$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$and other time-dependent analyses at LHCb

Katya Govorkova
on behalf of the LHCb Collaboration

Implications Workshop 16 October 2019

```
    \(\sin (2 \beta)\)
\(B^{0} \rightarrow \Psi(2 S) K_{s}\)
Run1 JHEP 11 (2017) 170
\(B^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}\)
Run1 PRL 115 (2015) 031601
\(\mathrm{B}^{\mathbf{0}} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}\)
Run1 PRL 117 (2016) 261801
\(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \mathrm{D}^{\text { }}\)
Run1+2 LHCb-PAPER-2019-036 in preparation
```


α

$$
\mathrm{B}_{(\mathrm{s})}^{\mathbf{0}} \rightarrow \mathrm{h}^{ \pm} \mathrm{h}^{\mp}
$$

Run1 PRD 98 (2018) 032004

$$
\phi_{\mathrm{s}} \text { from penguins }
$$

$\mathrm{B}^{\mathbf{0}}{ }_{\mathrm{s}} \rightarrow\left(\mathrm{K}^{+} \pi^{-}\right)\left(\mathrm{K}^{-} \pi^{+}\right)$
Run1 JHEP 03 (2018) 140
$B^{0}{ }_{s} \rightarrow \varphi \varphi$
Run1+2(15,16) arXiv:1907.10003
$B^{0}{ }_{s} \rightarrow \varphi{ }^{\prime}$
Run1 PRL 123 (2019) 081802

$$
\phi_{\mathrm{s}}
$$

$B^{0}{ }_{s} \rightarrow D_{s} D_{s}$
Run1 PRL 113 (2014) 211801
$B^{0}{ }_{s} \rightarrow \boldsymbol{\psi}(2 S) \varphi$
Run1 PHYS. LETT. B762 (2016) 253
$\mathrm{B}^{\mathbf{0}}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$high mass
Run1 JHEP 08 (2017) 037
$B^{0}{ }_{s} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$
Run2(15+16) EPJC 79 (2019) 706
$B^{0}{ }_{s} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$
Run2(15+16) to appear in PLB 797 (2019)

Example of time-dependent CPV

Tree dominated decays of $\mathrm{B}^{0}{ }_{(\mathrm{s})}\left(\overline{\mathrm{B}}^{0}{ }_{(\mathrm{s})}\right)$ via $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{C} s}$ transition

CP violation in interference between direct decay and decay after mixing

Example of time-dependent CPV

Tree dominated decays of $\mathrm{B}^{0}{ }_{(\mathrm{s})}\left({\overline{\mathrm{B}^{0}}}^{0}\right)$ via $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{Cs}}$ transition CP violation in interference between direct decay and decay after mixing

+ Weak phase

$$
\phi_{\mathrm{d} / \mathrm{s}}=\phi_{\mathrm{mix}}-2 \phi_{\mathrm{dec}}
$$

Example of time-dependent CPV

Tree dominated decays of $\mathrm{B}^{0}{ }_{(s)}\left({\overline{\mathrm{B}^{0}}}_{(s)}\right)$ via $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{Cs}}$ transition CP violation in interference between direct decay and decay after mixing

Example of time-dependent CPV

Tree dominated decays of $\mathrm{B}^{0}{ }_{(\mathrm{s})}\left({\overline{\mathrm{B}^{0}}}^{0}\right)$ via $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{Cs}}$ transition CP violation in interference between direct decay and decay after mixing

Master equations for time-dependent decay rates of neutral mesons

$$
\begin{aligned}
& \frac{d \Gamma_{B_{s}^{0} \rightarrow f}(t)}{d t e^{-\Gamma_{s} t}}=\frac{1}{2}\left|A_{f}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) \quad\left[\cosh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+A_{f}^{\Delta \mathrm{I}} \sinh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+C_{f} \cos \left(\Delta m_{s} t\right)-S_{f} \sin \left(\Delta m_{s} t\right)\right] \\
& \frac{d \Gamma_{\bar{B}_{s}^{0} \rightarrow f}(t)}{d t e^{-\Gamma_{s} t}}=\frac{1}{2}\left|A_{f}\right|^{2}\left|\frac{p}{q}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right)\left[\cosh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+A_{f}^{\Delta I} \sinh \left(\frac{\Delta \Gamma_{s} t}{2}\right)-C_{f} \cos \left(\Delta m_{s} t\right)+S_{f} \sin \left(\Delta m_{s} t\right)\right]
\end{aligned}
$$

where CP violation parameters

$$
A_{f}^{\Delta \Gamma}=\frac{-2 \Re\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \quad C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \quad S_{f}=\frac{2 \Im \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}
$$

