

Muon trigger assisted by calorimetry at the ATLAS experiment

Rafael Gonçalves Gama

Georg-August-Universität Göttingen

7th December 2018

- → Introduction
- Motivation
- The ATLAS experiment
- → Muon trigger assisted by calorimetry: before the Phase-II upgrade
- → Muon trigger assisted by calorimetry: after the Phase-II upgrade
- Summary / Current Status

Introduction

Online trigger system

LHC/ATLAS Upgrades

Seminars of the II. Institute of Physics – 7^{th} December 2018

Seminars of the II. Institute of Physics – 7^{th} December 2018

Challenges and Solutions

Challenges and Solutions

Challenges and Solutions

Challenges and Solutions

The Hadronic Calorimeter (TileCal)

- Composed by 4 sections
 - Long Barrel (LB) sides A and C
 - → Extended Barrel (EB) sides A and C
- → 64 modules per section
- The modules are divided into cells
- The cells have double readout (left and right)
- → ~10.000 readout channels
- Measuring hadronic particles

The Hadronic Calorimeter (TileCal)

The Muon Spectrometer

The ATLAS online trigger system

The ATLAS online trigger system

The ATLAS online trigger system

Information fusion to attenuate the false alarm rate

Coincidence between Tile Extended Barrel and TGC

Muon candidates and offline muons

Muon candidates and offline muons

Geometry Matching

- How the information is combined?
- L1Muon (end-cap region) is fed by the TGC
- The information is mapped into trigger sectors
 - → TGC: divided into 48 regions in Φ (for each side)
- TileCal: divided into 64 modules in Φ (for each side)
- Geometry matching in Φ
 - → 1 trigger sector ← 2 TileCal modules

Hit confirmation algorithm

- Analog readout channel dedicated to muons
 - Developed during TileCal conception
 - D-layer only readout
 - → Cell area
 - Particles absorbed by the previous calorimeters layers
 - Never have been used
 - Except in...

Preliminary Performance

- 2011: for an octant of the modules, the muon readout channels were instrumentalised
- → Spare digitizer boards
- Efficiency: 93% (confirmed real muons)
- Fake confirmation: 17%
- By losing 7% of real muons
- Reduce 83% of fake muons
- Threshold is adjustable to trigger demands
- New electronics system to fully digitize/process the muon readout

Overview of the electronic system

- TileCal Extended Barrel: 64 modules
 for each side 128 modules
- → For each module: D5(L&R) e D6(L&R)
- → 512 channels
- L1Muon electronics: TGC-Sector Logic
- → 48 TGC-Sector Logic
 - → New FPGA RTL coding
- → TMDB (Tile-Muon Digitizer Board)
 - → 32 channels (matched filtering & detection)
 - → 16 TMDB boards

The TMDB (Tile Muon Digitizer Board)

- → VME64x, 9U standard
- → FPGA based (core processing, VME interface)
- → G-Link (x3): 800 Mbps each (TGC-SL)
- → S-Link: 2,0 Gbps (ROS)
- Optical receiver and decoder for the TTC
- PCB: 16 layers (density and signal integrity)
- Designed and assembled in Brazil
 - → UFRJ
 - → UFJF
 - Private companies (PCB manufact. & assembly)

The TMDB (Tile Muon Digitizer Board)

- A/D conversion channels (x32)
 - → 3 stages
 - Transformer coupled buffer
 - → RC passive filter $f_{-3dB} = 20$ MHz
 - Attenuator (ADC dynamic range)
- Core FPGA
 - Processing
 - Matched filtering
 - Detection
 - GTP Transceivers
 - → G-Link (TGC-Sector Logic)
 - → S-Link (ATLAS ROS)
- VME FPGA
 - VME bus interface
 - Registers configuration
 - → FPGA programming through VME

Commissioning performance

Run 2 performance

Run 2 performance

Increase the muon detection efficiency in the central region

Detecting muons in the TileCal for the ATLAS central region

TileCal readout electronics after the phase-II upgrade

- Phase-II upgrade: New TileCal electronics
 - Digital channel dedicated to the trigger system
 - → Electronic noise for the digital channel (RMS): ~20 MeV (or better)
 - → Electronic noise for the current muon analog channel (RMS): 200 MeV
 - Previous study: muon detection in very difficult in the LB with the analog channel
- The current TileCal default readout has an electronic noise of ~20 MeV
 - Enabling the analysis that is going to be presented

