Rare decays at LHCb: an overview of recent results

Implications of LHCb measurements and future prospects 16 October 2019

Why rare decays?

- Rare decays: electroweak transitions with leptons or photons in final state
- In the SM: Flavor Changing Neutral Currents, only at the loop level
- Sensitive to potential New Physics effects:
 - can affect branching fractions, angular distributions, lepton universality...
- At LHCb, we study rare decays of beauty, charm and strange hadrons

Experimental challenges: resolution

- Decay modes with photons: resolution driven by the ECAL resolution (~90 MeV for B hadrons)
- Decay modes with electrons and muons: rely on the tracking, but...
 - Electrons emit bremsstrahlung photons in interactions with material
 - We match electron tracks to photon clusters in the ECAL
 - Correct electron momenta by energies of photons
- Resolution for decay modes with electrons is worse than for the muonic modes
 - Long bremsstrahlung tails

Experimental challenges: trigger

- We trigger on electrons and photons by the calorimeter
- And on muons using the muon stations

- But: ECAL is very busy (plenty of photons, also from π^0)
 - High thresholds → lower statistics
- Trick: can trigger on the hadron part, or on the rest of the event (the other B)

Radiative decays

 $b \rightarrow s\gamma$

Radiative decays at LHCb

PRL 123 (2019) 081802 PRL 123 (2019) 031801

6

- Results in B-meson sector available from B-factories and LHCb, B_s mainly from LHCb
 - See the talk of Katya regarding the latest results in $B_s^0 \rightarrow \phi \gamma$ where we test CP observables

 $C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11$ sensitive to CPV in decay $S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11$ sensitive to photon helicity amplitudes $A_{\phi\gamma}^{\Delta} = -0.67^{+0.37}_{-0.41} \pm 0.17$ sensitive to photon helicity amplitudes \rightarrow set constraints on right-handed currents in $b \rightarrow s\gamma$

SM: all three close to zero [PLB664(2008) 174]

- Baryon sector provides a unique opportunity: non-zero spin of initial and final state particles
 - Direct access to the photon polarisation: predominantly lefthanded in the SM
 - Weak decay of the Λ baryon allows to access the helicity structure of the $b \rightarrow s\gamma$ transition [PRD 65(2002) 074038]

First observation of $\Lambda_b^0 \to \Lambda_\gamma$

- Very challenging at LHCb: no Λ_b^0 decay vertex!
 - Harsh background conditions

no direction information

123 (2019) 031801

- Dedicated software trigger put in place in Run2
 - 2016 data was used for this pilot analysis: 1.7fb⁻¹ at 13 TeV
- High-performance MVA classifier trained to reject the combinatorial background (99.8% rejection, 33% signal eff.)

First observation of $\Lambda_b^0 \to \Lambda \gamma$

First observation: 5.6σ

- BR measured relatively to $B^0 \to K^{*0}\gamma$ $BR(\Lambda_b^0 \to \Lambda\gamma) = (7.1 \pm 1.5(stat) \pm 0.6(syst) \pm 0.7(ext)) \times 10^{-6}$
- In agreement with SM (predictions have broad range)
- Largest systematics: Λ_b^0 production fraction
- Full Run2 dataset is currently analysed to measure the photon polarisation
- Other radiative baryon decays are being explored as well

Electroweak penguin decays

 $b \rightarrow s\ell^+\ell^-$

• Lepton Flavor Universality: couplings of EW bosons are same for all charged leptons

PRL 122 (2019) 191801

10

- Tested to sub-percent precision in $Z \to \ell^+ \ell^-, J/\psi \to \ell^+ \ell^-$ decays, etc
- Hints of deviations from the SM seen in $b \rightarrow s\ell^+\ell^-$ transitions by LHCb [PRL 113, 151601 (2014); JHEP 08 (2017) 055] $J/\psi(1S)$

• At LHCb, we measure the double ratio

$$R_{K} = \frac{N(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\epsilon(B^{+} \to K^{+}\mu^{+}\mu^{-})} \times \frac{\epsilon(B^{+} \to K^{+}e^{+}e^{-})}{N(B^{+} \to K^{+}e^{+}e^{-})} \times \frac{\epsilon(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))}{N(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} \times \frac{N(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}{\epsilon(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}$$

- This analysis: LHCb data up to 2016 (5fb⁻¹ at 7-8-13 TeV)
- Only central-q² bin considered: $1.1 < q^2 < 6 \text{ GeV}^2/c^4$.
- Different treatment of the final states:
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$: trigger on muons
 - $B^+ \rightarrow K^+ e^+ e^-$: three exclusive categories:

PRL 122 (2019) 191801

- Backgrounds:
 - Combinatorial: suppressed by the MVA classifier
 - Misidentifications: suppressed by PID requirements
 - Semileptonic: mass veto
 - The most important remaining: $B^0 \to K^{*+}(K^+\pi^0)e^+e^-$ part.-reco.

