Form Factors and High-Mass Moments in $B \rightarrow K \pi \ell \ell$

Javier Virto
Universitat de Barcelona
arXiv:1908.02267 [hep-ph] in collaboration with S. Descotes-Genon, A. Khodjamirian
Workshop on the Implications of LHCb Measurements - CERN - October 16th, 2019

Local $B \rightarrow V$ Form Factors

1. Definition: $\mathcal{F}_{i}\left(q^{2}\right) \sim\langle V(k)| \bar{q} \Gamma_{i} b|B(q+k)\rangle$
2. Necessary for:

- Semileptonic decays: $B \rightarrow \rho \ell \nu, B_{s} \rightarrow K^{*} \ell \nu, \ldots$
- Non-Leptonic decays: $B \rightarrow K^{*} \pi, \ldots$
- "Rare" FCNC decays: $B \rightarrow K^{*} \bar{\nu} \nu, B \rightarrow K^{*} \ell^{+} \ell^{-}$

Local $B \rightarrow K^{*}$ Form Factors

- Two main approaches: (1) Lattice QCD (large q^{2}) (2) LCSRs (low q^{2})
- Two approaches to LCSRs, in terms of (Left) K^{*} LCDAs (Right) B LCDAs
- q^{2} dependence can be parametrized model-independently

Subject of this talk

However:

- ρ, K^{*}, \ldots are not stable in QCD (e.g. $K^{*} \rightarrow K \pi$ strong decay)
- Form factor calculations done in the narrow-width limit

This talk:

$$
B \rightarrow K^{*} X \quad----\longrightarrow \quad B \rightarrow K \pi X
$$

Naively, corrections from finite width are

$$
\mathcal{W} \sim 1+\text { coeff. } \times \frac{\Gamma}{M}+\cdots
$$

Target precision: ~ 10\%

$$
\Gamma / M \sim 20 \%(\rho), 6 \%\left(K^{*}\right), 0.5 \%(\phi)
$$

But there are also "non-resonant" effects (higher resonances, S, D-waves, ...)

$B \rightarrow K \pi$ Form factors

Definition of Lorentz-Invariant Form Factors:

$$
\begin{aligned}
i\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{S} \gamma^{\mu} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{\perp} k_{\perp}^{\mu} \\
-i\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{S} \gamma^{\mu} \gamma_{5} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{t} k_{t}^{\mu}+F_{0} k_{0}^{\mu}+F_{\|} k_{\|}^{\mu} \\
\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{S} \sigma^{\mu \nu} q_{\nu} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{\perp}^{T} k_{\perp}^{\mu} \\
\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{S} \sigma^{\mu \nu} q_{\nu} \gamma_{5} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{0}^{T} k_{0}^{\mu}+F_{\|}^{T} k_{\|}^{\mu}
\end{aligned}
$$

Functions $F_{i}^{(T)}\left(k^{2}, q^{2}, q \cdot \bar{k}\right)$. Partial-wave expansion:

$$
\begin{aligned}
F_{0, t}\left(k^{2}, q^{2}, q \cdot \bar{k}\right) & =\sum_{\ell=0}^{\infty} \sqrt{2 \ell+1} F_{0, t}^{(\ell)}\left(k^{2}, q^{2}\right) P_{\ell}^{(0)}\left(\cos \theta_{K}\right) \\
F_{\perp, \|}\left(k^{2}, q^{2}, q \cdot \bar{k}\right) & =\sum_{\ell=1}^{\infty} \sqrt{2 \ell+1} F_{\perp, \|}^{(\ell)}\left(k^{2}, q^{2}\right) \frac{P_{\ell}^{(1)}\left(\cos \theta_{K}\right)}{\sin \theta_{K}}
\end{aligned}
$$

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006
[Analyticity+Unitarity+Duality]
Consider a correlation function:

$$
\mathcal{P}_{a b}(k, q)=i \int d^{4} x e^{i k \cdot x}\langle 0| T\left\{j_{a}(x), j_{b}(0)\right\}\left|\bar{B}^{0}(q+k)\right\rangle
$$

- Traditionally, $\quad h(k)=K^{*}+$ continuum $\Rightarrow 2 \operatorname{Im} \mathcal{P}_{a b}(k, q) \sim f_{k}^{*} F^{B K *} \delta\left(k^{2}-m_{k^{*}}\right)+\cdots$

Light-Cone Sum Rules with B-meson LCDAs

Consider a correlation function:

$$
\mathcal{P}_{a b}(k, q)=i \int d^{4} x e^{i k \cdot x}\langle 0| T\left\{j_{a}(x), j_{b}(0)\right\}\left|\bar{B}^{0}(q+k)\right\rangle
$$

- Traditionally, $\quad h(k)=K^{*}+$ continuum $\Rightarrow 2 \operatorname{Im} \mathcal{P}_{a b}(k, q) \sim f_{k}^{*} F^{B K *} \delta\left(k^{2}-m_{k^{*}}\right)+\cdots$
- Generalization for unstable mesons Cheng, Khodjamirian, Virto 2017: $\quad h(k)=K \pi+\cdots$

LCSRs with B-meson DAs, natural for this generalization.

