PRECISION HIGGS PHYSICS @ HL/HE-LHC

 \mathbb{B}

田田

Higgs Physics at the LHC

• We have come a long way since the Higgs discovery in 2012

- The available LHC Run1 (7,8 TeV~25fb-1) & Run2 (13 TeV ~150fb-1) datasets have pushed Higgs physics from search mode to measurement mode, probing the nature of the boson and its agreement with the SM
- •All the main production and decay modes under scrutiny by ATLAS and CMS

What to ask the boson?

- Is its production rate, where we measure it, at the correct SM level?
- How do we caracterize it? (mass, width, spin)
- How well can we model its behaviour?
- Does it couple to SM particles at the appropriate level?
- Does it couple to itself?
- •Does it decay unusually?
- Are there more Higgses?
- Higgs as a tool for discovery

Larger datasets → rarer / more complex production and decay modes become accessible Precise differential measurements possible

HL/HE LHC ?

So long Run2…

- The 2nd run of the LHC has just ended marking the conclusion of an extremely successful data taking period.
- Over 150 fb-1 of 13TeV pp collisions recorded for analysis (36fb-1/80fb-1 analysed so far)

CMS Integrated Luminosity Delivered, pp

- Standard Model works beautifully/ stubbornly at the LHC: no direct evidence of new physics yet
- Lastest highlights of Run2 again in the Higgs realm: Observation of Higgs coupling to third generation quarks

HE-LHC

Recent proposal: LHC tunnel, 16T magnets \rightarrow 27 TeV pp collisions

Target Luminosity: 15 ab-1 (20 years)

~800 PU

Earliest possible start of physics: 2040

Technical challenge: magnet schedule

Precision physics at the HL-LHC?

• High statistics does not come for free: extremely challenging conditions

- High luminosity → 200 soft pp interactions per crossing
- Detector elements and electronics are exposed to high radiation dose

- Extensive upgrade program by ATLAS and CMS underway, with the goal of at least maintaining the current performance despite the hard conditions
	- ^Effective pileup mitigation & extended capabilities with new algorithms
	- Increased detector acceptance
	- Increased spatial granularity to resolve signals from individual particles
	- Precise timing measurements to provide an additional dimension for discrimination

MUON SYSTEMS

- New DT/CSC BE/FE electronics
- GEM/RPC coverage in 1.5<|η| < 2.4
- Muon-tagging in 2.4|η|<3.0

TRACKER

- radiation tolerant, high granularity, low material budget
- coverage up to |η|=3.8
- track trigger at l1

BARREL CALORIMETERS

- New BE/FE electronics
- ECAL: lower temperature
- HCAL: partially new scintillator

ENDCAP CALORIMETERS

- high granularity calorimeter
- Radiation tolerant scintillator
- 3D capability and timing

TRIGGER & DAQ

- Track-trigger @L1
- L1 rate ~750kHz
- HLT output ~7.5kHz

(* slide stolen from P. Azzi)

Precision physics at the HL-LHC?

• Studies of detector performance with fully simulated Monte Carlo samples in HL-LHC conditions allow us to have an understanding of the expected future performance of the detectors.

Figure 19: The efficiency for identifying prompt muons from Drell-Yan events and non-prompt muons and non-prompt

prompt muons from tt events using charged isolation is shown as a function of PU density,

• These studies, performed extensively in 2017 to Design Reports, are critical to support our updated physics prospects (both those hased on projections of Run2 analysis identified pi parameterized simulations of the HL-LHC performance) and at a set of the MTD. The set of the MTD dividend by non- \sim devtansivaly in 2017 for the ATI AS8.CMS Technical isolation is • These studies, performed extensively in 2017 for the ATLAS&CMS Technical | $t_n = \frac{1}{2}$ those based on projections of Run2 analysis and those directly using fast/ $\hskip1cm \Big\vert$ \mathbb{R}^n . The efficiency is the \mathbb{R}^n . parameterized simulations of the HL-LHC performance)

The HL-LHC/HE-LHC Workshop: 2018 Yellow Reports

- Objectives of the workshop:
	- Prepare a **synthesis** of current status of the HL-LHC physics program. Reappraise past projections, perform new analyses, complete partial analyses and combine to provide **the most complete picture**.
	- Begin a systematic study of the physics **potential of the HE-LHC** (27 TeV)
	- **Coherence**: Harmonize results between LHC experiments and projections from the TH community.
	- Gather and discuss **new ideas** from the community and revisit prospects in the light of increased precision in SM measurements with the much larger data sample.
- The results of the workshop were summarised in Yellow Reports that were submitted to the European Strategy group on 18/December/2018

