Where we stand on B-decay Discrepancies
 - Global Fits -

Diego Guadagnoli
CNRS, Annecy

Minimal TH considerations

(before any fit)

EFT considerations

(1) Quite remarkably, most data hint at shifts to just 2 eff. couplings

EFT considerations

(1) Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$
\begin{aligned}
H(\bar{b} \rightarrow \bar{s} \mu \mu)= & -\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \\
& + \text { RH-quark ops. }+ \text { dipoles } \\
& + \text { scalar \& tensor ops. }
\end{aligned}
$$

EFT considerations

(1) Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$
\begin{aligned}
H(\bar{b} \rightarrow \bar{s} \mu \mu)= & \left.-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \\
& + \text { RH-quark ops. + dipoles } \\
& + \text { scalar \& tensor ops. }
\end{aligned}
$$

EFT considerations

(1) Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$
\begin{aligned}
H(\bar{b} \rightarrow \bar{s} \mu \mu)= & \left.-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \\
& + \text { RH-quark ops. + dipoles } \\
& + \text { scalar \& tensor ops. } \quad\binom{\text { Effects are }}{\text { (mostly) here }}
\end{aligned}
$$

(2) Also remarkably, two scenarios stand out:

$$
d C_{9}^{(u)}=-d C_{10}^{(u)} \text { [Hiller-Schmaltz, 2014] }
$$

EFT considerations

(1) Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$
\begin{aligned}
H(\bar{b} \rightarrow \bar{s} \mu \mu)= & \left.-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \\
& + \text { RH-quark ops. + dipoles } \\
& + \text { scalar \& tensor ops. } \quad\binom{\text { Effects are }}{\text { (mostly) here }}
\end{aligned}
$$

(2) Also remarkably, two scenarios stand out:

$$
d C_{9}^{(u)}=-d C_{10}^{(u)} \text { [Hiller-Schmaltz, 2014] }
$$

corresponding op. combination
can be written in terms of $S U(2)_{L}$ invariants
[Alonso, Grinstein, M.Camalich, 2014]

EFT considerations

(1) Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$
\begin{aligned}
H(\bar{b} \rightarrow \bar{s} \mu \mu)= & \left.-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \\
& + \text { RH-quark ops. + dipoles } \\
& + \text { scalar \& tensor ops. } \quad\binom{\text { Effects are }}{\text { (mostly) here }}
\end{aligned}
$$

(2) Also remarkably, two scenarios stand out:

$$
d C_{9}^{(u)}=-d C_{10}^{(u)} \text { [Hiller-Schmaltz, 2014] }
$$

corresponding op. combination
can be written in terms of $S U(2)_{L}$ invariants
[Alonso, Grinstein, M.Camalich, 2014]
well-suited to UV-complete models

EFT considerations

(2) More on $d C_{9}^{(\mu)}$ vs. $d C_{9}^{(\mu)}=-d C_{10}^{(u)}$

How to resolve between the two scenarios?

EFT considerations

(2) More on $d C_{9}^{(u)}$ vs. $d C_{9}^{(u)}=-d C_{10}^{(u)}$

How to resolve between the two scenarios?
\Rightarrow Accurate $B_{s} \rightarrow \mu \mu$ measurement

EFT considerations

(2) More on $d C_{9}^{(\mu)}$ vs. $d C_{9}^{(\mu)}=-d C_{10}^{(u)}$

How to resolve between the two scenarios?
ᄃ
Accurate $B_{s} \rightarrow \mu \mu$ measurement

- present single-measurement error $\simeq 20 \%$
- exp combi may soon be able to confirm or exclude deviations of C_{10} of $O(10 \%)$

More TH considerations

(3) Pattern of Lepton Universality Violation in $b \rightarrow s$

The observed new-physics hierarchy:
effects in ee \ll effects in $\mu \mu \ll$ (allowed) effects in $\tau \tau$

More TH considerations

(3) Pattern of Lepton Universality Violation in $b \rightarrow s$

The observed new-physics hierarchy:
effects in ee \ll effects in $\mu \mu \ll$ (allowed) effects in $\tau \tau$
suggestive of NP coupled dominantly to $3^{\text {rd }}$ gen. SM fermions [Glashow et al., 2015]

