Lattice results on exotics with hidden charm and bottom

Sasa Prelovsek

Faculty of Mathematics and Physics, University of Ljubljana
Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana
University of Regensburg

Implications of LHCb measurements and future prospects
16.10.2019
Hadrons with hidden charm and bottom; focus on exotic and lattice results:

- states well below strong decay threshold or treated as strongly stable \textit{“doable”}
- states above or just below one threshold \textit{“more difficult, but doable”}
- state above several threshold \((Z_c, Z_b, P_{c, ...}) \textit{“challenging”}

- lattice predictions of yet undiscovered exotic hadrons (but with different flavor than indicated above)
Lattice QCD

\[L_{QCD} = -\frac{1}{4} G_{\mu\nu}^a G_{\mu\nu}^a + \sum_{q=u,d,s,c,b,t} \bar{q} i \gamma_\mu (\partial^\mu + i g_s G_{a}^\mu T^a) q - m_q \bar{q} q \]

\[\langle C \rangle = \int \mathcal{D}G \mathcal{D}q \mathcal{D}\bar{q} \mathcal{C} e^{-S_{QCD}/\hbar} \]

discretized finite Euclidian space-time

Determine energies of eigenstates \(E_n \) and overlaps

charmonium: \(J^{PC} : \bar{c} \Gamma c , \ (\bar{c} \Gamma_1 u)(\bar{u} \Gamma_2 c) = D\bar{D} , \ [\bar{c} \Gamma_3 \bar{u}][c \Gamma_4 u] \)

\[C_{ij}(t) = \langle 0 | \Theta_i(t) \Theta_j^+(0) | 0 \rangle = \sum_n \langle 0 | \Theta_i | n \rangle e^{-E_n t} \langle n | \Theta_j^* | 0 \rangle \]

\(J^{PC} = 1^{--} : \ E_1(\vec{p} = 0) = m_{J/\psi} \)

\(\bar{c} \bar{c} \) and \(bb \) annihilation omitted for all result in this talk.

Then hadrons below \(DD \) or \(BB \) are strongly stable

Sasa Prelovsek Lattice results on exotics with hidden bottom and charm
\[E_n(\vec{p} = 0) = m_n \]

States well below thresholds
or
treated as strongly stable

“doable”
Excited bottomonia, bottomonium hybrids

$b\bar{b}$ hybrids
$m_{\text{hybrid}} \geq 10.9 \text{ GeV}$

lattice QCD: $m_{\pi} = 400 \text{ MeV}$
relativistic b-quark:
main challenge a_{mb} errors
states above $B\bar{B}$ threshold treated as strongly stable
most of states below $B\bar{B}$ experimentally discovered

previous lattice results on excited $b\bar{b}$ spectrum
[Wurtz, Lewis, Woloshyn, 1505.04410, PRD]

EFT+lattice prediction of hybrids [Brambilla, Lai, Segovia, Castella, Vario, 1805.07713, PRD 2019]
charmonium hybrids: backup slides
Non-existence of strongly stable fully beautiful tetraquark

Lattice QCD: No indication for strongly stable state (below threshold) with

\[J^{PC} = 0^{++}, 1^{-+}, 2^{++} \]

threshold \(\eta_b \eta_b, \eta_b \Upsilon, \Upsilon \Upsilon \)

[Hughes, Eichten, Davies, HPQCD, 1710.03236, PRD 2018]
Discovery of $B_c^*(2S)$ & confirmation of $B_c(2S)$

$m[B_c(2S)]$:

$6872.1(1.3)(0.1)(0.8)$ MeV

$B_c^*(2S)$ peak at $M=m[B_c(2S)] - \Delta M$

$6841.2(0.6)(0.1)(0.8)$ MeV

agrees with [CMS, 1902.00571, PRL]

$B_c^*(2S) \rightarrow B_c^* \pi^+ \pi^-$, $B_c^* \rightarrow B_c \gamma$ photon undetected

Lattice QCD:

[HPQCD, 1207.5149, Lytle, talk at QWG19]

c: relativistic

b: NRQCD

$\Delta M = \{m[B_c^*] - m[B_c]\}$

$- \{m[B_c^*(2S)] - m[B_c(2S)]\}$

$m[B_c^*(2S)]$ determined using

ΔM from experiment and

$m(B_c^*)$-$m(B_c)$ from lattice (HPQCD)
States above or slightly below one threshold

“more difficult, but doable”
All experimentally discovered exotic hadrons are strongly decaying resonances!