The HL-LHC/HE-LHC Workshop: 2018 Yellow Reports

The physics potential of HL-LHC

- ...
Workshop steering group: A. Dainese, M.L. Mangano, A.B. Meyer, A. Nisati, G.P. Salam, M. Vesterinen
WGI conveners: P. Azzi, S. Farry, P. Nason, A. Tricoli, and D. Zeppenfeld
- WG2 conveners: M. Cepeda, S. Gori, P. Ilten, M. Kado, and F. Riva.
- WG3 conveners: X. Cid-Vidal, M. D'Onofrio, P. J. Fox, R. Torre, and K. Ulme
- WG4 conveners: A. Cerri, V.V. Gligorov, S. Malvezzi, J. Martin Camalich, and J. Zupan
- WG5 conveners: Z. Citron, J. F. Grosse-Oetringhaus, J. M. Jowett, Y.-J. Lee, U. Wiedemann, M. Winn **Contributing authors: see Addendum**

ABSTRACT

This document presents the executive summary of the findings of the Workshop on "The physics of HL-LHC, and perspectives
on HE-LHC", which has run for over a year since its kick-off meeting on 30 October - 1 November 2017. HL-LHC physics programme. As approved today, this covers (a) pp collisions at 14 TeV with an integrated luminosity of 3 ab each for ATLAS and CMS, and 50 fb⁻¹ for LHCb, and (b) Pb-Pb and p-Pb collisions with integrated luminosities of 13 nb⁻ each for Syntax and Coher, and so no - not critical formulation and the term of the syntal state and for the "
and 50 the ", respectively. In view of possible further upgrades of LHCb and of the ions programme, the WG repo

or consider a new orientation of the activity has been carried out by the working groups (WGs): "Standard Model" (WG1), "Higgs" (WG2), "Beyond the Standard Model" (WG3), "Flavour" (WG4) and "QCD matter at high density" (WG conditions. These latter studies implement the knowledge acquired during the preparation of the technical design reports for
the upgraded detectors, and reflect the experience gained by the experiments during the first two ments describing in full detail the HL-LHC studies performed by the experiments can be found in Ref. [6] (available in early 2019) and in Ref. [7].

Three goals have been set for the Workshop: (i) to update and extend the projections for the precision and reach of the These gas are over the relationships that interpretation; (ii) to highlight new proportunities for discovery of phenomena beyond the HL-HC measurements, and for their interpretation; (ii) to highlight new opportunities for phenomena, and in the study of QCD matter at high density. In addition to enriching and consolidating the physics plans for HL-LHC, and highlighting the significant advances that the full HL-LHC programme will bring relative to today's landscape, this contribution to the European Strategy for Particle Physics Update process is intended to help potential of future projects beyond HL-LHC

References

- 1. P. Azzi, S. Farry, P. Nason, A. Tricoli, and D. Zeppenfeld, (conveners), et al, Standard Model Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-03, CERN, Geneva, 2018, https://cds.cern.ch/ro
- 2. M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva. (conveners), et al. Higgs Physics at the HI-LHC and HE-LHC. CERN-LPCC-2018-04, CERN, Geneva, 2018. https://cds.ceri
- 3. X. Cid-Vidal, M. D'Onofrio, P. J. Fox, R. Torre, and K. Ulmer, (conveners), et al, Beyond the Standard Model Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-05, CERN, Geneva, 2018. https://cd
- 4. A. Cerri, V. V. Gligorov, S. Malvezzi, J. Martin Camalich, and J. Zupan, (conveners), et al, Flavour Physics at the HL-LHC
and HE-LHC, CERN-LPCC-2018-06, CERN, Geneva, 2018. https://cds.cern.ch/record/2650175.
- 5. Z. Citron, A. Dainese, J. F. Grosse-Oetringhaus, J. M. Jowett, Y.-J. Lee, U. Wiedemann, and M. A. Winn, (conveners), et al, Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN-LPCC-2018-07
- CERN, Geneva, 2018. arXiv:1812.06772 [hep-ph]. https:/
- 6. The ATLAS and CMS Collaborations, Report on the Physics at the HL-LHC and Perspectives for the HE-LHC, CERN-LPCC-2019-01, CERN, Geneva, 2019. https:/