Light-Cone Sum Rules for P-wave $B \rightarrow K \pi$ Form Factors

$$
\int_{s_{\mathrm{th}}}^{s_{0}} d s e^{-s / M^{2}} \omega_{i}\left(s, q^{2}\right) f_{+}^{\star}(s) F_{i}^{(T)(\ell=1)}\left(s, q^{2}\right)=\mathcal{P}_{i}^{(T), \text { OPE }}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$

- s_{0} - Effective threshold
- $\omega_{i}\left(s, q^{2}\right)-(k n o w n)$ kinematic factors
- $\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \gamma_{\mu} d|0\rangle=f_{+}\left(k^{2}\right) \bar{k}_{\mu}+\frac{m_{K}^{2}-m_{\pi}^{2}}{k^{2}} f_{0}\left(k^{2}\right) k_{\mu}$
- $\mathcal{P}_{i}^{(T), O P E}$ - OPE result for the correlation function

What have we done?

$$
\int_{s_{\text {th }}}^{s_{0}} d s e^{-s / M^{2}} \omega_{i}\left(s, q^{2}\right) f_{+}^{\star}(S) F_{i}^{(T)(\ell=1)}\left(s, q^{2}\right)=\mathcal{P}_{i}^{(T), O P E}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$

- Generalize LCSRs in khodjamirian, Mannel, offen 2006 beyond the K^{*} case, including LCSRs for $A_{0}, T_{2,3}$
- Recalculate $\mathcal{P}_{i}^{(T), O P E}$ including 3-particle contributions, and extended consistently to twist-4 accuracy. Full (numerical) agreement with Gubernari,Kokulu,van Dyk 2018 (not input parameters)
- Revisit $s_{0} \Rightarrow$ significantly lower value!! - $f_{K^{*}}$ is derived quantity
- Study of Narrow-width limit, Finite-Width effects, and effects beyond the K^{*}
- Applications to $B \rightarrow K \pi \ell \ell$

$K \pi$ form factor $f_{+}(s)$ from $\tau \rightarrow K \pi \nu_{\tau}$

Differential decay rate of $\tau \rightarrow K \pi \nu_{\tau}$:

$$
\frac{d \Gamma}{d s}=\left.\frac{N_{\tau}}{s^{3}}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \lambda_{k \pi}^{3 / 2} \widetilde{\mid f}_{+}(s)\right|^{2}\left\{1+\frac{3\left(\Delta m^{2}\right)^{2}}{\left(1+2 s / m_{\tau}^{2}\right) \lambda_{k \pi}}\left|\widetilde{f}_{0}(s)\right|^{2}\right\}
$$

with the normalization [Total BR will give $\left|f_{+}(0)\right|^{2}=0.99$, consistent with $f_{+}^{f(0 C D}(0)=0.97$]

$$
N_{\tau}=\frac{G_{F}^{2}\left|V_{u s}\right|^{2}\left|f_{+}(0)\right|^{2} m_{\tau}^{3}}{1536 \pi^{3}} S_{E W}^{\mathrm{had}}
$$

Belle fits to models: [This gives $f_{\mathrm{K}^{*}} \simeq 205 \mathrm{MeV}$, compared to $f_{\mathrm{K}^{*}}=217(5) \mathrm{MeV}(\mathrm{NWL})$]

$$
\tilde{f}_{+}(s)=\sum_{R} \frac{\xi_{R} m_{R}^{2}}{m_{R}^{2}-s-i \sqrt{s} \Gamma_{R}(s)}, \quad f_{0}(s)=f_{+}(0) \cdot \sum_{R_{0}} \frac{\xi_{R_{0}} s}{m_{R_{0}}^{2}-s-i \sqrt{s} \Gamma_{R_{0}}(s)},
$$

Model 1: $\quad \xi_{K^{*}(892)}=1, \xi_{K_{0}^{*}(800)}=1.27, \xi_{\kappa_{0}^{*}(1430)}=0.954 e^{i 0.62}$
Model 2: $\quad \xi_{K^{*}(892)}=0.988 e^{-i 0.07}, \xi_{K^{*}(1410)}=0.074 e^{i 1.37}, \xi_{K_{0}^{*}(800)}=1.57$

$K \pi$ form factor $f_{+}(s)$ from $\tau \rightarrow K \pi \nu_{\tau}$

Data from Belle, arXiv:0706.2231 [hep-ex]