Hadronic resonances and shallow bound states from lattice (near/above one threshold)

\[\mathcal{O} \]

\[E(H_1 H_2) \]

\[m \]

\[\Gamma \]

\[\sigma(E) \propto |T(E)|^2 \]

\[T_B(E) \propto \frac{1}{E^2 - m_B^2} \]

\[T_R(E) = \frac{-m_R \Gamma}{E^2 - m_R^2 + i m_R \Gamma} \]

\[T_B(E = m_B) = \infty \]

energy of eigenstate

scattering matrix for real E

analytic relation: Luscher 1991

continuation to complex E

location of poles in complex E plane

\[E = E_{cm} \]

Sasa Prelovsek

Lattice results on exotics with hidden bottom and charm
Charmonia with $J^{PC}=3^{−}$ and $1^{−}$

LHCb 2019, 1903.12240, JHEP 2019

widths of resonances:
- $\psi(3770)$
 \[\Gamma = \frac{g^2}{6\pi} \frac{p^3}{s} \]

<table>
<thead>
<tr>
<th>g</th>
<th>lat</th>
<th>exp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.0$^{+2.1}_{-0.2}$</td>
<td>18.7 ± 0.9</td>
</tr>
</tbody>
</table>

- $X(3842)$
 to narrow to resolve in this lat. sim.
Aim: look for poles in $D D^*$ scattering matrix

- Lattice QCD
 - first evidence [S.P., Leskovec, 1307.5172, PRL 2013]
 - Fock components: [Padmanath, Lang, S.P., 1503.03257, PRD 2015]

 crucial: $D \bar{D}^*$, $\bar{c}c$, less important: $(\bar{c}q)(cq)$

 no charged partner found up to $m=4.2$ GeV (in agreement with exp)
 unfortunately, no other published lattice paper on $X(3872)$ till now

- Dyson-Schwinger / Bethe-Salpeter approach
 [Wallbott, Eichmann, Fischer, 1905.02615, PRD 2019]

 location of pole in the scattering matrix

 - pole for X found although $\overline{c}c$ Fock component omitted, qg annihilation omitted
 (in contrary: lattice studies find that $\overline{c}c$ is crucial for getting pole related to X)

- exp evidence that X is not completely molecular:
 ideal combination of $I=0,1$ (molecule) would lead to completely dominant rate to $J/\psi \rho$
 (since $J/\psi \omega$ is 7 MeV above and ω is very narrow), while exp rates are comparable

 $\overline{c}c$: $(I=0)$
 molecule: $(I=0) + (I=1)$
 $X \rightarrow J/\psi \omega, J/\psi \rho$

Sasa Prelovsek Lattice results on exotics with hidden bottom and charm
Hadrons that strongly decay to several final states
Scattering in two or more channels
“challenging”

examples: all experimentally discovered Zc, Zb, Pc
Extracting scattering matrix from lattice

Resonance above one threshold

\[R \rightarrow H_1 H_2 \quad T(E) \quad \leftarrow E_n \]

Lattice simulation of one-channel scattering via Luscher’s method: doable

Resonance above two or more thresholds

\[R \rightarrow H_1 H_2, \quad H_1' H_2' \]

\[
T(E) = \begin{pmatrix}
T_{aa}(E) & T_{ab}(E) \\
T_{ba}(E) & T_{bb}(E)
\end{pmatrix}
\]

\[\leftarrow E_n \]

Lattice simulation of coupled-channel scattering via Luscher’s method: challenging

- several coupled channels studied in the light-quark sector (Hadron Spectrum collaboration)
- only simulations for hadrons with heavy quarks
 - excited D mesons [Moir, Peardon, Ryan, Thomas, Wilson, 1607.07093, JHEP 2016]
 - \(Z_c \) channel [Chen et al., CLQCD, 1907.03371]
- final conclusions on many interesting states therefore not available (yet)
$P_c = \text{uud} \bar{c}c \rightarrow (\text{uud}) (\bar{c}c)$: $p J/\Psi$, ... \\

$\rightarrow (\text{udc}) (\bar{c}u)$: $\Sigma^+_c \bar{D}^0$,

Indications that $\Sigma^+_c \bar{D}^{(*)}$ molecular component is important:

- **experiment** finds them slightly below those thresholds

- supported by **phenomenological models** with ρ/ω exchange predicted 2010-2012 [Wu, Molina, Oset, Zou, 1007.0573, PRL; Wu et al., 1202.1036. PRC, Yang et al, 1105.2901, Wang et al, 1101.0453, PRC]

- **Lattice QCD** addressed simplified question:

 Do P_c resonances appear in one-channel $p \ J/\psi \rightarrow P_c \rightarrow p \ J/\psi$ scattering if it is decoupled from other channels?