Backgrounds are more important for the dielectron mode: due to the worse resolution

L 122 (2019) 191801

12

• The J/ψ region is used to validate the simulation:

 $r_{J/\psi} = \frac{N(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\epsilon(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} \times \frac{\epsilon(B^+ \to K^+ J/\psi(e^+ e^-))}{N(B^+ \to K^+ J/\psi(e^+ e^-))} = 1.014 \pm 0.035$

- Consistent with unity
- Does not depend on kinematics / geometry

PRL 122 (2019) 191801

• Mass fits for nonresonant channels:

• Differential branching fraction of $B^+ \to K^+ \mu^+ \mu^-$ consistent with previous LHCb Run1 result

- Result: $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$,
 - SM: $R_K = 1$, QED uncertainties ~1%
 - consistent with the SM at 2.5 σ
- Dominant systematics: trigger calibration, fit model

What's coming next?

- We have tested LFU only with B mesons
- What about baryons?
- Measure the ratio $R_{pK} =$ with Run1+2016 data
- Muon mode seen by LHCb: [JHEP 06 (2017) 108]

 $\frac{BR(\Lambda_b \to pK\mu^+\mu^-)}{BR(\Lambda_b \to pKe^+e^-)}$

• Electron mode not yet observed

- Main complication: (pK) system has a tricky resonant structure
- E.g., in the J/ψ window [PRL 115 (2015) 072001]:
- Results on R_{pK} expected soon.

Very rare decays

Many interpretations of 'flavor anomalies': covered in the theory talks, e.g.:

New Physics interpretations (20+5) Speaker: Dr Olcyr Sumensari (INFN Padova)

Most of the models predict measurable rate for certain decays which are extremely suppressed in the SM

Search for $B_{(s)}^0 \to \tau^{\pm} \mu^{\mp}$

- LF-violating, highly suppressed in the SM (BR~10⁻⁵⁴ [Riv. Nuovo Cimento, Vol. 41 (2018) 71])
- Enhanced in many NP models (e.g. [JHEP11(2016) 035]) up to 10⁻⁵
- Previous limit by BaBar: $BR(B^0 \to \tau^{\pm}\mu^{\mp}) < 2.2 \times 10^{-5}$ at 90% CL [PRD 77(2008)091104]
 - No limits for the B_s^0 mode
- LHCb analysis with Run1 data (3fb⁻¹ at 7-8 TeV)
- Hadronic decay of the τ lepton: $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$
 - Constrain the momentum of the neutrino from reconstructed tracks and vertices
 Constrain the momentum of the neutrino from reconstructed

Search for $B^0_{(s)} \to \tau^{\pm} \mu^{\mp}$

- Isolation criteria and mass vetoes against important backgrounds
- As the normalisation, $B^0 \rightarrow D^-(K\pi\pi)\pi^+$ was used
- MVA classifier; four bins of the classifier output analysed simultaneously
- Fit under hypotheses of B_s or B^0 signal only: no signal seen

Search for $B_{(s)}^0 \to \tau^{\pm} \mu^{\mp}$

Limits set:	Mode	Limit	90% CL	$95\%~{ m CL}$
	$B^0_s\!\to\tau^\pm\mu^\mp$	Observed	$3.4 imes 10^{-5}$	$4.2 imes 10^{-5}$
		Expected	$3.9 imes 10^{-5}$	$4.7 imes 10^{-5}$
	$B^0\!\to\tau^\pm\mu^\mp$	Observed	$1.2 imes 10^{-5}$	$1.4 imes 10^{-5}$
		Expected	$1.6 imes 10^{-5}$	$1.9 imes 10^{-5}$

- Dominant systematics: background model
- Factor 2 improvement of the BaBar limit; first limit for the Bs mode
- Enter the range allowing to constrain certain NP models!

Search for $B^+ \to K^+ \mu^{\pm} e^{\mp}$

- LFV decay, can be enhanced in NP models up to 10-8 level (e.g. [JHEP06(2015) 072])
- Best limits by BaBar: [PRD 73(2006) 092001]
- $\frac{BR(B^+ \to K^+ \mu^- e^+) < 9.1 \times 10^{-8}}{BR(B^+ \to K^+ \mu^+ e^-) < 13 \times 10^{-8}} \quad \text{at 90\% CL}$
- LHCb analysis: Run1 data (3fb⁻¹ at 7-8 TeV)
 - Semileptonic backgrounds: removed by $m(K^+l^-) > 1885$ MeV
 - MVA against the combinatorial
- As a normalisation, $B^+ \rightarrow K^+ J/\psi(\mu^+\mu^-)$ was used
- No signal seen in either of charge combinations:

Search for $B^+ \to K^+ \mu^{\pm} e^{\mp}$

LHCb-PAPER-2019-022 20

• Limits set: 90% C. L. 95% C. L. $\mathcal{B}(B^+ \to K^+ \mu^- e^+)/10^{-9}$ 7.0 9.5 $\mathcal{B}(B^+ \to K^+ \mu^+ e^-)/10^{-9}$ 6.4 8.8

 Dominant systematics: PID calibration for electrons, normalisation, background model

 Efficiency variation across the Dalitz plane is provided for modeldependent interpretation of the results