Effective threshold: 2-point SVZ sum rule

Knowing $\left|f_{+}(s)\right|$ we can extract s_{0} from a QCD sum rule:

$$
\begin{gathered}
\Pi_{\mu \nu}(k)=i \int d^{4} x e^{i k x}\langle 0| \mathrm{T}\left\{\bar{d}(x) \gamma_{\mu} s(x), \bar{s}(0) \gamma_{\nu} d(0)|0\rangle\right. \\
=\quad\left(k_{\mu} k_{\nu}-k^{2} g_{\mu \nu}\right) \Pi\left(k^{2}\right)+k_{\mu} k_{\nu} \widetilde{\Pi}\left(k^{2}\right) \\
\begin{aligned}
& \Pi\left(M^{2}, s_{0}\right) \equiv \frac{1}{\pi} \int_{s_{\mathrm{th}}}^{s_{0}} d s e^{-s / M^{2}} \operatorname{Im} \Pi(s)=\int_{s_{\mathrm{th}}}^{s_{0}} d s e^{-s / M^{2}} \frac{\lambda_{K \pi}^{3 / 2}(s)}{32 \pi^{2} s^{3}}\left|f_{+}(s)\right|^{2} \\
& \Pi^{\mathrm{OPE}}\left(M^{2}, s_{0}\right)= \frac{1}{8 \pi^{2}} \int_{m_{s}^{2}}^{s_{0}} d s e^{-s / M^{2}} \frac{\left(s-m_{s}^{2}\right)^{2}\left(2 s+m_{s}^{2}\right)}{s^{3}} \\
&+\frac{\alpha_{s}(M)}{\pi} \frac{M^{2}}{4 \pi^{2}}\left(1-e^{-s_{0} / M^{2}}\right)+\frac{v_{4}}{M^{2}}+\frac{v_{6}}{2 M^{4}}
\end{aligned}
\end{gathered}
$$

Effective threshold: 2-point SVZ sum rule

Borel parameter M^{2} Effective threshold s_{0}

	$1.28 \pm 0.18 \mathrm{GeV}^{2}$ (Model 1)	$1.26 \pm 0.18 \mathrm{GeV}^{2}$ (Average)
$1.00 \mathrm{GeV}^{2}$	$1.25 \pm 0.18 \mathrm{GeV}^{2}$ (Model 2)	
$1.25 \mathrm{GeV}^{2}$	$1.33 \pm 0.12 \mathrm{GeV}^{2}$ (Model 1)	$1.31 \pm 0.12 \mathrm{GeV}^{2}$ (Average)
	$1.31 \pm 0.12 \mathrm{GeV}^{2}$ (Model 2)	
$1.50 \mathrm{GeV}^{2}$	$1.36 \pm 0.09 \mathrm{GeV}^{2}$ (Model 1)	$1.35 \pm 0.09 \mathrm{GeV}^{2}$ (Average)
	$1.34 \pm 0.09 \mathrm{GeV}^{2}$ (Model 2)	

Table 3: Values for the effective threshold s_{0} extracted from the $S V Z$ sum rules.

Significantly low value compared to the usual $s_{0}^{K^{*}} \simeq 1.7 \mathrm{GeV}^{2} \sim\left(\sqrt{s_{0}^{\rho}}+m_{s}\right)^{2}$

Models for $B \rightarrow K \pi$ form factors

Assume that the P-wave $K \pi$ state couples to its interpolating current $\bar{s} \Gamma d$ resonantly, through a set of Breit-Wigner-type vector resonances:

$$
\begin{aligned}
&\left\langle K\left(k_{1}\right) \pi\left(k_{2}\right)\right| \bar{S} \gamma^{\mu} d|X\rangle=\sum_{R, \eta} B W_{R}\left(k^{2}\right)\left\langle K\left(k_{1}\right) \pi\left(k_{2}\right) \mid R(k, \eta)\right\rangle\langle R(k, \eta)| \bar{s} \gamma^{\mu} d|X\rangle \\
& f_{+}(s)=-\sum_{R} \frac{m_{R} f_{R} g_{R K \pi} e^{i \phi_{R}(s)}}{m_{R}^{2}-s-i \sqrt{S} \Gamma_{R}(s)} \\
& F_{i}^{(T),(\ell=1)}\left(s, q^{2}\right)=\sum_{R} \frac{Y_{R, i}^{(T)}\left(s, q^{2}\right) g_{R K \pi} \mathcal{F}_{R, i}^{(T)}\left(q^{2}\right) e^{i \phi_{R}(s)}}{m_{R}^{2}-s-i \sqrt{s} \Gamma_{R}(s)}
\end{aligned}
$$

This model is totally equivalent to the model fitted by Belle for $f_{+}(s)$.