7. LHCb Collaboration, R. Aaij et al., Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HI-LHC era $arXiv:180$

The physics potential of HE-LHC

Editors

- Workshop steering group: A. Dainese, M.L. Mangano, A.B. Meyer, A. Nisati, G.P. Salam, M. Vesterinen
WG1 conveners: P. Azzi, S. Farry, P. Nason, A. Tricoli, and D. Zeppenfeld
- WG2 conveners: M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva,
- WG3 conveners: X. Cid-Vidal, M. D'Onofrio, P.J. Fox, B. Torre, and K. Ulmer WG4 conveners: A. Cerri, V.V. Gligorov, S. Malvezzi, J. Martin Camalich, and J. Zupan WG5 conveners: Z. Citron, J. F. Grosse-Oetringhaus, J. M. Jowett, Y.-J. Lee, U. Wiedemann, M. Winn **Contributing authors: see Addendum**

ABSTRACT

This document summarizes the physics potential of the High-Energy LHC (HE-LHC), under consideration as a possible future project at CERN. The HE-LHC is a 27 TeV pp collider, to be installed in the LHC tunnel, relying on the 16 T magnet technology being developed for the 100 TeV Future Circular Collider (FCC-hh). The HE-LHC is designed to deliver 10-15 ab⁻¹of integrated
luminosity to two general purpose detectors, during 20 years of operation. As for the LHC, the interaction point focused on flavour physics, delivering $3ab^{-1}$ of integrated luminosity to an upgraded LHCb detector, and would continue the programme of heavy ion collisions. The results presented here were obtained in the context of the Workshop on
"The physics of HL-LHC, and perspectives on HE-LHC", which ran for over a year after its kick-off m November 2017. These studies complemented those focused on the engineering and technological aspects of the project, performed in the context of the FCC conceptual design report (CDR) for the HE-LHC, and documented elsewhe The activity has been carried out by five working groups (WGs): "Standard Model" (WG1), "Higgs" (WG2), "Beyond the Standard Model" (WG3), "Flavour" (WG4) and "QCD matter at high density" (WG5). The reports from the WGs, extending this executive summary with much more detail and many more results, are available on the CERN Document Serv appear on arXiv. The documents describing in full detail the HL-LHC and HE-LHC studies performed by the ATLAS and CMS
Collaborations can be found in Ref. [7] (available in early 2019).

References

- 1. M. Benedikt, J. Gutleber, and F. Zimmermann. (editors). Future Circular Collider Study. Volume 4: The High Energy LHC (HE-LHC) Conceptual Design Report, CERN-ACC-2018-0059, CERN, Geneva, Dec, 2018. Submitted to Eur. Phys. J. ST. http://cern.ch/qo/S9G
- 2. P. Azzi, S. Farry, P. Nason, A. Tricoli, and D. Zeppenfeld, (conveners), et al, Standard Model Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-03, CERN, Geneva, 2018. https://cds.cern.ch/recor
- 3. M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva, (conveners), et al, Higgs Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-04, CERN, Geneva, 2018. https://cds.cern.ch 30122650162
- 4. X. Cid-Vidal, M. D'Onofrio, P. J. Fox, R. Torre, and K. Ulmer, (conveners), et al, Beyond the Standard Model Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-05, CERN, Geneva, 2018. https://cds.cern.ch/record/265
- 5. A. Cerri, V. V. Gligorov, S. Malvezzi, J. Martin Camalich, and J. Zupan, (conveners), et al. Flavour Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-06, CERN, Geneva, 2018. https://cds.cern.ch/ro
- 6. Z. Citron, A. Dainese, J. F. Grosse-Oetringhaus, J. M. Jowett, Y.-J. Lee, U. Wiedemann, and M. A. Winn, (conveners), et al, Future physics opportunities for high-density OCD at the LHC with heavy-ion and proton beams, CERN-LPCC-2018-07, CERN, Geneva, 2018. arXiv:1812.06772 [hep-ph]. https://cds.cern.ch/record/2650176.
- 7. The ATLAS and CMS Collaborations, Report on the Physics at the HL-LHC and Perspectives for the HE-LHC, CERN-LPCC-2019-01, CERN, Geneva, 2019, https:

[SM & TOP - CERN-LPCC-2018-03](https://cds.cern.ch/record/2650160/)

[Higgs - CERN-LPCC-2018-04](https://cds.cern.ch/record/2650162/)

[BSM - CERN-LPCC-2018-05](https://arxiv.org/abs/1812.07831/)

[Flavor - CERN-LPCC-2018-06](https://arxiv.org/abs/1812.07638/)

[Heavy Ions - CERN-LPCC-2018-07](https://arxiv.org/abs/1812.06772/)

WG2: Higgs

[Higgs - CERN-LPCC-2018-04](https://cds.cern.ch/record/2650162/)

- •Huge collaborative effort, joining forces across the LHC ring and with the theoretical community
- •The bar for the Higgs studies was really high:
	- •Stress on combinations (LHC potential, ATLAS+CMS)
	- •Stress on theo+experimental cross-feed: revision of future theoretical uncertainties (theo- >exp) and experimental updates feed to theoretical teams to be able to attack the full HL phase-space (exp->theo)
- •400 authors
- •343 pages (x2 the original goal...)
- •I will focus on the experimental updates presented in the Higgs chapter, and mostly on HL-LHC

Uncertainty Scenarios

•Main experimental uncertainties synchronised between CMS and ATLAS

- •In most cases, two complementary scenarios given for each of the updated projections:
	- S1 Conservative, based on the current Run2 systematic uncertainties (including theory)
	- S2 Ultimate, based on synchronised estimates of ultimate performance for experimental uncertainties, and applying a factor of 1/2 for theoretical uncertainties

Uncertainty Scenarios

- •Main experimental uncertainties synchronised between CMS and ATLAS
- •In most cases, two complementary scenarios given for each of the updated projections:
	- S1 Conservative, based on the current Run2 systematic uncertainties (including theory)
	- S2 Ultimate, based on synchronised estimates of ultimate performance for experimental uncertainties, and applying a factor of 1/2 for theoretical uncertainties

HIGGS PHYSICS @ HL-LHC

The HL-LHC: A Higgs Factory

What do we need to know? Where will the HL-LHC impact?

Precision Measurements (Couplings to ~5%, Cross Sections, Differential Distributions, Width, assessment of the top Yukawa)

• Rare decays

• **Di-Higgs production** ➜ self coupling

• **BSM Higgs searches** (extra scalars, BSM Higgs resonances, anomalous couplings)

SM Higgs Precision Measurements

• Old studies (before 2018): comprehensive, but mostly based on extrapolations of Run1/early Run2 results, plus specific analyses with parametrised full simulation. Varying uncertainty assumptions. Single experiment only!

> **Rates can be measured at the few % level (10-20% for rarer modes)**

Coupling can be measured at the few % level

- Complete revamp of the SM Higgs projections, starting from Run2 results and incorporating the current understanding of the future ATLAS&CMS performance
- **• All main decay x production modes incorporated to the study (γγ, WW, ΖZ, ττ, bb, μμ, Zγ x ggF, VBF, WH, ZH, ttH)**
- Individual experiment results, leading to a combination of the ATLAS and CMS sensitivity (LHC reach)
	- Theoretical systematics assumed fully correlated, experimental uncertainties uncorrelated

Results Per Decay Mode

• Importance of Theory / MC understanding: specially important for background modelling

Results Per Production Mode

Couplings @ HL-LHC

• Precision of 2-4% can be reached for the non-statistically dominated modes

Uncertainty Scenario Comparison

Comparison to older projections

- Rather good agreement between the new ATLAS and CMS projections while they differed clearly in the past
- Improvements wrt to old projections due to:
	- Theoretical uncertainties (now YR4, old YR3 this is a factor of 2!)
	- Improvements in analysis going from Run1 to Run2 (eg: ttH)
	- Global fit / coherent study of all decay modes
	- Better understanding of performance at HL-LHC

Time evolution

• Measurements became systematically limited rather fast in almost all cases -> challenge

• Most Coupling modifier uncertainties projected to reach ~4-6% precision by the end of Run 3, and 2-4% after 3000 fb-1 at HL-LHC

Ratios: Cancelation of uncertainties

Global Fits: EFT

Higgs couplings + DY + Diboson observables

Differential Cross Sections

용

 2.50

γH

 p^{j1} [GeV]