More TH considerations

(3) Pattern of Lepton Universality Violation in $b \rightarrow s$

The observed new-physics hierarchy:
effects in ee \ll effects in $\mu \mu \ll$ (allowed) effects in $\tau \tau$
suggestive of NP coupled dominantly to $3^{\text {rd }}$ gen. SM fermions [Glashow et al., 2015]
4. ... which in turn makes it natural to link $b \rightarrow s$ and $b \rightarrow c$ data [Bhattacharya et al., 2015]

More TH considerations

(3) Pattern of Lepton Universality Violation in $b \rightarrow s$

The observed new-physics hierarchy:
effects in ee \ll effects in $\mu \mu \ll$ (allowed) effects in $\tau \tau$
suggestive of NP coupled dominantly to $3^{\text {rd }}$ gen. SM fermions [Glashow et al., 2015]
4. ... which in turn makes it natural to link $b \rightarrow s$ and $b \rightarrow c$ data [Bhattacharya et al., 2015]

Data now allow to disprove some, and to make more precise some other of these considerations

Weak-Effective-Theory

Global fits

1-Wilson-coeff. picture

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_{9}^{b s \mu \mu}$	-0.97	$[-1.12,-0.81]$	$[-1.27,-0.65]$	5.9σ
$C_{9}^{\prime b s \mu \mu}$	+0.14	$[-0.03,+0.32]$	$[-0.20,+0.51]$	0.8σ
$C_{10}^{b s \mu \mu}$	+0.75	$[+0.62,+0.89]$	$[+0.48,+1.03]$	5.7σ
$C_{10}^{\prime b s \mu \mu}$	-0.24	$[-0.36,-0.12]$	$[-0.49,+0.00]$	2.0σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	+0.20	$[+0.06,+0.36]$	$[-0.09,+0.52]$	1.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	-0.53	$[-0.61,-0.45]$	$[-0.69,-0.37]$	6.6σ

Similar fits (w/ non-identical conclusions) performed in:
[Algueró et al., 1903.09578] [Ciuchini et al., 1903.09632]
[Datta et al., 1903.10086] [Kowalska et al., 1903.10932]
[Arbey et al., 1904.08399]

1-Wilson-coeff. picture

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_{9}^{b s \mu \mu}$	-0.97	$[-1.12,-0.81]$	$[-1.27,-0.65]$	5.9σ
$C_{9}^{\prime b s \mu \mu}$	+0.14	$[-0.03,+0.32]$	$[-0.20,+0.51]$	0.8σ
$C_{10}^{b s \mu \mu}$	+0.75	$[+0.62,+0.89]$	$[+0.48,+1.03]$	5.7σ
$C_{10}^{b s \mu \mu}$	-0.24	$[-0.36,-0.12]$	$[-0.49,+0.00]$	2.0σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	+0.20	$[+0.06,+0.36]$	$[-0.09,+0.52]$	1.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	-0.53	$[-0.61,-0.45]$	$[-0.69,-0.37]$	6.6σ

- Two scenarios stand out: C_{9} alone or $C_{9}=-C_{10} \quad(\mu \mu$-channel only)

1-Wilson-coeff. picture

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_{9}^{b s \mu \mu}$	-0.97	$[-1.12,-0.81]$	$[-1.27,-0.65]$	5.9σ
$C_{9}^{\prime b s \mu \mu}$	+0.14	$[-0.03,+0.32]$	$[-0.20,+0.51]$	0.8σ
$C_{10}^{b s \mu \mu}$	+0.75	$[+0.62,+0.89]$	$[+0.48,+1.03]$	5.7σ
$C_{10}^{b s \mu \mu}$	-0.24	$[-0.36,-0.12]$	$[-0.49,+0.00]$	2.0σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	+0.20	$[+0.06,+0.36]$	$[-0.09,+0.52]$	1.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	-0.53	$[-0.61,-0.45]$	$[-0.69,-0.37]$	6.6σ