Detecting muons using only the RPC3 (RPC3 trigger)

- → Goal: exclude RPC1 and RPC2 participation
- Based on the muon hit coincidence for different layers within a RPC3 chamber
- Vertical strips (red): measure the η coordinate
- Horizontal strips (blue): measure Φ the coordinate
- Strips superposition: enables the measurement of the muon and coordinates
- RPC3 chamber dimensions: ~0.1 x ~0.2 [η x Φ]
- L1Muon resolution: ~0.1 x ~0.1 [η x Φ]
- Logic division for the Φ direction
 - ➤ To get the same L1Muon resolution
 - We consider an RPC3 chamber as 2 Logic Regions of ~0.1 x ~0.1 [η x Φ]

RPC3 trigger: coincidence methods

RPC3 trigger: algorithm

Geometry matching

- Where in the TileCal does a muon candidate pass through?
- Different geometries
- There is no direct relation between modules/cells and chambers
- For the Φ direction
 - Simulated muons ($p_{T} > 15 \text{ GeV}$)
 - → ~88% hit 1 modules
 - → ~11% hit 2 modules
 - ~1% hit a disabled module in the simulation
- Region of up to 2 modules

Geometry matching

- For the η direction
 - There is no direct relation: cells/chambers
 - Toroid magnetic field
 - Simulated muons ($p_T > 15 \text{ GeV}$)
 - → ~76% hit 1 cell per module
 - → ~22% hit 2 cells per module
 - → ~1,95% hit 3 cells per module
 - → ~0,05% hit 4 cells per module
 - Region of up to 2 cells

Geometry matching

- Muon candidate: hits up to 2 x 2 [cells x modules]
- Solenoid magnetic field influence in Φ
- → Toroid magnetic field influence in η
- We tested the following regions (clusters)
 - → 2 x 2 [cells x modules]
 - → 2 x 3 [cells x modules]
 - → 3 x 2 [cells x modules]
 - → 3 x 3 [cells x modules]
- Best performance: with the 2 x 2 cluster

Muon candidate confirmation with TileCal: RPC3+Tile trigger

Performance: Turn-on curves

Efficiency Map

RPC3+Tile Performance

Trigger	Det. Rate [%]	False Rate [%]
RPC3+Tile loose	90,91	6,68
RPC3+Tile medium	83,16	4,97
RPC3+Tile tight	73,59	2,73
L1_MU15	77,90	2,93

- ➔ Increase of the LHC luminosity
 - → Big challenge to ATLAS
 - → Trigger system
- Muon trigger assisted by calorimetry before the Phase-II upgrade
 - → Current results (Run 2, 2018): Tile-Muon behaves as expected
 - → Reduces the fake muon rate with a minor efficiency impact
 - Preparation for Run 3
 - → Muon trigger electronics: New TGC-Sector Logic board
 - → TMDB: G-Link @ 800 Mbps → Aurora based (8b/10b) @ 1.6 Gbps
- Muon trigger assisted by calorimetry after the Phase-II upgrade
 - → RPC3+Tile trigger: increase efficiency for the central region
 - Continue the study: more suitable dataset (characteristics after the Phase-II upgrade)
 - Student from UFRJ working on this

BACKUP

Seminars of the II. Institute of Physics – 7^{th} December 2018

TileCal cell muon energy deposition profile ($p_T > 15 \text{ GeV}$)

TileCal cluster muon energy deposition profile

RPC3 only vs RPC3+Tile Performance

Trigger	DP [%]	FP [%]	SP [%]
RPC3 loose	95,00	37,50	77,90
RPC3+Tile <i>loose</i>	90,91	6,68	92,10
RPC3 medium	86,90	27,90	79,30
RPC3+Tile <i>medium</i>	83,16	4,97	89,00
RPC3 tight	76,90	15,30	80,80
RPC3+Tile <i>tight</i>	73,59	2,73	85,00
L1_MU15	77,90	2,93	87,20