• Exploit the large dataset and go beyond inclusive measurements

Differential Cross Sections

• Further

characterisation of the kinematics of the boson: rarer production modes (tth) x differential measurements provide further insight

• Example: can be used to constrain the Higgs self coupling in an alternative way to the traditional HH analysis

G_N (M_N) since \mathbb{R}^2 is the single state of \mathbb{R}^2 GH (MEV) SAMPLE SAMPLE. Mass&Width

*fa*³ cos (*fa*3) ⇥ 104 S1, on-shell and off-shell [1.6, 1.6]

Higgs Invisible

Connection between Higgs & Dark Matter

Run2 Limit ~20% @ 95%CL (in both experiments sensitivity dominated by the VBF channel)

From the global coupling fit, if $B_{BSM} \geq 0$ (any invisible or undetected states): $B_{BSM} < 2.5\%$ @ 95% CL

Prospects of direct searches @ 14TeV:

VH: ATLAS, 2013: <8% @ 95%CL VBF: CMS, 2018: <3.8% @ 95%CL

In the VBF case: full reoptimization of the analysis at 200PU to handle the impact of PU in MET

Anomalous Couplings Table 10: Summary of the 95% CL intervals for *fa*³ cos (*fa*3), under the assumption G^H = GSM *fa*³ cos (*fa*3) are multiplied by 104. Values are given for scenarios S1 (with Run 2 systematic uncertainties [47]) and the approximate S2 scenario, as described in the text. See scenario, as described in t

$$
A(HVV) \sim \left[a_1^{VV} + \frac{\kappa_1^{VV} q_1^2 + \kappa_2^{VV} q_2^2}{(\Lambda_1^{VV})^2}\right] m_{VI}^2 \epsilon_{VI}^* \epsilon_{V2}^* + a_2^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}.
$$

• Test for anomalous couplings: $f_{ai} = |a_i|^2 \sigma_i / \sum |a_j|^2 \sigma_j$ $\phi_{ai} = \arg (a_i/a_1)$

events (red) or only on-shell events (blue). The dashed lines represent the effect of removing all

Parameter Scenario Projected 95% CL interval

Rare decays

- **• High statistics: rare decays become accessible**
- **Hμμ:** Probe coupling to 2nd generation —> prospects for **cross section and coupling measurement** → **8% & 5% uncertainty@3000fb-1** respectively
- **Hcc**: how close can we get?

 μ (ZH, Hcc, ATLAS)<6.3 ω 95% CL, 3000fb-1, 14 TeV (Best fit: $\Delta \mu = 3.2$)

LHCb: 50xSM projected, but factoring in detector upgrades 5-10XSM could be achieved, LHCb-CONF-2016-006

• Also:

- H- \rightarrow J/ $\psi \gamma$ (ATLAS) -> probe c coupling $(\sim x15 \text{ SM})$ Run2: B $(H \rightarrow \phi\gamma)$ < 4.8 × 10⁻⁴, exp SM (2.31 ± 0.11) × 10⁻⁶ B $(H \rightarrow \rho \nu)$ <8.8 × 10⁻⁴, exp SM(1.68 ± 0.08) × 10⁻⁵
- H->Φγ / ργ (ATLAS) -> probe light-quark couplings. ργ already close to expectation. BR $(H\rightarrow J/\Psi \gamma)$ < $(44^{+19}$ $_{-22}$ \times 10⁻⁶) @ 95% CL

Summary of rare Yukawa Couplings

- Indirect constraints (eg from differential distributions, off-shell couplings, or from the global coupling fits) complement the direct searches
- The combined LHC (ATLAS+CMS+LHCb) reach for kappa_c could reach the 1% level

DiHiggs Production

- **• σ~ 39.5 fb@14TeV → HL-LHC benchmark**
	- Can we access the Higgs self-coupling λ?
	- Low cross section: destructive interference
- Expanding list of final states w. Run2 & extrapolated to HL-LHC : from the classical 2b2gamma to rarer modes like bbZZ
- Fully fledged MonteCarlo analyses

35

Events

 10^6

 $10⁵$

 $10⁴$

 $10³$

 $10²$

DiHiggs: Today

~10 times the SM cross section (expected)

- Observed

Obs.

12.9

20.4

Expected

Expected \pm 1 σ

Expected $\pm 2\sigma$

20.7

26.3

12.6 14.6

6.7 10.4

60

Exp. Exp. stat.

