Where we stand on B-decay Discrepancies – Global Fits –

Diego Guadagnoli CNRS, Annecy

Minimal TH considerations

(before any fit)

4......

0

Manana and a second sec

Quite remarkably, most data hint at shifts to just 2 eff. couplings

Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

- + RH-quark ops. + dipoles
- + scalar & tensor ops.

0

Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \underbrace{C_9^{(\mu)}}_{9} \bar{\mu} \gamma_\lambda \mu + \underbrace{C_{10}^{(\mu)}}_{10} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right]$$

+ RH-quark ops. + dipoles
+ scalar & tensor ops.
$$Effects are (mostly) here$$

4......

0

Quite remarkably, most data hint at shifts to just 2 eff. couplings

Quite remarkably, most data hint at shifts to just 2 eff. couplings

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right] + RH-quark ops. + dipoles + scalar & tensor ops. (Effects are (mostly) here)Also remarkably, two scenarios stand out:$$

 $dC_9^{(\mu)}$ alone

$$dC_9^{(\mu)} = -dC_{10}^{(\mu)}$$

[Hiller-Schmaltz, 2014]

corresponding op. combination can be written in terms of SU(2)_L invariants [Alonso, Grinstein, M.Camalich, 2014]

0

Quite remarkably, most data hint at shifts to just 2 eff. couplings

Weak-Effective-Theory

Global fits

G.....

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime bs\mu\mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

Similar fits (w/ non-identical conclusions) performed in:

[Algueró et al., 1903.09578] [Ciuchini et al., 1903.09632]

[Datta et al., 1903.10086] [Kowalska et al., 1903.10932]

[Arbey et al., 1904.08399]

4......

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime b s \mu \mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ (µµ-channel only)

<u>u</u>

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime b s \mu \mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ (µµ-channel only)

- $C_9 = -C_{10}$ now better than C_9 alone

4.....

[Aebischer et al., 2019]

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime b s \mu \mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ (µµ-channel only)
- $C_9 = -C_{10}$ now better than C_9 alone
- C_{10} alone also ok, but $B \rightarrow K^* \mu \mu$ unresolved

 C_{9} vs. $C_{9} = -C_{10}$

What makes $C_9 = -C_{10}$ more significant than C_9 alone?

 C_{9} vs. $C_{9} = -C_{10}$

What makes $C_9 = -C_{10}$ more significant than C_9 alone?

A concurrence of effects, mostly:

- $B_s \rightarrow \mu\mu$ (new average)
- $\Lambda_b \rightarrow \Lambda \mu \mu$: A_{FB} and BR from LHCb

-
$$\Delta F = 2$$
 (mostly ϵ_{κ} and ΔM_{s})

Consider the following two observables

- $O_1 \equiv BR(B_s \rightarrow \mu\mu)$
- $O_2 \equiv \epsilon_{\kappa}$

Consider the following two observables

- $O_1 \equiv BR(B_s \rightarrow \mu\mu)$ $rightarrow depends directly on <math>C_{10}$
- $O_2 \equiv \epsilon_{\kappa}$

4.....

*رو*ا المالية الم

Consider the following two observables

- $O_1 \equiv BR(B_s \rightarrow \mu\mu)$ $rightarrow depends directly on <math>C_{10}$
- $O_2 \equiv \epsilon_{\kappa}$

does not depend on C_{10} is correlated to O_1 via nuisance pars.

Consider the following two observables

- $O_1 \equiv BR(B_s \rightarrow \mu\mu)$ $rightarrow depends directly on <math>C_{10}$
- $O_2 \equiv \epsilon_{\kappa}$ \overleftrightarrow does not depend on C_{10} is correlated to O_1 via nuisance pars.

Now consider the corresponding terms in the χ^2 function

(with $D_i \equiv O_i^{exp} - O_i^{th}$)

$$\chi^{2} = \frac{D_{1}^{2}(C_{10})}{\sigma_{1}^{2}} + \frac{D_{2}^{2}}{\sigma_{2}^{2}} + \rho_{12} \frac{D_{1}(C_{10})D_{2}}{\sigma_{1}\sigma_{2}}$$

.....

