry in flavors α, β ### 2SC phase: Low densities, large m_s (strange quark decoupled) $$\Delta(2SCs) \propto \Delta \epsilon^{ab3} \epsilon_{\alpha\beta} \qquad \delta\mu \ll \Delta,$$ Crystalline or gapless phases: Intermediate densities, large m_s (strange quark decoupled) $$\Delta$$ (cryst.) $\propto \epsilon_{\alpha\beta}\Delta_0 e^{i\vec{Q}\cdot\vec{r}}$ $\delta\mu > \Delta$, CFL phase: High densities nearly massless u, d, s quarks $$\Delta(CFL) \propto \langle 0|\psi_{\alpha L}^{a}\psi_{\beta L}^{b}|0\rangle = -\langle 0|\psi_{\alpha R}^{a}\psi_{\beta R}^{b}|0\rangle = \Delta\epsilon^{abC}\Delta\epsilon_{\alpha\beta C}.$$ ### A Sedrakian Introduction Dense OCT Constructing EoS Sequentia phase transitions Low-mass twin # EOS including (hyper)nuclear, 2SC and CFL phases of matter Choose Maxwell (large surface tension) or Glendenning (low surface tension) constructions. Matching condition for Maxwell is simply $$P_N(\mu_B) = P_O(\mu_B),$$ i.e., with low-density nuclear and high-density quark phases #### A Sedrakian minoductio Dense QCI ### Constructing EoS phase transition Low-mass twin and GW # Synthetic equations of state with constant speed of sound - Instead of full NJL-model EoS with 2SC-CFL transition use synthetic EoS - Realistic DD-ME2 EoS below the deconfinement (Colucci-Sedrakian EoS) - Parametrize synthetic EoS via Constant Speed of Sound (CSS) parameterization (Alford-Han-Prakash 2013), also Haensel-Zdunik (2012). ### A Sedrakian Introducti Dense QC. ### Constructing EoS Sequential phase transitions Low-mass twins and GW ### Relativistic DFT theory $$\mathcal{L} = \sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i \partial_{\mu} - g_{\omega BB} \omega_{\mu} - \frac{1}{2} g_{\rho BB} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} \right) - (m_{B} - g_{\sigma BB} \boldsymbol{\sigma}) \right] \psi_{B}$$ baryonic contribution $$+ \underbrace{\frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2}}_{}$$ scalar mesons $$\underbrace{\frac{1}{4}\omega^{\mu\nu}\omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - \frac{1}{4}\rho^{\mu\nu}\rho_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho^{\mu}\cdot\rho_{\mu}}_{}$$ vector mesons $$+ \sum_{\lambda} \bar{\psi}_{\lambda} (i\gamma^{\mu}\partial_{\mu} - m_{\lambda})\psi_{\lambda} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu},$$ leptons - B-sum is over the baryonic octet $B \equiv p, n, \Lambda, \Sigma^{\pm,0}, \Xi^{-,0}$ - Meson fields include σ meson, ρ_{μ} -meson and ω_{μ} -meson - Leptons include electrons, muons and neutrinos for $T \neq 0$ ### A Sedrakian Introductio Dense QC Constructing EoS Sequential phase transitions Low-mass twir and GW ### Fixing the couplings: nucleonic sector $$g_{iN}(\rho_B) = g_{iN}(\rho_0)h_i(x), \qquad i = \sigma, \omega, \qquad h_i(x) = a_i \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2}$$ $g_{\rho N}(\rho_B) = g_{\rho N}(\rho_0) \exp[-a_{\rho}(x - 1)].$ DD-ME2 parametrization of D. Vretenar, P. Ring et al. Phys. Rev. C 71, 024312 (2005). | | σ | ω | ρ | |------------------|----------|----------|----------| | m_i [MeV] | 550.1238 | 783.0000 | 763.0000 | | $g_{Ni}(\rho_0)$ | 10.5396 | 13.0189 | 3.6836 | | a_i | 1.3881 | 1.3892 | 0.5647 | | b_i | 1.0943 | 0.9240 | _ | | c_i | 1.7057 | 1.4620 | _ | | d_i | 0.4421 | 0.4775 | _ | Total number of parameters 8: boundary conditions on h(x) at x = 1. ### A Sedrakian Introduction Dense QCI Constructing EoS phase transitions Low-mass twin and GW - saturation density $\rho_0 = 0.152 \text{ fm}^{-3}$ - binding energy per nucleon