Light-Cone Sum Rule + BW model

$$
\sum_{R} \mathcal{F}_{R, i}^{(T)}\left(q^{2}\right) d_{R, i}^{(T)} I_{R}\left(S_{0}, M^{2}\right)=\mathcal{P}_{i}^{(T), \mathrm{OPE}}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$

with

$$
I_{R}\left(s_{0}, M^{2}\right)=\frac{m_{R}}{16 \pi^{2}} \int_{S_{\mathrm{th}}}^{s_{0}} d s e^{-s / M^{2}} \frac{g_{R K \pi} \lambda_{K \pi}^{3 / 2}(s)\left|f_{+}(s)\right|}{s^{5 / 2} \sqrt{\left(m_{R}^{2}-s\right)^{2}+s \Gamma_{R}^{2}(s)}}
$$

and

$$
\begin{aligned}
& d_{R, \perp}=-d_{R,-}=\left(m_{B}+m_{R}\right)^{-1}, \quad d_{R, \|}=\frac{\left(m_{B}+m_{R}\right)}{2}, \quad d_{R, t}=-m_{R} \\
& d_{R, \perp}^{\top}=-d_{R,-}^{\top}=1, \quad d_{R, \|}^{\top}=\frac{\left(m_{B}^{2}-m_{R}^{2}\right)}{2}
\end{aligned}
$$

Narrow-width limit

Consider the sum rule with a single resonance R :

$$
\mathcal{F}_{R, i}^{(T)}\left(q^{2}\right) d_{R, i}^{(T)} I_{R}\left(S_{0}, M^{2}\right)=\mathcal{P}_{i}^{(T), \mathrm{OPE}}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$

$$
\begin{aligned}
& I_{R}\left(s_{0}, M^{2}\right)= 3 m_{R} f_{R} \mathcal{B}\left(R \rightarrow K^{+} \pi^{-}\right) \int_{s_{\mathrm{th}}}^{s_{0}} d s e^{-s / M^{2}} \frac{m_{R}}{\sqrt{s}}\left[\frac{1}{\pi} \frac{\sqrt{s} \Gamma_{R}(s)}{\left(m_{R}^{2}-s\right)^{2}+s \Gamma_{R}^{2}(s)}\right] \\
& \xrightarrow{\Gamma_{R}^{\text {tot } \rightarrow 0}} 3 m_{R} f_{R} \mathcal{B}\left(R \rightarrow K^{+} \pi^{-}\right) e^{-m_{R}^{2} / M^{2}} \\
& \Rightarrow \quad 3 m_{R} f_{R} d_{R, i}^{(T)} \mathcal{F}_{R, i}^{(T)}\left(q^{2}\right) e^{-m_{R}^{2} / M^{2}} \mathcal{B}\left(R \rightarrow K^{+} \pi^{-}\right)=\mathcal{P}_{i}^{(T), \mathrm{OPE}}\left(q^{2}, \sigma_{0}, M^{2}\right)
\end{aligned}
$$

This agrees with Khodjamirian, Mannel, Offen 2006

Finite-width effects

Consider the sum rule with a single K^{*} :

$$
\mathcal{F}_{k^{*}, i}^{(T)}\left(q^{2}\right) d_{k^{*}, i}^{(T)} I_{k^{*}}\left(S_{0}, M^{2}\right)=\mathcal{P}_{i}^{(T), O P E}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$

Define the "Width ratio" $\mathcal{W}_{k^{*}}$:

$$
\mathcal{W}_{K^{*}} \equiv \frac{\mathcal{F}_{K^{*}, i}^{(T)}\left(q^{2}\right)}{\mathcal{F}_{K^{*}, i}^{(T)}\left(q^{2}\right)_{N W L}}=\frac{\left.I_{k^{*}}\left(S_{0}, M^{2}\right)\right|_{K^{*} \rightarrow 0}}{I_{K^{*}}\left(S_{0}, M^{2}\right)}=\frac{2 m_{K^{*}} f_{K^{*}} e^{-m_{K^{*}}^{2} / M^{2}}}{I_{K^{*}}\left(S_{0}, M^{2}\right)}
$$

- $\mathcal{W}_{k^{*}}$ is independent of the form factor type
- $\mathcal{W}_{k^{*}}$ is independent of q^{2}
$\Rightarrow \quad$ BRs are corrected by $\left|\mathcal{W}_{\mathrm{k}^{*}}\right|^{2}$, ratios are uncorrected! + true in q^{2} bins.