18.5

 11.9

 25.1

 9.2

80

70

DiHiggs: 3000fb-1

Combined significance of a single experiment: roughly 3 standard deviations

Combining the ATLAS and CMS results a significance of 4 standard deviation can be achieved (including systematic uncertainties).

DiHiggs: 3000fb-1

Extended Higgs Sector

Are there more Higgs bosons? Can we find them at the HL-LHC? Benchmark channel: Htautau

MSSM: Benchmarks update

Update of the traditional MSSM scenarios: comparison of direct Htautau limits and indirect constraints from the couplings extrapolations

Higgs@HL-LHC: How much have we covered?

What about the HE-LHC?

- approximately doubling the reach in mass \rightarrow high impact on BSM Higgs studies •The HE-LHC will extend the HL-LHC reach in direct searches for new particles,
- •In terms of SM Higgs, it will enhance statistically limited processes and enable the access to very large transverse momenta.

- As an hyphotesis, assuming an additional factor of 1/2 reduction of theoretical uncertainties plus the increase in cross section yields clear improvements in the global fit results
- Once again, special focus on HH reach: precision of 10% to 20% on κλ could be achieved from just the combination of the two main decay modes (bbtautau and bbgammagamma)

 K_{λ}

1σ

 2σ

3σ

4σ

How well will we know the Higgs by the end of the LHC program?

- Is its production rate, where we measure it, at the correct SM level?
- How do we caracterize it? (mass, width, spin)
- How well can we model its behaviour?
- Does it couple to SM particles at the appropriate level?
- •Does it couple to itself?
- Does it decay unusually?
- Are there more Higgses?
- Higgs as a tool for discovery

The HL/HE-LHC datasets will allow us to fully characterise the Higgs boson Will new physics be able to still hide after the scrutiny?

Conclusions

- **• Higgs studies are central to the HL(HE)-LHC program:**
	- Measurement of the Higgs couplings possible to few percent
	- Differential distributions and fiducial cross sections: probing interesting phase spaces and reducing dependence on theoretical uncertainties
	- High statistics: rare processes become accessible
	- Enhanced sensitivity to New Physics involving Higgs bosons
- **The 2018 Yellow Report presents a coherent view of the experimental and theoretical prospects for Higgs studies at the HL-LHC, and broach for the first time the HE-LHC reach**
- **Now the plan is set, next: making these prospects materialise in actual measurements!**

References

•The long report: CERN-LPCC-2018-04 - [https://cds.cern.ch/](https://cds.cern.ch/record/2650162/) [record/2650162/](https://cds.cern.ch/record/2650162/)

• [10 pages summaries: https://twiki.cern.ch/twiki/pub/](https://twiki.cern.ch/twiki/pub/LHCPhysics/HLHELHCWorkshop/report.pdf) [LHCPhysics/HLHELHCWorkshop/report.pdf](https://twiki.cern.ch/twiki/pub/LHCPhysics/HLHELHCWorkshop/report.pdf) [https://](https://twiki.cern.ch/twiki/pub/LHCPhysics/HLHELHCWorkshop/HEreport.pdf) [twiki.cern.ch/twiki/pub/LHCPhysics/HLHELHCWorkshop/](https://twiki.cern.ch/twiki/pub/LHCPhysics/HLHELHCWorkshop/HEreport.pdf) [HEreport.pdf](https://twiki.cern.ch/twiki/pub/LHCPhysics/HLHELHCWorkshop/HEreport.pdf)

•**ATLAS**: ATL-PHYS-PUB-2018-054 , ATL-PHYS-PUB-2018-053 , ATL-PHYS-PUB-2018-050, ATL-PHYS-PUB-2018-040, ATL-PHYS-PUB-2018-016, ATL-PHYS-PUB-2018-006 (plus older studies)

•**CMS**: CMS-PAS-FTR-18-011, CMS-PAS-FTR-18-016, CMS-PAS-FTR-18-017, CMS-PAS-FTR-18-018, CMS-PAS-FTR-18-019, CMS-PAS-FTR-18-020 (plus older studies)