- Two scenarios stand out: C_{9} alone or $C_{9}=-C_{10} \quad(\mu \mu$-channel only)
- $C_{9}=-C_{10}$ now better than C_{9} alone

1-Wilson-coeff. picture

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_{9}^{b s \mu \mu}$	-0.97	$[-1.12,-0.81]$	$[-1.27,-0.65]$	5.9σ
$C_{9}^{\prime b s \mu \mu}$	+0.14	$[-0.03,+0.32]$	$[-0.20,+0.51]$	0.8σ
$C_{10}^{b s \mu \mu}$	+0.75	$[+0.62,+0.89]$	$[+0.48,+1.03]$	5.7σ
$C_{10}^{b s \mu \mu}$	-0.24	$[-0.36,-0.12]$	$[-0.49,+0.00]$	2.0σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	+0.20	$[+0.06,+0.36]$	$[-0.09,+0.52]$	1.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	-0.53	$[-0.61,-0.45]$	$[-0.69,-0.37]$	6.6σ

- Two scenarios stand out: C_{9} alone or $C_{9}=-C_{10} \quad(\mu \mu$-channel only)
- $C_{9}=-C_{10}$ now better than C_{9} alone
- C_{10} alone also ok, but $B \rightarrow K^{*} \mu \mu$ unresolved

What makes $C_{9}=-C_{10}$ more significant than C_{9} alone?

What makes $C_{9}=-C_{10}$ more significant than C_{9} alone?
A concurrence of effects, mostly:

- $B_{s} \rightarrow \mu \mu$ (new average)
- $\Lambda_{b} \rightarrow \Lambda \mu \mu: A_{F B}$ and BR from LHCb
- $\Delta F=2$ (mostly ϵ_{κ} and ΔM_{s})

C_{9} vs. $C_{9}=-C_{10}$

What makes $C_{9}=-C_{10}$ more significant than C_{9} alone?
A concurrence of effects, mostly:

- $B_{s} \rightarrow \mu \mu$ (new average)
- $\Lambda_{b} \rightarrow \Lambda \mu \mu: A_{F B}$ and BR from LHCb
- $\Delta F=2$ (mostly ϵ_{k} and ΔM_{s})

How can ϵ_{κ} (that doesn't depend on C_{10}) increase the C_{10} significance?

Role of correlated quantities

Consider the following two observables

- $O_{1} \equiv B R\left(B_{s} \rightarrow \mu \mu\right)$
- $O_{2} \equiv \epsilon_{K}$

Role of correlated quantities

Consider the following two observables

- $O_{1} \equiv B R\left(B_{s} \rightarrow \mu \mu\right) \Rightarrow$ depends directly on C_{10}
- $O_{2} \equiv \epsilon_{\kappa}$

Role of correlated quantities

Consider the following two observables

- $O_{1} \equiv B R\left(B_{s}-\mu \mu\right)$
- $\mathrm{O}_{2} \equiv \epsilon_{\mathrm{K}}$
depends directly on C_{10}
does not depend on C_{10} is correlated to O_{1} via nuisance pars.

Role of correlated quantities

Consider the following two observables

- $O_{1} \equiv B R\left(B_{s} \rightarrow \mu \mu\right) \Rightarrow$ depends directly on C_{10}
- $O_{2} \equiv \epsilon_{K}$
does not depend on C_{10}
is correlated to O_{1} via nuisance pars.
Now consider the corresponding terms in the χ^{2} function (with $D_{i} \equiv O_{i}^{\text {exp }}-O_{i}^{\text {th }}$)

$$
\chi^{2}=\frac{D_{1}^{2}\left(C_{10}\right)}{\sigma_{1}^{2}}+\frac{D_{2}^{2}}{\sigma_{2}^{2}}+\rho_{12} \frac{D_{1}\left(C_{10}\right) D_{2}}{\sigma_{1} \sigma_{2}}
$$