Master equations for time-dependent decay rates of neutral mesons

$$
\begin{array}{ll}
\frac{d \Gamma_{B_{s}^{0} \rightarrow f}(t)}{d t e^{-\Gamma_{s} t}}=\frac{1}{2}\left|A_{f}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) & \left.\left[\cosh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+A_{f}^{\Delta \mathrm{I}}\right) \sinh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+C_{f} \cos \left(\Delta m_{s} t\right)-S_{f} \sin \left(\Delta m_{s} t\right)\right] \\
\frac{d \Gamma_{\bar{B}_{s}^{0} \rightarrow f}(t)}{d t e^{-\Gamma_{s} t}}=\frac{1}{2}\left|A_{f}\right|^{2}\left|\frac{p}{q}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right)\left[\cosh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+A_{f}^{\Delta \mathrm{I}} \sinh \left(\frac{\Delta \Gamma_{s} t}{2}\right)-C_{f} \cos \left(\Delta m_{s} t\right)+S_{f} \sin \left(\Delta m_{s} t\right)\right]
\end{array}
$$

where CP violation parameters

$$
A_{f}^{\Delta \Gamma}=\frac{-2 \Re\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \quad C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \quad S_{f}=\frac{2 \Im \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}
$$

experimental effects that have to be taken care of in CPV measurements

$$
p d f \propto \varepsilon(t)\left(\frac{d \Gamma}{d t} \otimes G\left(t \mid \sigma_{t}\right)\right)(1-2 \omega)
$$

ω - mistag probability of flavour tagging
\mathcal{E} - efficiency as a function of observables

- decay time resolution

CP-violating phase ϕ_{s}

■ Sensitive probe of New Physics in $\mathrm{B}^{0}{ }_{s}$ mixing
\checkmark Precise test of Standard Model through the measurement of ϕ_{s}
[CKM fitter]

$$
\phi_{\mathrm{s}}^{\mathrm{SM}} \approx-2 \arg \left(\frac{\mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*}}{\mathrm{~V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}}\right)=-0.03686_{-0.00068}^{+0.00096} \mathrm{rad}
$$

If $\boldsymbol{\phi}_{5}{ }^{\text {exp }} \neq \boldsymbol{\phi}_{5}{ }^{\text {SM }}$
New Physics!

■ Sensitive probe of New Physics in $\mathrm{B}^{0}{ }_{5}$ mixing
\square Precise test of Standard Model through the measurement of ϕ_{s}
[CKM fitter]

Access to penguin contribution with $\mathrm{SU}(3)$ counterparts not suppressed relative to tree level

$$
\phi_{\mathrm{s}}^{\mathrm{SM}} \approx-2 \arg \left(\frac{\mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*}}{\mathrm{~V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}}\right)=-0.03686_{-0.00068}^{+0.00096} \mathrm{rad}
$$

Assuming contribution from penguins is negligible

■ Sensitive probe of New Physics in $\mathrm{B}^{0}{ }_{\mathrm{s}}$ mixing
\square Precise test of Standard Model through the measurement of ϕ_{s}
[CKM fitter]

$$
B^{0}{ }_{s} \rightarrow D_{s} D_{s}
$$

Run1 PRL 113 (2014) 211801
$B^{0}{ }_{s} \rightarrow \Psi(2 S) \varphi$
Run1 PHYS. LETT. B762 (2016) 253
$\mathbf{B}^{\mathbf{0}}{ }_{\mathbf{s}} \rightarrow \mathbf{J} / \boldsymbol{\Psi} \mathbf{K}^{+} \mathbf{K}^{-}$high mass
Run1 JHEP 08 (2017) 037
$\mathrm{B}^{\mathbf{0}}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$
Run2(15+16) EPJC 79 (2019) 706
$B^{\mathbf{0}}{ }_{s} \rightarrow \mathrm{~J} / \Psi \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$
Run2(15+16) to appear in PLB 797 (2019)

$$
\phi_{\mathrm{s}}^{\mathrm{SM}} \approx-2 \arg \left(\frac{\mathrm{~V}_{\mathrm{tt}} \mathrm{~V}_{\mathrm{tb}}^{*}}{\mathrm{~V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}}\right)=-0.03686_{-0.00068}^{+0.00096} \mathrm{rad}
$$