E/A = -16.14 MeV, - incompressibility $K_0 = 250.90 \text{ MeV}$, - symmetry energy J = 32.30 MeV. - symmetry energy slope L = 51.24 MeV, - symmetry incompressibility $K_{sym} = -87.19 \text{ MeV}$ $$\begin{split} K_0 &= k_F^2 \frac{\partial E/A}{\partial k^2}|_{k=k_F} = 9\rho_0^2 \frac{\partial^2 E/A}{\partial \rho^2}|_{\rho=\rho_0}, \qquad S(\rho) = \frac{1}{2} \frac{\partial^2 \epsilon/\rho}{\partial \delta^2}|_{\delta=0}. \\ S(\rho) &= J + L\left(\frac{\rho-\rho_0}{3\rho_0}\right) + \frac{1}{2} K_{\text{sym}} \left(\frac{\rho-\rho_0}{3\rho_0}\right)^2. \end{split}$$ #### A Sedrakian miroduciio Dense OCI Constructing EoS Sequentia phase transition Low-mass twin ### **Equation of state and (hyper)nuclear stars** Zero temperature equations of state of hypernuclear matter for fixed $x_{\sigma\Lambda}=0.6164$ and a range of values $0.15 \le x_{\sigma\Sigma} \le 0.65$. These values generate the shaded area, which is bound from below by the softest EoS (dashed red line) corresponding to $x_{\sigma\Sigma}=0.65$ and from above by the hardest EoS (solid line) corresponding to $x_{\sigma\Sigma}=0.15$. ### A Sedrakian miroductio Dense QCI Constructing EoS phase transition Low-mass twins and GW ## **CSS** parameterization $$\varepsilon(p) = \left\{ \begin{array}{ll} \varepsilon_{\rm NM}(p) & p < p_{\rm trans} \\ \varepsilon_{\rm NM}(p_{\rm trans}) + \Delta \varepsilon + c_{\rm OM}^{-2}(p - p_{\rm trans}) & p > p_{\rm trans} \end{array} \right.$$ M. G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013).J. Zdunik and P. Haensel A and A 551, A61, (2013). ### A Sedrakian Introducti Dense QC Constructing EoS Sequential phase transitions Low-mass twin and GW ### Phase diagram in M-R space Phase diagram for hybrid star branches in the mass-radius relation of compact stars. The left panel shows schematically the possible topological forms of the mass-radius relation in each region of the diagram. M. G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013). ### A Sedrakian Introductio Dense QCI Constructin EoS Sequential phase transitions Low-mass twins and GW # EoS with sequential phase transitions Parameters of the models: $$(\epsilon_1, P_1)$$ $\Delta \varepsilon_1$, $\Delta \varepsilon_{2SC}$ (ε_2, P_2) $\Delta \varepsilon_2$ Note that there are five independent parameters. ### A Sedrakian Construction EoS Sequential phase transitions Low-mass twir and GW ### The EOS is analytically given $$P(\varepsilon) = \left\{ \begin{array}{ll} P_1, & \varepsilon_1 < \varepsilon < \varepsilon_1 + \Delta \varepsilon_1 \\ P_1 + s_1 \big[\varepsilon - (\varepsilon_1 + \Delta \varepsilon_1) \big], & \varepsilon_1 + \Delta \varepsilon_1 < \varepsilon < \varepsilon_2 \\ P_2, & \varepsilon_2 < \varepsilon < \varepsilon_2 + \Delta \varepsilon_2 \\ P_2 + s_2 \big[\varepsilon - (\varepsilon_2 + \Delta \varepsilon_2) \big], & \varepsilon > \varepsilon_2 + \Delta \varepsilon_2 \end{array} \right.$$ ### Need to specify: - the two speeds of sounds: s_1 and s_2 - the point of transition from NM to QM ε_1 , P_1 - the magnitude of the first jump $\Delta \varepsilon_1$ - the size of the 2SC phase, i.e, the second transition point ε_2 , P_2 - the size of the second jump $\Delta \varepsilon_2$ ### A Sedrakian Introduction Introductio Constructin Sequential phase transitions Low-mass twin # Varying parameters of EoS with sequential phase transition ### A Sedrakian Introduction Constructin EoS Sequential phase transitions Low-mass twin ### and resulting topologies of sequences #### A Sedrakian minoduction Dense QCD EoS EoS Sequential phase