Consider the following two observables

- $O_1 \equiv BR(B_s \rightarrow \mu\mu)$ $rightarrow depends directly on <math>C_{10}$
- $O_2 \equiv \epsilon_K$ rightarrow does not depend on C_{10} is correlated to O_1 via nuisance pars.

Now consider the corresponding terms in the χ^2 function

(with $D_i \equiv O_i^{exp} - O_i^{th}$)

$$\chi^{2} = \frac{D_{1}^{2}(C_{10})}{\sigma_{1}^{2}} + \frac{D_{2}^{2}}{\sigma_{2}^{2}} + \rho_{12} \frac{D_{1}(C_{10})D_{2}}{\sigma_{1}\sigma_{2}}$$

- The 3^{rd} term depends on C_{10} through D_1

- This term will influence the C_{10} value, depending on sign($D_2 \rho_{12}$)

Univ. vs. non-univ. Wilson coeffs.

y-axis: µ-specific shift in $C_{9} = -C_{10}$ x-axis: additional, lepton-univ. shift in C_{q} only After Moriond

Data tend to prefer $C_9^{\text{univ.}} \neq 0$

Both $C_9 = -C_{10}$ and $C_9^{univ.}$ well justified above the EW scale. The SMEFT picture

Assume BSM d.o.f. to occur at a scale $\Lambda \gg M_{_{EW}}$ Dynamics below Λ described by ops.

SMEFT picture

- constructed with SM fields only
- and invariant under the full SM group

Assume BSM d.o.f. to occur at a scale $\Lambda \gg M_{EW}$ Dynamics below Λ described by ops.

SMEFT picture

- constructed with SM fields only
- and invariant under the full SM group

Then, two clear possibilities to generate the above pattern:

Assume BSM d.o.f. to occur at a scale $\Lambda \gg M_{EW}$ Dynamics below Λ described by ops.

SMEFT picture

- constructed with SM fields only
- and invariant under the full SM group

Then, two clear possibilities to generate the above pattern:

Contributions to muonic $C_9 = -C_{10}$ may come from SMEFT ops. directly matching onto $O_{9,10}$

$$[O_{LQ}^{(1)}]_{2223} = \overline{L}_2 \gamma^{\lambda} L_2 \cdot \overline{Q}_2 \gamma_{\lambda} Q_3$$

$$[O_{LQ}^{(3)}]_{2223} = \overline{L}_2 \gamma^{\lambda} \sigma^a L_2 \cdot \overline{Q}_2 \gamma_{\lambda} \sigma^a Q_3$$

[Crivellin, Greub, Müller, Saturnino, 2018]

• Caveat: need $[C_{LQ}^{(1)}]_{3323} \simeq [C_{LQ}^{(3)}]_{3323}$ to avoid $B \rightarrow K(*) vv$ constraint [Buras-Girrbach-Niehoff-Straub, 2014]

Conclusions

Post-Moriond updates imply a nicely coherent TH picture, with

- $R_{\kappa} \& R_{\kappa^*} < by O(20\%)$ than SM
- $R_D \& R_{D^*} > by O(10\%)$ (not more) than SM
- $BR(B_s \rightarrow \mu\mu) < by O(20\%)$ than SM

Conclusions

Post-Moriond updates imply a nicely coherent TH picture, with

- $R_{\kappa} \& R_{\kappa^*} < by O(20\%)$ than SM
- $R_D \& R_{D^*} > by O(10\%)$ (not more) than SM
- $BR(B_s \rightarrow \mu\mu) < by O(20\%)$ than SM

We'll know soon (?) whether this is all just a happy coincidence

$B_s \rightarrow \mu\mu$ average

 ω

w/o CMS PAS BPH-16-004 (Aug. 2019 update)

Credit: Peter Stangl

$B_s \rightarrow \mu\mu$ average

 ω

with CMS PAS BPH-16-004 (Aug. 2019 update)

Credit: Peter Stangl