Finite-width effects

$\Rightarrow \quad$ BRs are corrected by a factor $\left|\mathcal{W}_{K^{*}}\right|^{2} \simeq 1.2$

Beyond the $K^{*}(892)$

Consider the sum rule with $R=\left\{K^{*}(892), K^{*}(1410)\right\}$:

$$
\sum_{R} \mathcal{F}_{R, i}^{(T)}\left(q^{2}\right) d_{R, i}^{(T)} I_{R}\left(S_{0}, M^{2}\right)=\mathcal{P}_{i}^{(T), \mathrm{OPE}}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$

		$M^{2}=1.00 \mathrm{GeV}^{2}$	$M^{2}=1.25 \mathrm{GeV}^{2}$	$M^{2}=1.50 \mathrm{GeV}^{2}$
Model 1	$I_{K^{*}(892)}$	$0.1506(23)$	$0.1781(16)$	$0.1992(13)$
	$I_{K^{*}(1410)}$	$0.0050(07)$	$0.0062(07)$	$0.0072(06)$
Model 2	$I_{K^{*}(892)}$	$0.1491(22)$	$0.1766(20)$	$0.1975(16)$
	$I_{K^{*}(1410)}$	$0.0048(07)$	$0.0061(06)$	$0.0070(06)$

Table 8: Values for the quantities I_{R} for $R=\left\{K^{*}(892), K^{*}(1410)\right\}$ for the different values of the Borel parameter M^{2} and for the two models for the $K \pi$ form factor. The $K^{*}(1410)$ contribution is very suppressed in the sum rules, with $I_{K^{*}(1410)} / I_{K^{*}(892)} \simeq 0.03$ in all cases.

Beyond the $K^{*}(892)$

Set $\mathcal{F}_{K^{*}(1410)}=\alpha \mathcal{F}_{K^{*}(892)}$ with α a floating parameter

$\alpha=1: \mathcal{F}_{K^{*}, \perp}(0)=0.28 ; \quad \alpha=10: \mathcal{F}_{K^{*}, \perp}(0)=0.22 ; \quad \alpha=50: \mathcal{F}_{K^{*}, \perp}(0)=0.11$.

High $K \pi$-Mass Moments in $B \rightarrow K \pi \ell \ell$

Differential decay rate including S,P,D waves - - [d $\left.\Omega=d \cos \theta_{\ell} d \cos \theta_{K} d \phi\right]$

$$
\frac{d \Gamma}{d q^{2} d k^{2} d \Omega}=\frac{1}{4 \pi} \sum_{i=1}^{41} f_{i}(\Omega) \tilde{\Gamma}_{i}\left(q^{2}, k^{2}\right)
$$

The 41 moments $\tilde{\Gamma}_{i}\left(q^{2}, k^{2}\right)$ have been measured by LHCb (arXiv: 1609.04736) in the bins

$$
\sqrt{k^{2}} \in[1.33,1.53] \mathrm{GeV}, \quad q^{2} \in[1.1,6] \mathrm{GeV}^{2}
$$

High $K \pi$-Mass Moments in $B \rightarrow K \pi \ell \ell$

Differential decay rate including S, P, D waves - - [$\left.d \Omega=d \cos \theta_{\ell} d \cos \theta_{K} d \phi\right]$

$$
\frac{d \Gamma}{d q^{2} d k^{2} d \Omega}=\frac{1}{4 \pi} \sum_{i=1}^{41} f_{i}(\Omega) \tilde{\Gamma}_{i}\left(q^{2}, k^{2}\right)
$$

The 41 moments $\tilde{\Gamma}_{i}\left(q^{2}, k^{2}\right)$ have been measured by LHCb (arXiv: 1609.04736) in the bins

$$
\sqrt{k^{2}} \in[1.33,1.53] \mathrm{GeV}, \quad q^{2} \in[1.1,6] \mathrm{GeV}^{2}
$$

High $K \pi$-Mass Moments in $B \rightarrow K \pi \ell \ell$

Differential decay rate including S, P, D waves - - [$\left.d \Omega=d \cos \theta_{\ell} d \cos \theta_{K} d \phi\right]$

$$
\frac{d \Gamma}{d q^{2} d k^{2} d \Omega}=\frac{1}{4 \pi} \sum_{i=1}^{41} f_{i}(\Omega) \tilde{\Gamma}_{i}\left(q^{2}, k^{2}\right)
$$

The 41 moments $\tilde{\Gamma}_{i}\left(q^{2}, k^{2}\right)$ depend on S, P, D-wave amplitudes:

i	$f_{i}(\Omega)$	$\Gamma_{i}^{L, \operatorname{tr}}\left(q^{2}\right) / \mathbf{k} q^{2}$	$\eta_{i}^{L \rightarrow R}$			
1	$P_{0}^{0} Y_{0}^{0}$	$\left.\left\|H_{0}^{L}\right\|^{2}+\left\|H_{\\|}^{L}\right\|^{2}+\left\|H_{\perp}^{L}\right\|^{2}+\left\|S^{L}\right\|^{2}+\left\|D_{0}^{L}\right\|^{2}+\left\|D_{\\|}^{L}\right\|^{2}+\left\|D_{\perp}^{L}\right\|^{2}\right]$	+1			
2	$P_{1}^{0} Y_{0}^{0}$	$2\left[\frac{2}{\sqrt{5}} \operatorname{Re}\left(H_{0}^{L} D_{0}^{L *}\right)+\operatorname{Re}\left(S^{L} H_{0}^{L *}\right)+\sqrt{\frac{3}{5}} \operatorname{Re}\left(H_{\\|}^{L} D_{\\|}^{L *}+H_{\perp}^{L} D_{ \pm}^{L *}\right)\right]$	+1			
3	$P_{2}^{0} Y_{0}^{0}$	$\frac{\sqrt{5}}{7}\left(\left\|D_{\\|}^{L}\right\|^{2}+\left\|D_{\perp}^{L}\right\|^{2}\right)-\frac{1}{\sqrt{5}}\left(\left\|H_{\\|}^{L}\right\|^{2}+\left\|H_{\perp}^{L}\right\|^{2}\right)+\frac{2}{\sqrt{5}}\left\|H_{0}^{L}\right\|^{2}+\frac{10}{7 \sqrt{5}}\left\|D_{0}^{L}\right\|^{2}+2 \operatorname{Re}\left(S^{L} D_{0}^{L *}\right)$	+1			
4	$P_{3}^{0} Y_{0}^{0}$	$\frac{6}{\sqrt{35}}\left[-\operatorname{Re}\left(H_{\\|}^{L} D_{\\|}^{L *}+H_{\perp}^{L} D_{\perp}^{L *}\right)+\sqrt{3} \operatorname{Re}\left(H_{0}^{L} D_{0}^{L *}\right)\right]$	+1			
5	$P_{4}^{0} Y_{0}^{0}$	$\frac{2}{7}\left[-2\left(\left\|D_{\\|}^{L}\right\|^{2}+\left\|D_{\perp}^{L}\right\|^{2}\right)+3\left\|D_{0}^{L}\right\|^{2}\right]$	+1			
6	$P_{0}^{0} Y_{2}^{0}$	$\frac{1}{2 \sqrt{5}}\left[\left(\left\|D_{\\|}^{L}\right\|^{2}+\left\|D_{\perp}^{L}\right\|^{2}\right)+\left(\left\|H_{\\|}^{L}\right\|^{2}+\left\|H_{\perp}^{L}\right\|^{2}\right)-2\left\|S^{L}\right\|^{2}-2\left\|D_{0}^{L}\right\|^{2}-2\left\|H_{0}^{L}\right\|^{2}\right]$	+1			
7	$P_{1}^{0} Y_{2}^{0}$	$\left.\frac{\sqrt{3}}{5} \operatorname{Re}\left(H_{\\|}^{L} D_{\\|}^{L *}+H_{\perp}^{L} D_{\perp}^{L *}\right)-\frac{2}{\sqrt{5}} \operatorname{Re}\left(S^{L} H_{0}^{L *}\right)-\frac{4}{5} \operatorname{Re}\left(H_{0}^{L} D_{0}^{L * *}\right)\right]$	+1			
8	$P_{2}^{0} Y_{2}^{0}$	$\left.\frac{1}{14}\left(\left\|D_{\\|}^{L}\right\|^{2}+\left\|D_{\perp}^{L}\right\|^{2}\right)-\frac{2}{7}\left\|D_{0}^{L}\right\|^{2}-\frac{1}{10}\left(\left\|H_{\\|}^{L}\right\|^{2}+\left\|H_{\perp}^{L}\right\|^{2}\right)-\frac{2}{5}\left\|H_{0}^{L}\right\|^{2}-\frac{2}{\sqrt{5}} \operatorname{Re}\left(S^{L} D_{0}^{L *}\right)\right]$	+1			
9	$P_{3}^{0} Y_{2}^{0}$	$-\frac{3}{5 \sqrt{7}}\left[\operatorname{Re}\left(H_{\\|}^{L} D_{\\|}^{L *}+H_{\perp}^{L} D_{ \pm}^{L *}\right)+2 \sqrt{3} \operatorname{Re}\left(H_{0}^{L} D_{0}^{L *}\right)\right]$	+1			
10	$P_{4}^{0} Y_{2}^{0}$	$-\frac{2}{7 \sqrt{5}}\left[\left\|D_{\\|}^{L}\right\|^{2}+\left\|D_{\perp}^{L}\right\|^{2}+3\left\|D_{0}^{L}\right\|^{2}\right]$	+1			
11	$P_{1}^{1} \sqrt{2} \operatorname{Re}\left(Y_{2}^{1}\right)$	$-\frac{3}{\sqrt{10}}\left[\sqrt{\frac{2}{3}} \operatorname{Re}\left(H_{\\|}^{L} S^{L *}\right)-\sqrt{\frac{2}{15}} \operatorname{Re}\left(H_{\\|}^{L} D_{0}^{L *}\right)+\sqrt{\frac{2}{5}} \operatorname{Re}\left(D_{\\|}^{L} H_{0}^{L *}\right)\right]$	+1			
12	$P_{\circ}^{1} \sqrt{2} \operatorname{Re}\left(Y_{o}^{1}\right)$	$-\frac{3}{\underline{3}}\left\lceil\operatorname{Re}\left(H_{*}^{L} H_{n}^{L *}\right)+\sqrt{\frac{5}{5}} \operatorname{Re}\left(D_{*}^{L} S^{L *}\right)+{ }^{5}=\operatorname{Re}\left(D_{n}^{L} D_{n}^{L *}\right)\right\rceil$	+1			