Role of correlated quantities

Consider the following two observables

- $O_{1} \equiv B R\left(B_{s} \rightarrow \mu \mu\right) \Rightarrow$ depends directly on C_{10}
- $O_{2} \equiv \epsilon_{\kappa}$
does not depend on C_{10}
is correlated to O_{1} via nuisance pars.
Now consider the corresponding terms in the χ^{2} function (with $D_{i} \equiv O_{i}^{\text {exp }}-O_{i}^{\text {th }}$)

$$
\chi^{2}=\frac{D_{1}^{2}\left(C_{10}\right)}{\sigma_{1}^{2}}+\frac{D_{2}^{2}}{\sigma_{2}^{2}}+\rho_{12} \frac{D_{1}\left(C_{10}\right) D_{2}}{\sigma_{1} \sigma_{2}}
$$

- The $3^{\text {rd }}$ term depends on C_{10} through D_{1}
- This term will influence the C_{10} value, depending on $\operatorname{sign}\left(D_{2} \rho_{12}\right)$

C_{9} vs. $C_{9}=-C_{10}$

Main point

- Before Moriond
$R_{K\left({ }^{*}\right)} \& b \rightarrow s \mu \mu$ in nearly perfect agreement

C_{9} vs. $C_{9}=-C_{10}$

Main point

- Before Moriond
$R_{K\left({ }^{*}\right)} \& b \rightarrow s \mu \mu \quad$ in nearly perfect agreement
- After Moriond
some tension in C_{9} dir.

C_{9} vs. $C_{9}=-C_{10}$

Main point

- Before Moriond
$R_{K\left({ }^{*}\right)} \& b \rightarrow s \mu \mu$ in nearly perfect agreement
- After Moriond
some tension in C_{9} dir.

Note

$a C_{g}{ }^{\text {uni. }}$ component would shift $b \rightarrow s \mu \mu$ data but not $R_{\left.K_{(}\right)}$

Notes

y-axis: μ-specific shift in $C_{9}=-C_{10}$
x-axis: additional, lepton-univ. shift in C_{9} only

After Moriond
Data tend to prefer $C_{g}{ }^{\text {univ. }} \neq 0$

Both $C_{9}=-C_{10}$ and C_{9} univ.

well justified above the EW scale.

The SMEFT picture

SMEFT picture

Assume BSM d.o.f. to occur at a scale $\wedge \gg M_{E W}$
\square
Dynamics below \wedge described by ops.

- constructed with SM fields only
- and invariant under the full SM group

SMEFT picture

Assume BSM d.o.f. to occur at a scale $\wedge \gg M_{E W}$Dynamics below \wedge described by ops.

- constructed with SM fields only
- and invariant under the full SM group

Then, two clear possibilities to generate the above pattern:

SMEFT picture

Assume BSM d.o.f. to occur at a scale $\wedge \gg M_{E W}$
\square
Dynamics below \wedge described by ops.

- constructed with SM fields only
- and invariant under the full SM group

Then, two clear possibilities to generate the above pattern:
(1) Contributions to muonic $C_{9}=-C_{10}$ may come from SMEFT ops. directly matching onto $O_{9,10}$

$$
\begin{aligned}
& {\left[O_{L Q}^{(1)}\right]_{2223}=\bar{L}_{2} \gamma^{\lambda} L_{2} \cdot \bar{Q}_{2} \gamma_{\lambda} Q_{3}} \\
& {\left[O_{L Q}^{(3)}\right]_{2223}=\bar{L}_{2} \gamma^{\lambda} \sigma^{a} L_{2} \cdot \bar{Q}_{2} \gamma_{\lambda} \sigma^{a} Q_{3}}
\end{aligned}
$$

SMEFT picture

(2) Contribs. to $C_{9}^{\text {uni. can come from RGE effects [Bobeth-Haisch, 2011] }}$

SMEFT picture

(2) Contribs. to $C_{9}{ }^{\text {univ. }}$ can come from RGE effects [Bobeth-Haisch, 2011]