Measurement of ϕ_{s} at LHCb

Analyses strategy

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706
Using 2015 ($0.3 \mathrm{fb}^{-1}$) and $2016\left(1.6 \mathrm{fb}^{-1}\right)$ data measure $\phi_{\mathrm{s}},|\lambda|$ and

Analyses strategy

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)
Using 2015 ($0.3 \mathrm{fb}^{-1}$) and 2016 ($1.6 \mathrm{fb}^{-1}$) data measure $\phi_{s},|\lambda|$ and
$\Delta \Gamma_{S}$ and $\Gamma_{S}-\Gamma_{B^{0}}$
to test the Heavy Quark Expansion prediction of $\Gamma_{\mathrm{s}} / \Gamma_{\mathrm{B}^{0}}=1.0006 \pm 0.0025[\mathrm{ref}]$

Analyses strategy

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)
Using 2015 ($0.3 \mathrm{fb}^{-1}$) and 2016 ($1.6 \mathrm{fb}^{-1}$) data measure $\phi_{s},|\lambda|$ and

$$
\Gamma_{\mathrm{H}}-\Gamma_{\mathrm{B}^{0}}
$$

to test the Heavy Quark Expansion prediction of $\Gamma_{\mathrm{s}} / \Gamma_{\mathrm{B}^{0}}=1.0006 \pm 0.0025$ [ref]!
since the final state is almost entirely CP-odd

Analyses strategy

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)
Using 2015 ($0.3 \mathrm{fb}^{-1}$) and 2016 ($1.6 \mathrm{fb}^{-1}$) data measure $\phi_{s},|\lambda|$ and

$$
\Gamma_{\mathrm{H}}-\Gamma_{\mathrm{B}^{0}}
$$

to test the Heavy Quark Expansion prediction of $\Gamma_{\mathrm{s}} / \Gamma_{\mathrm{B}^{0}}=1.0006 \pm 0.0025$ [ref]!
since the final state is almost entirely CP-odd

Simultaneous fit to the decay time and three helicity angles

Analyses strategy

$B^{0}{ }_{s} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

Using 2015 (0.3 fb-1) and 2016 (1.6 fb-1) data measure $\phi_{s},|\lambda|$ and
$\Delta \Gamma_{S}$ and $\Gamma_{S}-\Gamma_{B^{0}} \quad \Gamma_{H}-\Gamma_{B^{0}}$
to test the Heavy Quark Expansion prediction of $\Gamma_{\mathrm{s}} / \Gamma_{\mathrm{B}^{0}}=1.0006 \pm 0.0025$ [ref]
since the final state is almost entirely CP-odd

Simultaneous fit to the decay time and three helicity angles
in $6 \mathrm{~m}\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)$bins

$\mathrm{B}^{\mathbf{0}}{ }_{5} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)
Using 2015 ($0.3 \mathrm{fb}^{-1}$) and 2016 ($1.6 \mathrm{fb}^{-1}$) data measure $\phi_{\mathrm{s}},|\lambda|$ and

$$
\Delta \Gamma_{\mathrm{s}} \text { and } \Gamma_{\mathrm{S}}-\Gamma_{\mathrm{B}^{0}}
$$

to test the Heavy Quark Expansion prediction of $\Gamma_{\mathrm{s}} / \Gamma_{\mathrm{B}^{0}}=1.0006 \pm 0.0025$ [ref]
since the final state is almost entirely CP-odd

Simultaneous fit to the decay time and three helicity angles
in $6 \mathrm{~m}\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)$bins

and $m\left(\pi^{+} \pi^{-}\right)$

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

Boosted decision tree is trained to select signal candidates

$$
\sigma^{-1}\left(\phi_{s}\right) \sim \sqrt{N} Q_{e f f}^{1 / 2} e^{-\frac{\sigma_{t}^{2} \Delta m^{2}}{2}}
$$

$$
\chi_{0}
$$

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

Boosted decision tree is trained to select signal candidates

$$
\sigma^{-1}\left(\phi_{s}\right) \sim \sqrt{N} Q_{e f f}^{1 / 2} e^{-\frac{\sigma_{t}^{2} \Delta m^{2}}{2}}
$$