 Answer: No [Skerbis, S. P., 1811.02285, PRD 2019]

 $T(E)\approx0$ within large errors, small interaction, no resonance

 This indicates that coupling of $p J/\psi$ channel with other two-hadron channels is likely responsible for P_c in experiment (in line with LHCb result)

 LHCb preliminary

 data
 total fit
 background

 $P_c(4312)^*$ $P_c(4440)^*$ $P_c(4457)^*$

 $\Sigma_c(\frac{1}{2}^+) \bar{D}(0^-) \rightarrow J^p = \frac{1}{2}^-$ $\Sigma_c(\frac{1}{2}^+) \bar{D}^*(1^-) \rightarrow J^p = \frac{1}{2}^-, \frac{3}{2}^-$
Consensus on the nature of Zc(3900) has not been achieved

- re-analysis of all experimental data is compatible with several scenarios
 - resonance pole above threshold, bound state, virtual bound state,
 - kinematical enhancement via triangular diagram

 [Pilloni et al., 1612.06490, PLB 2017]

- Lattice QCD:
 - extract scattering matrix for coupled channel scattering $J/\psi \pi$, $D\bar{D}^*$
 - Zc*(3900) coupled-channel effect due to sizable $J/\Psi \pi$ and $D\bar{D}^*$ coupling, not genuine resonances (i.e. pole on the unphysical sheet above $D\bar{D}^*$ threshold)

 [Ikeda et al., HALQCD, 1602.03465, PRL]

 [Chen et al., CLQCD, 1907.03371]

- Luscher’s method: $T(E) \approx$ small, small interaction
 - no narrow resonance behavior found near $D\bar{D}^*$ threshold
 - in line with previous lattice study that did not extract the scattering matrix

Z_{b}^{+}(10610), Z_{b}^{+}(10650)

\[Z_{b}^{+} \rightarrow \Upsilon(1S,2S,3S)\pi^{+}, \quad h_{b}(1S,2S)\pi^{+}, \quad B^{(*)}\bar{B}^{*} \]

Indications that molecular B B* in \(Z_{b}^{+}(10610) \) is crucial:

- lies near \(m_B+m_{B^*} \) threshold
- \(\text{Br}(B B^*)=85 \% \) although this mode is phase space suppressed
- molecule \((S_{bb}=1) \otimes (S_{qq}=0) \leq (S_{bb}=0) \otimes (S_{qq}=1) \)
 this makes it natural that \(Z_{b} \) decays comparably to \(\Upsilon \) (\(S_{bb}=1 \)) and \(h_{b} \) (\(S_{bb}=0 \))

- Exploratory (!) lattice study of \((S_{bb}=1) \otimes (S_{qq}=0) \) component with static b-quarks
 [S.P., Bahtiyar, Petkovic, 1909.02356], inspired by [Peters, Bicudo, Wagner, 1602.07621]

Strong attraction between B and \(\bar{B}^{*} \)

for \(r=0.1-0.4 \text{ fm} \).

Might be responsible for existence of \(Z_{b} \)

Fock components
Solving Schrödinger equation for $B B^*$ system with this $V(r)$.

Observed attraction leads to virtual $B B^*$ bound state slightly below threshold

$$\text{Re}[E_{Z_b}] = -32^{+29}_{-5} \text{ MeV}$$

This pole leads to peak in $N_{B B^*}$ above threshold (similar to \exp)

- Virtual bound state consistent with reanalysis of \exp data

- So far Z_b found only by Belle

- Could LHCb search for Z_b in inclusive final state with $B B^*$?