High $K \pi$-Mass Moments in $B \rightarrow K \pi \ell \ell$

Combinations of moments depending only on P-wave:

$$
\begin{aligned}
& \left|\hat{A}_{\|}^{L}\right|^{2}+\left|\hat{A}_{\|}^{R}\right|^{2}=\frac{1}{36}\left(5 \tilde{\Gamma}_{1}-7 \sqrt{5} \tilde{\Gamma}_{3}+5 \sqrt{5} \tilde{\Gamma}_{6}-35 \tilde{\Gamma}_{8}-5 \sqrt{15 \tilde{\Gamma}_{19}}+35 \sqrt{3} \tilde{\Gamma}_{21}\right) \\
& \left|\widehat{A}_{\perp}^{L}\right|^{2}+\left|\widehat{A}_{\perp}^{R}\right|^{2}=\frac{1}{36}\left(5 \tilde{5}_{1}-7 \sqrt{5} \tilde{\Gamma}_{3}+5 \sqrt{5} \tilde{\Gamma}_{6}-35 \tilde{r}_{8}+5 \sqrt{15 \tilde{r}_{19}}-35 \sqrt{3} \tilde{\Gamma}_{21}\right) \\
& \operatorname{Im}\left(\widehat{A}_{\perp}^{L} \hat{A}_{\|}^{L *}+\widehat{A}_{\perp}^{R} \widehat{A}_{\|}^{R_{i}^{*}}\right)=\frac{5}{36}\left(\sqrt{15 \Gamma_{24}}-7 \sqrt{3 \tilde{r}_{26}}\right) \\
& \operatorname{Re}\left(\widehat{A}_{\perp} \hat{A}_{\|}^{L_{1}^{*}}-\widehat{A}_{\perp}^{R} \hat{A}_{\|}^{R^{*}}\right)=\frac{1}{36}\left(-5 \sqrt{3} \tilde{\Gamma}_{29}+7 \sqrt{15} \tilde{r}_{31}\right)
\end{aligned}
$$

Binned LHCb results (arXiv: 1609.04736) imply:

$$
\begin{aligned}
\left.\left.\tau_{B}\langle | \widehat{A}_{\|}^{L}\right|^{2}+\left|\widehat{A}_{\|}^{R}\right|^{2}\right\rangle & \equiv\left\langle M_{\|}\right\rangle=(1.07 \pm 1.13) \times 10^{-8} \\
\left.\left.\tau_{B}\langle | \widehat{A}_{\perp}^{L}\right|^{2}+\left|\widehat{A}_{\perp}^{R}\right|^{2}\right\rangle & \equiv\left\langle M_{\perp}\right\rangle=(0.94 \pm 1.06) \times 10^{-8} \\
\tau_{B}\left\langle\operatorname{Im}\left(\widehat{A}_{\perp}^{L} \widehat{A}_{\|}^{L *}+\widehat{A}_{\perp}^{R} \widehat{A}_{\|}^{R *}\right)\right\rangle & \equiv\left\langle M_{\mathrm{im}}\right\rangle=(-0.75 \pm 0.79) \times 10^{-8} \\
\tau_{B}\left\langle\operatorname{Re}\left(\widehat{A}_{\perp}^{L} \widehat{A}_{\|}^{L *}-\widehat{A}_{\perp}^{R} \widehat{A}_{\|}^{R *}\right)\right\rangle & \equiv\left\langle M_{\mathrm{re}}\right\rangle=(0.27 \pm 0.50) \times 10^{-8}
\end{aligned}
$$

High $K \pi$-Mass Moments in $B \rightarrow K \pi \ell \ell$

Example: $\left\langle M_{\|}\right\rangle$:

Bounds: From $\left\langle M_{\|}\right\rangle: \alpha \lesssim 11 ; \operatorname{From}\left\langle M_{\perp}\right\rangle: \alpha \lesssim 17 ; \operatorname{From}\left\langle M_{\text {re }}\right\rangle: \alpha \lesssim 18$.