$N\left(B_{s}^{0}{ }_{s} J / \Psi \mathrm{K}^{+} \mathrm{K}^{-}\right) \simeq 117000$

$\mathrm{N}\left(\mathrm{B}_{\mathrm{S}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}\right) \simeq 33530$

み

$\mathrm{B}_{\mathrm{s}}^{\mathbf{0}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$
EPJC 79 (2019) 706

$$
\sigma_{\text {eff }}=45.5 \mathrm{fs}
$$

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

$$
\sigma_{\text {eff }}=41.5 \mathrm{fs}
$$

$$
\sigma^{-1}\left(\phi_{s}\right) \sim \sqrt{N} Q_{e f f}^{1 / 2} e^{-\frac{\sigma_{t}^{2} \Delta m^{2}}{2}}
$$

Per-candidate decay time error $\left(\delta_{t}\right)$ is calibrated using prompt J / ψ sample

$$
\sigma_{e f f}=\sqrt{\left(-2 / \Delta m_{s}^{2}\right) \ln D}, D=\sum_{i=1}^{3} f_{i} e^{-\sigma_{i}^{2} \Delta m_{s}^{2} / 2}
$$

$$
\chi_{0}
$$

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

Data-driven approach using $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{*}(892)$
Method is verified with B° and B^{+}

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

$$
\varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t)=\varepsilon_{\mathrm{data}}^{B^{0}}(t) \times \frac{\varepsilon_{\mathrm{sim}}^{B_{s}^{0}}(t)}{\varepsilon_{\mathrm{sim}}^{B^{0}}(t)}
$$

$\mathrm{B}^{0}{ }_{5} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

Data-driven approach using $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{*}(892)$
Method is verified with B° and B^{+}
Kinematic selection and detector acceptance are causing non uniform efficiency as function of decay angles

- angular distribution in MC / expected without acceptance effect
- fourth-order polynomial parameterisation

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

EPJC 79 (2019) 706

$$
\sigma^{-1}\left(\phi_{s}\right) \sim \sqrt{N} Q_{e f f}^{1 / 2} e^{-\frac{\left.\sigma^{2}+n^{2}\right)^{2}}{2}}
$$

The effective tagging power is defined as $Q_{e f f}=\varepsilon_{t a g}(1-2 \omega)^{2}$ where $\varepsilon_{t a g}$ is tagging efficiency and $(1-2 \omega)^{2}$ is dilution

$$
\begin{gathered}
\text { In Run1 } \quad Q_{e f f} \approx 3.73 \% \\
Q_{e f f}=4.73 \pm 0.34 \%
\end{gathered}
$$

$$
\begin{gathered}
\phi_{\mathrm{s}}=-0.041 \pm 0.025[\mathrm{rad}] \\
|\lambda|=0.993 \pm 0.010 \\
\Delta \Gamma_{\mathrm{s}}=0.0816 \pm 0.0048\left[\mathrm{ps}^{-1}\right] \\
\Gamma_{\mathrm{s}}=0.6562 \pm 0.0021\left[\mathrm{ps}^{-1}\right]
\end{gathered}
$$

$\phi_{\mathrm{s}} 0.1 \sigma$ from SM
consistent with Standard Model $\phi_{\mathrm{s}} 1.6 \sigma$ from 0
consistent with no CPV in interference between direct decay and after mixing
$|\lambda|$ consistent with 1 within 0.7σ consistent with no direct CPV $\Gamma_{\mathrm{s}} / \Gamma_{\mathrm{B}^{0}}$ consistent with HQE prediction within 1 σ

Measurement of ϕ_{5} sss(dd/v)

Dominated by penguin $\mathrm{b} \rightarrow \mathrm{ss} \bar{s}(\mathrm{~d} \bar{d} / \gamma)$ transition

In the first order

$$
\phi_{\mathrm{s}}^{\mathrm{SM}} \propto \arg \left(\frac{\mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*}}{\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{tb}}} \frac{\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{tb}}}{\mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*}}\right)=0
$$