transitions Low-mass twin and GW The stellar mass as a function of the star's central pressure for four different values of $\Delta \varepsilon_2$. The other parameters of the EOS are fixed at $P_1=1.7\times 10^{35}\,\mathrm{dyn\,cm^{-2}}$, $s_1=0.7$, $\Delta \varepsilon_{2\mathrm{SC}}/\varepsilon_1=0.27$, $\Delta \varepsilon_1/\varepsilon_1=0.6$, and $s_2=1$. The vertical dotted lines mark the two phase transitions at P_1 and P_2 . Stable branches are solid lines, unstable branches are dashed lines. We see the emergence of separate 2SC and CFL hybrid branches along with the occurrence of triplets. ### A Sedrakian Introduction D..... OCD Constructin EoS Sequential phase transitions Low-mass twin # and resulting topologies of mass-radius relations #### A Sedrakian miroductio. Dense QCI Constructin EoS Sequential phase transitions Low-mass twin The M-R relations for the parameter values defined above . We have fixed the properties of the nuclear \rightarrow 2SC transition and the speed of sound in 2SC and CFL matter. For the 2SC \rightarrow CFL transition we have fixed the critical pressure and we vary the energy-density discontinuity $\Delta\varepsilon_2$. The separate 2SC and CFL hybrid branches are clearly visible, along with the occurrence of triplets. #### A Sedrakian miroduction Danca OCT Constructin EoS Sequential phase transitions Low-mass twins and GW ### **Profiles of triplets stars (same mass)** The profiles (here the log of pressure as a function of the internal radius) of the three members of a triplet with masses $M=1.975~{\rm M}_{\odot}$. Here "N" means the nuclear phase. The parameter values are as above, with $\Delta\varepsilon_2/\Delta\varepsilon_1=0.23$. #### A Sedrakian Introduction miroductio Constructin Sequential phase transitions Low-mass twin and GW # Stability conditions for our models | | $\Delta \varepsilon_1/\varepsilon_1$ | | | | |---|--------------------------------------|---------|-------------|-------| | $\Delta \varepsilon_2/\Delta \varepsilon_1$ | 0.4 | 0.5 | 0.6 | 0.7 | | 0.1 | s, s | s, s | us, s | u, us | | | | | N-2SC | N-CFL | | 0.2 | s, s | s, s | us, us | u, us | | | | | triplet | N-CFL | | 0.3 | s, s | s, s | us, us | u, us | | | | | N-2SC;N-CFL | N-CFL | | 0.4 | s, s | s, us | us, u | u, u | | | | 2SC-CFL | N-2SC | | | 0.5 | s, s | s, us | us, u | u, u | | | | 2SC-CFL | N-2SC | | In each entry stable/unstable branches are referred by s/u, the 2SC and CFL phases are separated by comma, and the pressure increases from left to right. The presence of twin hybrid configurations or triplet configurations is marked by the underbraces with information about the involved phases ("N" means nuclear). ### A Sedrakian miroductioi Dense OCD Constructin EoS Sequential phase transitions Low-mass twin and GW ## **Lower mass triplets** - Low-mass triplets via early transition NM→ QM - Still 2-solar mass members possible but only with the NM-2SC-CFL composition ### A Sedrakian Introduction minoductio Constructin Sequential phase transitions Low-mass twin # GW170817: First gravitational waves from a neutron star merger (Ligo-Virgo-Collaboration) ### The associated EM events observed by over 70 observatories: - + 2sec gamma ray burst is detected - +10 h 52 min bright source in optical - +11 h 36 min infrared emission; +15 h ultraviolet - +9 days X-rays; +16 days radio #### A Sedrakian Sequential phase transitions TABLE I. Source properties for GW170817: we give ranges encompassing the 90% credible intervals for different assumptions of the waveform model to bound systematic