Search for $K_S \rightarrow \mu^+ \mu^-$

- Very suppressed: SM prediction ~ 5 × 10⁻¹² [JHEP01(2004) 009]
 - Can be enhanced in some NP models
- Related process $K_L \rightarrow \mu^+ \mu^-$: BR=(6.84±0.11) × 10⁻⁹ [PDG] in agreement with SM predictions
- Current best limit: $BR(K_S \rightarrow \mu^+ \mu^-) < 1.0 \times 10^{-9}$ at 95% CL (LHCb Run1) [Eur. Phys. J.C77(2017) 678]
 - Huge kaon production cross-section at LHCb, but low trigger efficiencies

<u>LHCb-CONF-2019-002</u> 21

- New analysis: 2016-2018 dataset (5.6 fb⁻¹ at 13 TeV)
 - **Dedicated software triggers**, not present in Run1: an order of magnitude increase in efficiency
 - Limited by the hardware trigger
 - Consider only K_S decaying in VELO: about 22% of all prompt K_S
 - Remove background from inelastic interactions with VELO material

Search for $K_S \rightarrow \mu^+ \mu^-$

- Dominant backgrounds: ______ normalisation channel
 - Misidentified $K_S \rightarrow \pi^+ \pi^-$: shifted in invariant mass
 - Combinatorial: suppressed by the MVA algorithm
 - $K_L \rightarrow \mu^+ \mu^-$: suppressed due to the longer lifetime
- No significant signal seen; limit set (combined with Run1):

 $BR(K_s \to \mu^+ \mu^-) < 2.1(2.4) \times 10^{-10}$ at 90 (95)% CL

Factor 4 lower than the previous limit

Outlook

- Another puzzle: angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$
- Input from many experiments
- Update from LHCb (data up to 2016) expected soon.

- Also foreseen in next few months (mostly use a partial dataset): R_{pK} , searches for $B_{(s)}^0 \rightarrow e^+e^-, B^+ \rightarrow K^+\mu^-\tau^+$
- Work on legacy measurements with the full LHCb dataset (longer term):

 $R_H, B_{(s)}^0 \rightarrow \mu^+ \mu^-$, angular analyses with muons and electrons, ... $H = K^+, K^*, K_S, K\pi\pi, \phi, \Lambda$

What else?

- Rare charm decays: probe up-type quarks
- A number of LHCb results with a (partial) Run1 dataset, probing BRs down to 10⁻⁸
 - − Best limits on $D^0 \rightarrow \mu^+\mu^-$ [PLB 725 (2013) 15], $D_{(s)}^+ \rightarrow \pi^\pm \mu^\mp \mu^+$ [PLB 724 (2013) 203], $D^0 \rightarrow e^+\mu^-$ [PLB 754 (2016) 167], $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ [PRD 97 (2018) 091101].
 - First observation of $D^0 \rightarrow K^-\pi^+V(\rightarrow \mu^+\mu^-)$ [PLB 757 (2016) 558], $D^0 \rightarrow K^-K^+V(\rightarrow \mu^+\mu^-)$, $\pi^-\pi^+V(\rightarrow \mu^+\mu^-)$ [PRL 119 (2017) 181805], $\Lambda_c^+ \rightarrow pV(\rightarrow \mu^+\mu^-)$ [PRD 97 (2018) 091101]
- So far, no discrepancies with the SM
- Serious efforts ongoing for $D^+_{(s)} \to h^{\pm} \ell^{\pm} \ell^{\pm}$, $D^0 \to \mu^+ \mu^-$, $D^0 \to h^+ h^- \mu^+ \mu^$ and other channels with a (partial) Run2 dataset

Conclusions

- LHCb is very active in exploring rare decays: we analyse new channels and update old results
 - Several first observations, or first limits
 - Most of the results still statistically dominated
- Sensitivity to the LFV channels enters the region interesting to probe some of the NP models
- No final word on the 'flavor anomalies' yet, but results coming
- LHCb Upgrade will open new horizons in few years

<text>

Stay tuned!

The End

Thanks to all LHCb colleagues who helped to improve this talk!

Extra penguins

- Average: $r_{J/\psi} = 1.014 \pm 0.035$
- Flat in important variables
- Flat in 2D phase-space

• Also: double ratio $R_{\psi(2S)} = 0.986 \pm 0.013$ also well consistent with unity

• Mass projections: muons R1 and R2

• Mass projections: electrons R1 and R2, three trigger categories:

PRL 122 (2019) 191801

30

• Run1 and Run2 compatible at 1.9σ

$$\begin{array}{rcl} R_K^{7\,\mathrm{and}\,8\,\mathrm{TeV}} &=& 0.717 \,{}^{+\,0.083}_{-\,0.071} \,{}^{+\,0.017}_{-\,0.016}\,, \\ \\ R_K^{13\,\mathrm{TeV}} &=& 0.928 \,{}^{+\,0.089}_{-\,0.076} \,{}^{+\,0.020}_{-\,0.017}\,, \end{array}$$

• Run1 result in a good agreement with the previous analysis [PRL113 (2014) 151601]

$$R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \,\pm 0.036 \,(\text{syst}).$$
 (old Run1)