ATLAS and CMS UPGRADE Documents

ATLAS

Letter of Intent CERN-LHCC-2012-022 h[ttps://cds.cern.ch/record/1502664](https://cds.cern.ch/record/1502664) Scope Document CERN-LHCC-2015-020 https:/[/cds.cern.ch/record/2055248](https://cds.cern.ch/record/2055248) Itk Strip TDR h[ttp://cdsweb.cern.ch/record/2257755](http://cdsweb.cern.ch/record/2257755) Muons TDR h[ttp://cdsweb.cern.ch/record/2285580](http://cdsweb.cern.ch/record/2285580) Liquid Argon Calorimeter TDR h[ttp://cdsweb.cern.ch/record/2285582](http://cdsweb.cern.ch/record/2285582) Tile Calorimeter TDR h[ttp://cdsweb.cern.ch/record/2285583](http://cdsweb.cern.ch/record/2285583) Itk Pixel TDR h[ttps://cds.cern.ch/record/2285585/](https://cds.cern.ch/record/2285585/) TDAQ TDR h[ttps://cds.cern.ch/record/2285584/](https://cds.cern.ch/record/2285584/)

PHYSICS STUDIES h[ttps://twiki.cern.ch/twiki/bin/view/](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies) A[tlasPublic/UpgradePhysicsStudies](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies)

CMS

Technical Proposal: CERN-LHCC-2015-010 h[ttps://cds.cern.ch/record/2020886](https://cds.cern.ch/record/2020886) Scope Document CERN-LHCC-2015-019 h[ttps://cds.cern.ch/record/2055167](https://cds.cern.ch/record/2055167) Tracker TDR h[ttps://cds.cern.ch/record/2272264](https://cds.cern.ch/record/2272264) Barrel Calorimeter TDR h[ttps://cds.cern.ch/record/2283187](https://cds.cern.ch/record/2283187) Muon TDR h[ttp://cds.cern.ch/record/2283189](http://cds.cern.ch/record/2283189)

PHYSICS STUDIES h[ttp://cms-results.web.cern.ch/cms-results/](http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html) p[ublic-results/preliminary-results/FTR/](http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html) i[ndex.html](http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html)

Run1-based couplings study

- **• Comprehensive study of Higgs couplings at HL-LHC**
- Run1 extrapolations for the main decay channels and production modes

Run1-based couplings study

ATL-PHYS-PUB-2014-016

 $\Delta \mu / \mu$

4-5% for main channels, 10~20% on rare modes

- Do not include improved detector designs or improvements in analysis techniques
- Impact of theoretical uncertainty (shadow band) not negligible for several channel
- Reduction of theoretical uncertainties needed

Run1-based couplings study

ATL-PHYS-PUB-2014-016

4-5% for main channels, 10~20% on rare modes

• Do not include improved detector designs or improvements in analysis techniques

• Impact of theoretical uncertainty (shadow band) not negligible for several channel

• Reduced theoretical uncertainties needed

 $\Delta \kappa / \kappa$ = [no theory uncert., full theory uncert.] Model allowing contributions from new physics in loop

Other (old) BSM Higgs Searches

Couplings interpretations?

 g ue: $tan \beta$ \equiv Obs. 95% CL **ATLAS** Preliminary **ATLAS** Simulation Preliminary \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ \sqrt{s} Exp. 95% CL Combined h $\rightarrow \gamma \gamma$, ZZ*, WW* hMSSM $h \rightarrow Z\gamma$, μμ, ττ, b \overline{b} Exp. 95% CL at $is=14$ TeV Simplified MSSM $[\kappa_v, \kappa_v, \kappa_d]$ Ldt = 300 fb⁻¹: all unc. $10¹$ Ldt = 300 fb $^{-1}$: No theo. new couplings Ldt = 3000 fb⁻¹: all unc. projections need to Ldt = 3000 fb $^{-1}$: No theo. **Run2** be interpreted in 200 400 600 800 1000 1200 m_A [GeV] terms of constrains **ATL-PHYS-PUB-2014-017** 200 $\overline{300}$ 400 500 60L to BSM models (old **ATLAS-CONF-2018-031** m_A [GeV] projections are ഫ 10| g ue ™ 1 | ∎1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 **ATLAS** Preliminary Obs. 95% CL Best Fit Obs. \times \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ conservative)....... Exp. 95% CL — SM 2HDM Type-I 10 $\overline{2}$ \blacktriangleleft 0.4 0.3 **Run2** 0.2 0.1 $10^ -0.5$ 0.5 -0.2 0.2 0.4 -0.4 $\bf{0}$ Ω $cos(\beta-\alpha)$ $cos(\beta-\alpha)$