$\mathrm{B}^{\mathbf{0}}{ }_{\mathrm{s}} \rightarrow\left(\mathrm{K}^{+} \Pi^{-}\right)\left(\mathrm{K}^{-} \Pi^{+}\right)$
Run1 JHEP 03 (2018) 140
$B^{0}{ }_{s} \rightarrow \varphi \varphi$
Run1+2(15,16) arXiv:1907.10003
$B^{0}{ }_{s} \rightarrow \varphi{ }^{\prime}$
Run1 PRL 123 (2019) 081802

ϕ_{s} from b $\rightarrow \mathrm{sss}(\gamma)$ transition

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \varphi \mathrm{Y}
$$

PRL 123 (2019) 081802
$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow\left(\mathrm{~K}^{+} \pi^{-}\right)\left(\mathrm{K}^{-} \pi^{+}\right)$
JHEP 03 (2018) 140
Based on Run1 (3 fb-1) dataset
See talk by Vitalii Lisovskyi

The SM predictions for the S, C and A in $B^{0}{ }_{s} \rightarrow \varphi$ are close to zero [ref]

$$
\begin{aligned}
S_{\phi \gamma} & =0.43 \pm 0.30 \pm 0.11 \\
C_{\phi \gamma} & =0.11 \pm 0.29 \pm 0.11 \\
\mathcal{A}_{\phi \gamma}^{\Delta} & =-0.67_{-0.41}^{+0.37} \pm 0.17
\end{aligned}
$$

The longitudinal polarisation fraction is measured

$$
f_{\mathrm{L}}=0.208 \pm 0.032 \pm 0.046
$$

$$
\begin{gathered}
\phi_{\mathrm{s}}{ }^{\text {dd } \bar{d}}=-0.10 \pm 0.13 \pm 0.14[\mathrm{rad}] \\
|\lambda|=1.035 \pm 0.034 \pm 0.089
\end{gathered}
$$

$$
B^{0}{ }_{s} \rightarrow \varphi \varphi
$$

arXiv:1907.10003 and 2016 ($1.6 \mathrm{fb}^{-1}$) dataset

Complimentary search for new B^{0} decay mode

$$
\mathcal{B}\left(B^{0} \rightarrow \phi \phi\right)<2.7 \times 10^{-8} \text { at } 90 \% \mathrm{CL}
$$

$$
\phi_{\mathrm{s}}{ }^{\mathrm{sss}}=-0.073 \pm 0.115 \pm 0.027[\mathrm{rad}]
$$

$$
|\lambda|=0.99 \pm 0.05 \pm 0.01
$$

Measurement of $\sin (2 \beta)$

Decays of B^{0} dominated by tree $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{Cs}}(\mathrm{d})$ transition

$$
\sin (2 \beta)^{\mathrm{SM}}=\sin 2 \arg \left(-\frac{\mathrm{V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cb}}^{*}}{\mathrm{~V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{tb}}^{*}}\right)=\underset{[\text { CKM fitter }]}{0.708_{-0.013}^{+0.013}}
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \pm \mathrm{D}^{\mp}
$$

LHCb-PAPER-2019-036 in preparation

Based on full Run1 ($3 \mathrm{fb} \mathrm{b}^{-1}$) and Run2 ($6 \mathrm{fb}^{-1}$) dataset Result is consistent with $\sin (2 \beta)$ measured in $b \rightarrow c \bar{c} s$
$B^{0} \rightarrow D^{*} \pm D^{\mp}$ with $D^{* \pm} \rightarrow D^{0} \pi^{ \pm}$and $D^{\mp} \rightarrow K^{\mp} \pi^{+} \pi^{-}$ $D^{\mathbf{0}}$ is reconstructed in two modes studied separately $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \boldsymbol{\pi}^{+}$

$$
D^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{-} \pi^{+}
$$

Measurement of $\sin (2 \beta)$

$\mathrm{B}^{\mathbf{0}} \rightarrow \mathrm{D}^{* \pm} \mathrm{D}^{\mp}$

LHCb-PAPER-2019-036 in preparation

Measurement of $\sin (2 \beta)$

$$
\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \pm \mathrm{D}^{\mp}
$$

LHCb-PAPER-2019-036 in preparation

Recent measurements of ϕ_{s}
ब $\mathbf{B}^{\mathbf{0}}{ }_{\mathrm{s}} \boldsymbol{\rightarrow} \mathbf{J} / \boldsymbol{\Psi} \mathbf{K}^{+} \mathbf{K}^{-}$EPJC 79 (2019) 706
■ $\mathbf{B}^{\mathbf{0}} \boldsymbol{s} \boldsymbol{J} \mathbf{J} / \boldsymbol{\Psi} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$to appear in PLB 797 (2019)