uncertainty. The mass values are quoted in the frame of the source, accounting for uncertainty in the source redshift. | | Low-spin priors $(\chi \le 0.05)$ | High-spin priors $(\chi \le 0.89)$ | |--|-------------------------------------|--------------------------------------| | Primary mass m ₁ | 1.36−1.60 M _☉ | 1.36-2.26 M _☉ | | Secondary mass m_2 | 1.17−1.36 M _☉ | 0.86−1.36 M _☉ | | Chirp mass M | $1.188^{+0.004}_{-0.002}M_{\odot}$ | $1.188^{+0.004}_{-0.002}M_{\odot}$ | | Mass ratio m_2/m_1 | 0.7–1.0 | 0.4-1.0 | | Total mass m_{tot} | $2.74^{+0.04}_{-0.01}M_{\odot}$ | $2.82^{+0.47}_{-0.09}M_{\odot}$ | | Radiated energy E_{rad} | $> 0.025 M_{\odot} c^2$ | $> 0.025 M_{\odot}c^{2}$ | | Luminosity distance D _L | 40 ⁺⁸ ₋₁₄ Mpc | 40 ⁺⁸ ₋₁₄ Mpc | | Viewing angle Θ | ≤ 55° | ≤ 56° | | Using NGC 4993 location | ≤ 28° | ≤ 28° | | Combined dimensionless tidal deformability $\tilde{\Lambda}$ | ≤ 800 | ≤ 700 | | Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$ | ≤ 800 | ≤ 1400 | ### A Sedrakian miroducii Dense OC Constructin EoS Sequential phase transitions Low-mass twir ### New nuclear physics labora tories - extreme high temperatures $\sim 100 \text{ MeV}$ - supra-nuclear densities $\sim 5 \times n_s$ - high and differential rotation rates #### A Sedrakian Introduction Dense OCD Constructin EoS Sequentia phase transitions Low-mass twins and GW (a) Mass-radius relation for hybrid stars with a single QCD phase translation, with different hadronic envelopes. (b) Mass-deformability relation for stars featuring nucleonic envelopes. The inset shows the results for the case $M_{\rm max}^{\rm H}/M_{\odot}=1.20$. #### A Sedrakian Introduction Dense OCD Constructin EoS Sequentia phase transitions Low-mass twins and GW (a) Mass-radius relation for hybrid stars with a single QCD phase translation, with different hadronic envelopes. (b) Mass-deformability relation for stars featuring nucleonic envelopes. The inset shows the results for the case $M_{\rm max}^{\rm H}/M_{\odot}=1.20$. ### A Sedrakian Introduction Dense QCD Constructin EoS Sequential phase transitions Low-mass twins and GW a) Tidal deformabilities of compact objects in the binary with chirp mass $\mathcal{M}=1.186M_{\odot}$ (b) Prediction by an EoS with maximal hadronic mass $M_{\max}^{H}=1.365M_{\odot}$. The inset shows the mass-radius relation around the phase transition region. The circles M_2 are two possible companions for circle M_1 , generating two points in the Λ_1 - Λ_2 curves while one point is located below the diagonal line. #### A Sedrakian Introduction Dense QCD EoS EoS Sequential phase transitions Low-mass twins and GW The case of double phase transition a) Tidal deformabilities of compact objects in the binary with chirp mass $\mathcal{M}=1.186M_{\odot}$ (b) Prediction by an EoS with maximal hadronic mass $M_{\rm max}^{\rm H}=1.365M_{\odot}$. The inset shows the mass-radius relation around the phase transition region. The circles M_2 are two possible companions for circle M_1 , generating two points in the Λ_1 - Λ_2 curves while one point is located below the diagonal line. ### A Sedrakian miroductic Dense QC Constructin EoS phase transition Low-mass twins and GW ### Near future experimental advances: - NICER (X-ray studies of neutron stars) - LIGO-VIRGO (Gravitational waves from BNS and pulsars) - SKA (radio timing of pulsars) ### Theory questions: - Dense QCD phases: static and dynamic properties - Astrophysical properties of compact stars with quark phases - Triplets and twins - Gravity wave and QCD Thank you for your attention!