- Case $f=\tau$ allows natural connection (right sign \& size) with $\left[O_{L Q}^{(1)}\right]_{3323} \&\left[O_{L Q}^{(3)}\right]_{3323}$ responsible for $b \rightarrow c \tau v$
[Crivellin, Greub, Müller, Saturnino, 2018]

SMEFT picture

(2) Contribs. to $C_{9}{ }^{\text {univ. }}$ can come from RGE effects [Bobeth-Haisch, 2011]

- Case $f=\tau$ allows natural connection (right sign \& size) with $\left[O_{L Q}^{(1)}\right]_{3323} \&\left[O_{L Q}^{(3)}\right]_{3323}$ responsible for $b \rightarrow c \tau v$
[Crivellin, Greub, Müller, Saturnino, 2018]
- Caveat: need $\left[C_{L Q}^{(1)}\right]_{3323} \simeq\left[C_{L Q}^{(3)}\right]_{3323}$
to avoid $B \rightarrow K\left(^{*}\right) v v$ constraint [Buras-Girrbach-Niehoff-Straub, 2014]
$\left[C_{L Q}^{(1)}\right]_{3323}=\left[C_{L Q}^{(3)}\right]_{3323} \quad$ vs. $\quad\left[C_{L Q}^{(1)}\right]_{2223}=\left[C_{L Q}^{(3)}\right]_{2223}$

Before Moriond (dashed)
$R_{\left.K^{*}\right)}$ (blue) and $b \rightarrow s \mu \mu$ (orange)
were in perfect agreement
So
in a region close to 0 in the x-axis
$\Rightarrow R_{D\left(^{*}\right)}$ not explained

Before Moriond (dashed)

$R_{K_{(*)}^{*}}$ (blue) and $b \rightarrow s \mu \mu$ (orange)
were in perfect agreement
D, 0
in a region close to 0 in the x-axis
$\Rightarrow R_{D\left({ }^{*}\right)}$ not explained

After Moriond

$R_{\left.K_{(}\right)}$and $b \rightarrow s \mu \mu$ intersect
in a region with x-axis values well below 0

Quantitative agreement with the $R_{D_{(*)}^{*}}$ constraint (green)

Before Moriond (dashed)

$R_{\left.K^{*}\right)}$ (blue) and $b \rightarrow s \mu \mu$ (orange)
were in perfect agreement
D, 0
in a region close to 0 in the x-axis
$\Rightarrow R_{D\left({ }^{*}\right)}$ not explained

After Moriond

$R_{\left.K_{(}\right)}$and $b \rightarrow s \mu \mu$ intersect
Dow in a region with x-axis values well below 0

Quantitative agreement with the $R_{D_{(*)}^{*}}$ constraint (green)

Before Moriond (dashed)

$R_{K_{(*)}^{*}}$ (blue) and $b \rightarrow s \mu \mu$ (orange)
were in perfect agreement
Dos
in a region close to 0 in the x-axis
$\Rightarrow R_{D\left({ }^{*}\right)}$ not explained

After Moriond

$R_{K_{(*)}}$ and $b \rightarrow s \mu \mu$ intersect
D, 0 in a region with x-axis values well below 0Quantitative agreement with the $R_{D\left({ }^{*}\right)}$ constraint (green)

Conclusions

Post-Moriond updates imply a nicely coherent TH picture, with

- $R_{K} \& R_{K^{*}}<$ by O(20\%) than SM
- $R_{D} \& R_{D^{*}}>$ by $O(10 \%)$ (not more) than $S M$
- $B R\left(B_{s} \rightarrow \mu \mu\right)<$ by $O(20 \%)$ than $S M$

Conclusions

Post-Moriond updates imply a nicely coherent TH picture, with

- $R_{K} \& R_{K^{*}}<$ by $O(20 \%)$ than $S M$
- $R_{D} \& R_{D^{*}}>$ by $O(10 \%)$ (not more) than $S M$
- $B R\left(B_{s} \rightarrow \mu \mu\right)<$ by $O(20 \%)$ than $S M$

We'll know soon (?) whether this is all just a happy coincidence

with CMS PAS BPH-16-004 (Aug. 2019 update)