ब $\mathbf{B}^{\mathbf{0}}{ }_{\mathrm{s}} \boldsymbol{\rightarrow}\left(\mathbf{K}^{+} \boldsymbol{\pi}^{-}\right)\left(\mathbf{K}^{-} \boldsymbol{\pi}^{+}\right)$JHEP 03 (2018) 140
■ $\mathbf{B}^{\mathbf{0}}{ }_{\mathrm{s}} \rightarrow \boldsymbol{\varphi} \boldsymbol{\varphi}$ arXiv:1907.10003
■ $\mathbf{B}^{\mathbf{0}}{ }_{\mathrm{S}} \rightarrow \boldsymbol{\varphi} \boldsymbol{Y}$ PRL 123 (2019) 081802
Recent measurements of $\sin (2 \beta)$
$\boxed{\square} \mathbf{B}^{\mathbf{0}} \rightarrow \mathbf{D}^{* \pm} \mathbf{D}^{\boldsymbol{\mp}}$ LHCb-PAPER-2019-036 in preparation

With current precision all measurements are consistent with SM

Further analysis of available dataset is in progress for most of the modes

Backup

Parameter	Value	
$\phi_{s}[\mathrm{rad}]$	$-0.080 \pm 0.041 \pm 0.006$	
$\|\lambda\|$	$1.006 \pm 0.016 \pm 0.006$	
$\Gamma_{s}-\Gamma_{d}\left[\mathrm{ps}^{-1}\right]$	$-0.0041 \pm 0.0024 \pm 0.0015$	
$\Delta \Gamma_{s}\left[\mathrm{ps}^{-1}\right]$	$0.0772 \pm 0.0077 \pm 0.0026$	
$\Delta m_{s}\left[\mathrm{ps}^{-1}\right]$	$17.705 \pm 0.059 \pm 0.018$	
$\left\|A_{\perp}\right\|^{2}$	$0.2457 \pm 0.0040 \pm 0.0019$	
$\left\|A_{0}\right\|^{2}$	$0.5186 \pm 0.0029 \pm 0.0024$	
$\delta_{\perp}-\delta_{0}$	$2.64 \pm 0.13 \pm 0.10$	
$\delta_{\\|}-\delta_{0}$	$3.061_{-0.073}^{+0.084} \pm 0.037$	