Sasa Prelovsek
Lattice results on exotics with hidden bottom and charm
Lattice predictions of yet unobserved hadrons

• there are no reliable lattice predictions for yet-unobserved $\bar{Q}Q\bar{q}q$, $\bar{Q}Qqq$ ($Q = c, b$) since these states likely lie above several thresholds (very challenging)

• Instead, I list predictions of interesting states with different quark content that lie below strong threshold (doable)
Scalar B_{s0} and axial B_{s1}

partner of scalar $D_{s0}(2317)$

bound state B_{s0}^* found

lattice QCD, taking into account effects of $BK^{(*)}$ threshold

[C. Lang, D. Mohler, S.P., R. Woloshyn: 1501.0164, PLB2015]
Strongly stable doubly bottom tetraquarks

- $\bar{b}b\bar{d}d$ ($J^P = 1^+, I = 0$)
- $\bar{b}b\bar{u}u$ ($J^P = 1^+$)

Diagram:

1. This work [LAT]
2. Rosner, et al [23]
3. Francis, et al [25] [LAT]
4. Bicudo, et al [60] [LAT]
6. Cheung, et al [80] [LAT]

Graph:

- ΔE (MeV) vs. quark combinations

Legend:

- BB^*
- B_sB^*

Notes:

- Most firm prediction of a manifestly exotic hadron from lattice and other approaches.

- Taken from Junnarkar, Mathur, Padmanath [1810.12285]
Strongly and EM stable di-baryons

lattice QCD: Junnarkar, Mathur, [1906.06054, PRL 2019]

\[\Omega_{ccc}^{J=3/2} \quad \Omega_{bhb}^{J=3/2} \quad \Omega_{sss}^{J=3/2} \quad \Omega_{bhb}^{J=3/2} \quad \Omega_{css}^{J=1/2} \quad \Omega_{ccs}^{J=1/2} \]

\[J^P=1^+ \]

deuterium-like

strong decay threshold
Conclusions

• Compliments to experimental colleagues for discovering a number of conventional and unconventional hadrons!

• Masses of ground and excited hadrons: lattice results and exp agree well

• Lattice QCD can extract scattering matrices for scattering of hadrons: their poles give information on resonances, bound states and virtual bound states

• predictions for many yet undiscovered hadrons

• understanding conventional and exotic states above several thresholds requires extraction of coupled-channel scattering matrices from lattice ...
 Challenging, but hopefully forthcoming
Backup

Sasa Prelovsek

Lattice results on exotics with hidden bottom and charm
Charmonium resonances in DD from LHCb: first discovery of charmonium with $J=3$

$m_{X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2$,
$\Gamma_{X(3842)} = 2.79 \pm 0.51 \pm 0.35 \text{ MeV}$,

$LHCb$ 2019

1903.12240

JHEP 2019

J^{PC} not experimentally measured

$LHCb$ paper:

"The narrow natural width and the mass of the $X(3842)$ state suggest the interpretation as charmonium state with $J^{PC} = 3^{-+}$"

Quark model quantum numbers:

$$n^{2s+1}l_J = 1^3 D_3$$
$Z_b^+(10610), Z_b^+(10650)$

- Lattice study, continued
 [S.P., Bahtiyar, Petkovic, 1909.02356]

$V(r)$ between B and B^*
- $a=0.12$ fm
- $V(r<0.1 \text{ fm}) = ?$

Solving Schrodinger equation for BB^* system with this $V(r)$.

Observed attraction leads to

a virtual bound state just below threshold
\[\text{Re}[E_{Zb}] = -32^{+29}_{-5} \text{ MeV} \]

and also to a deep bound state
\[\text{Re}[E_{Zb}] = -403 \pm 70 \text{ MeV} \]

- Could LHCb search for Z_b in inclusive final state with $B\bar{B}^*$?

Belle PRD 91 (2015) 072003
nothing claimed by Belle;
significant “bump” could perhaps
emerge at higher statistics

LaNce study, continued
[S.P., Bahyar, Petkovic, 1909.02356]

\[R[E_{Zb}] = -32^{+29}_{-5} \text{ MeV} \]
Excited charmonia, charmonium hybrids

Part of
G-wave

Red and blue are candidates for hybrids with excited glue

Most of these states ($J=3,4$ or exotic $J^{PC}=1^{+},2^{+},...$) yet to be experimentally discovered!!

Masses of hybrids in rough agreement with EFT+lattice

[Brambilla, Lai, Segovia, Castella, Vario, 1805.07713, PRD 2019]

Prediction also for bb hybrids

Sasa Prelovsek

Lattice results on exotics with hidden bottom and charm