Systematics for $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$

Source	$\left\|A_{0}\right\|^{2}$	$\left\|A_{\perp}\right\|^{2}$	$\phi_{s}[\mathrm{rad}]$	$\|\lambda\|$	$\delta_{\perp}-\delta_{0}[\mathrm{rad}]$	$\delta_{\\|}-\delta_{0}[\mathrm{rad}]$	$\Gamma_{s}-\Gamma_{d}\left[\mathrm{ps}^{-1}\right]$	$\Delta \Gamma_{s}\left[\mathrm{ps}^{-1}\right]$	$\Delta m_{s}\left[\mathrm{ps}^{-1}\right]$
Mass width parametrisation	0.0006	0.0005	-	-	0.05	0.009	-	0.0002	0.001
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.01	0.004	0.0007	0.0022	0.016
Multiple candidates	0.0006	0.0001	0.0011	0.0011	0.01	0.002	0.0003	0.0001	0.001
Fit bias	0.0001	0.0006	0.001	-	0.02	0.033	-	0.0003	0.001
$C_{\text {SP }}$ factors	-	0.0001	0.001	0.0010	0.01	0.005	-	0.0001	0.002
Quadratic OS tagging	-	-	-	-	-	-	-	-	-
Time res.: statistical	-	-	-	-	-	-	-	-	-
Time res.: prompt	-	-	-	-	-	0.001	-	-	0.001
Time res.: mean offset	-	-	0.0032	0.0010	0.08	0.001	0.0002	0.0003	0.005
Time res.: Wrong PV	-	-	-	-	-	0.001	-	-	0.001
Ang. acc.: statistical	0.0003	0.0004	0.0011	0.0018	-	0.004	-	-	0.001
Ang. acc.: correction	0.0020	0.0011	0.0022	0.0043	0.01	0.008	0.0001	0.0002	0.001
Ang. acc.: low-quality tracks	0.0002	0.0001	0.0005	0.0014	-	0.002	0.0002	0.0001	-
Ang. acc.: $t \& \sigma_{t}$ dependence	0.0008	0.0012	0.0012	0.0007	0.03	0.006	0.0002	0.0010	0.003
Dec.-time eff.: statistical	0.0002	0.0003	-	-	-	-	0.0012	0.0008	-
Dec.-time eff.: $\Delta \Gamma_{s}=0$ sim.	0.0001	0.0002	-	-	-	-	0.0003	0.0005	-
Dec.-time eff.: knot pos.	-	-	-	-	-	-	-	-	-
Dec.-time eff.: p.d.f. weighting	-	-	-	-	-	-	0.0001	0.0001	-
Dec.-time eff.: kin. weighting	-	-	-	-	-	-	0.0002	-	-
Length scale	-	-	-	-	-	-	-	-	0.004
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.10	0.037	0.0015	0.0026	0.018

Table 5: Fit results of the resonant structure for both Solutions I and II. These results do not supersede those in Ref. [21] for the resonant fractions.

Component	Fit fractions (\%)	Transversity fractions (\%)						
	Solution I					$\\|$	\perp	
$f_{0}(980)$	60.09 ± 1.48	100	-	-				
$f_{0}(1500)$	8.88 ± 0.87	100	-	-				
$f_{0}(1790)$	1.72 ± 0.29	100	-	-				
$f_{2}(1270)$	3.24 ± 0.48	13 ± 3	37 ± 9	50 ± 10				
$f_{2}^{\prime}(1525)$	1.23 ± 0.86	40 ± 13	31 ± 14	29 ± 25				
NR	2.64 ± 0.73	100	-	-				
Solution II								
$f_{0}(980)$	93.05 ± 1.12	100	-	-				
$f_{0}(1500)$	6.47 ± 0.41	100	-	-				
$f_{0}(1710)$	0.74 ± 0.11	100	-	-				
$f_{2}(1270)$	3.22 ± 0.44	17 ± 4	30 ± 8	53 ± 10				
$f_{2}^{\prime}(1525)$	1.44 ± 0.36	35 ± 8	31 ± 12	34 ± 17				
NR	8.13 ± 0.79	100	-	-				

Source	$\Gamma_{\mathrm{H}}-\Gamma_{B^{0}}$ $\left[\mathrm{fs}^{-1}\right]$	$\|\lambda\|$ $\left[\times 10^{-3}\right]$	ϕ_{s} $[\mathrm{mrad}]$
t acceptance	2.0	0.0	0.3
$\tau_{B^{0}}$	0.2	0.5	0.0
Efficiency $\left(m_{\pi \pi}, \Omega\right)$	0.2	0.1	0.0
t resolution width	0.0	4.3	4.0
t resolution mean	0.3	1.2	0.3
Background	3.0	2.7	0.6
Flavour tagging	0.0	2.2	2.3
Δm_{s}	0.3	4.6	2.5
Γ_{L}	0.3	0.4	0.4
B_{c}^{+}	0.5	-	-
Resonance parameters	0.6	1.9	0.8
Resonance modelling	0.5	28.9	9.0
Production asymmetry	0.3	0.6	3.4
Total	3.8	29.9	11.0

Decay time acceptance

Decay time acceptance is approximately:

$$
\varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t) \propto \frac{N(t)}{e^{-\Gamma_{d} t} \otimes G\left(t, \sigma_{t}\right)}
$$

Given a parameterisation of Γ_{d} around the used value $\Gamma_{\mathrm{d} 0}=1 / 1.520 \mathrm{ps}-1$

$$
\begin{aligned}
\varepsilon_{\mathrm{data}}^{B_{s}^{0}}\left(t ; \Gamma_{d}\right) & \propto \frac{N(t)}{e^{-\left(\Gamma_{d}^{0}+\delta \Gamma_{d}\right) t} \otimes G\left(t, \sigma_{t}\right)} \\
& \approx \frac{N(t)}{e^{-\Gamma_{d}^{0} t} \otimes G\left(t, \sigma_{t}\right)} \times e^{\delta \Gamma_{d} t} \\
& =\varepsilon_{\text {data }}^{B_{s}^{0}}\left(t, \Gamma_{d}^{0}\right) \times e^{\delta \Gamma_{d} t}
\end{aligned}
$$

$\Delta \Gamma_{d}^{s}=\Gamma_{s}-\Gamma_{d}$ and $\Gamma_{d}=\Gamma_{d}^{0}+\delta \Gamma_{d}: \quad \Gamma_{s}=\Gamma_{d}^{0}+\delta \Gamma_{d}+\Delta \Gamma_{d}^{s}$

$$
\begin{aligned}
\operatorname{pdf}(t) & \approx \varepsilon_{\text {data }}^{B_{s}^{0}}\left(t, \Gamma_{d}^{0}\right) \times e^{\delta \Gamma_{d} t} \times\left[e^{-\left(\Delta \Gamma_{d}^{s}+\Gamma_{d}^{0}+\delta \Gamma_{d}\right) t} \otimes G\left(t, \sigma_{t}\right)\right] \\
& \approx \varepsilon_{\text {data }}^{B_{s}^{0}}\left(t, \Gamma_{d}^{0}\right) \times e^{\delta \Gamma_{d} t} \times e^{-\delta \Gamma_{d} t}\left[e^{-\left(\Delta \Gamma_{d}^{s}+\Gamma_{d}^{0}\right) t} \otimes G\left(t, \sigma_{t}\right)\right] \\
& =\varepsilon_{\text {data }}^{B_{s}^{0}}\left(t, \Gamma_{d}^{0}\right) \times\left[e^{-\left(\Delta \Gamma_{d}^{s}+\Gamma_{d}^{0}\right) t} \otimes G\left(t, \sigma_{t}\right)\right]
\end{aligned}
$$

Details on the $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$mass model

Signal model: Double-sided Crystal Ball function (CB2) with per-event mass error used as conditional observable
Quadratic dependence on the per-event mass error: $\sigma=s_{1} \sigma_{i}+s_{2} \sigma_{i}{ }^{2}\left(s_{1} \sim 0.8 ; s_{2} \sim 0.05\right)$

- Tails of the CB2 are fixed from the fit to MC
- Fit in $6 \mathrm{~m}\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)$bins $[990,1008,1016,1020,1024,1032,1050] \mathrm{MeV} / \mathrm{c}^{2}$

Background: Exponential for the combinatorial and gaussian for the $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$contribution

Why? To take into account this correlation. Mass resolution comes from the angles between muons, therefore per-candidate mass error and $\cos \left(\theta_{\mu}\right)$ are highly correlated

Comparison of φ_{s} sensitivity from different decay modes

Opposite side tagging

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

$$
\begin{array}{c|c}
\text { In Run1 } \varepsilon_{\operatorname{tag}} D^{2} \approx 3.73 \% & \operatorname{In} \operatorname{Run1} \varepsilon_{\operatorname{tag}} D^{2} \approx 3.89 \% \\
\hline \varepsilon_{\mathrm{tag}} D^{2}=4.73 \pm 0.34 \% & \varepsilon_{\mathrm{tag}} D^{2}=5.06 \pm 0.38 \%
\end{array}
$$

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+} \mathrm{K}^{-}$

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \Psi \pi^{+} \pi^{-}
$$

To appear in PLB 797 (2019)

$$
\begin{array}{c|c}
\text { In Run1 } \varepsilon_{\operatorname{tag}} D^{2} \approx 3.73 \% & \text { In Run1 } \varepsilon_{\operatorname{tag}} D^{2} \approx 3.89 \% \\
\hline \varepsilon_{\mathrm{tag}} D^{2}=4.73 \pm 0.34 \% & \varepsilon_{\mathrm{tag}} D^{2}=5.06 \pm 0.38 \%
\end{array}
$$

Fit projections in decay time, three angles and $m(K \pi)$