High $K \pi$-Mass Moments in $B \rightarrow K \pi \ell \ell$

Upper bounds on P-wave from differential BR:

$$
\frac{d \Gamma}{d q^{2} d k^{2}}=\tilde{\Gamma}_{1}=\left.\left|\widehat{A}_{\|}\right|\right|^{2}+\left|\left|\widehat{A}_{\|}^{R}\right|^{2}+\left|\widehat{A}_{\perp}^{L}\right|^{2}+\left|\widehat{A}_{\perp}^{R}\right|^{2}+\left|\widehat{A}_{0}^{L}\right|^{2}+\left|\widehat{A}_{0}^{R}\right|^{2}+\ldots\right.
$$

$$
\begin{aligned}
10^{8} \cdot\langle\mathcal{B}\rangle_{[0.10,0.98]} & =1.41 \pm 0.27 \rightarrow \alpha \lesssim 5 \\
10^{8} \cdot\langle\mathcal{B}\rangle_{[1.10,2.50]} & =1.60 \pm 0.29 \rightarrow \alpha \lesssim 6 \\
10^{8} \cdot\langle\mathcal{B}\rangle_{[2.50,4.00]} & =1.37 \pm 0.26 \rightarrow \alpha \lesssim 5 \\
10^{8} \cdot\langle\mathcal{B}\rangle_{[4.00,6.00]} & =1.12 \pm 0.26 \rightarrow \alpha \lesssim 4 \\
10^{8} \cdot\langle\mathcal{B}\rangle_{[6.00,8.00]} & =0.98 \pm 0.23 \rightarrow \alpha \lesssim 3
\end{aligned}
$$

Bounds are easily improved with some info on S-wave form factors.

Summary

- Absolutely no excuse to do the transition $K^{*} \rightarrow K \pi$ in your life
- Recalculation of all $B \rightarrow K^{*}$ form factors from LCSRs with B-DAs with twist-4 accuracy
- Finite-Width effects are 20% at the level of BRs, universal and q^{2}-independent \Rightarrow Global factor 1.2 in BRs; but ratios (e.g. P_{5}^{\prime} unaffected.)
- Higher resonance effects can have dramatic effect on $B \rightarrow K^{*}$. High mass BRs and Moments very efficient to bound this possibility
- Measurements of angular moments in bins across the q^{2} and k^{2} spectra \Rightarrow very useful

Thank You

Extra

Form Factor	This work	Ref. [12]	Ref. [24]	Ref. [15]	Ref. [17]	
$\mathcal{F}_{K^{*}, \perp}(0)=V^{B K^{*}}(0)$	$0.26(15)$	$0.39(11)$	$0.36(18)$	$0.32(11)$	$0.34(4)$	
$\mathcal{F}_{K^{*}, \\|}(0)=A_{1}^{B K^{*}}(0)$	$0.20(12)$	$0.30(8)$	$0.25(13)$	$0.26(8)$	$0.27(3)$	
$\mathcal{F}_{K^{*},-}(0)=A_{2}^{B K^{*}}(0)$	$0.14(13)$	$0.26(8)$	$0.23(15)$	$0.24(9)$	$0.23(5)$	
$\mathcal{F}_{K^{*}, t}(0)=A_{0}^{B K^{*}}(0)$	$0.30(7)$	-	$0.29(8)$	$0.31(7)$	$0.36(5)$	
$\mathcal{F}_{K^{*}, \perp}^{T}(0)=T_{1}^{B K^{*}}(0)$	$0.22(13)$	$0.33(10)$	$0.31(14)$	$0.29(10)$	$0.28(3)$	
$\mathcal{F}_{K^{*}, \\|}^{T}(0)=T_{2}^{B K^{*}}(0)$	$0.22(13)$	$0.33(10)$	$0.31(14)$	$0.29(10)$	$0.28(3)$	
$\mathcal{F}_{K^{*},-}^{T}(0)=T_{3}^{B K^{*}}(0)$	$0.13(12)$	-	$0.22(14)$	$0.20(8)$	$0.18(3)$	

Table 6: Results for the form factors at $q^{2}=0$ in the narrow-width limit,compared to corresponding results in the literature. The approach in Ref. [17] is a completely different LCSR approach, in terms of $K^{*} D A s$.

$\mathcal{F}^{B K^{*}}\left(q^{2}=0\right)$	$V^{B K^{*}}$	$A_{1}^{B K^{*}}$	$A_{2}^{B K^{*}}$	$A_{0}^{B K^{*}}$	$T_{1,2}^{B K^{*}}$	$T_{3}^{B K^{*}}$
Ref. [12]	0.39	0.30	0.26	-	0.33	-
Inputs [12], no g_{+}	0.38	0.29	0.26	0.31	0.33	0.25
Inputs [12], with g_{+}	0.27	0.21	0.14	0.31	0.24	0.14
Our inputs, but $s_{0}=1.7 \mathrm{GeV}^{2}$	0.33	0.26	0.17	0.38	0.29	0.17
Our inputs, our s_{0}, no g_{+}	0.36	0.28	0.25	0.30	0.31	0.23
Our inputs, our s_{0}, with g_{+}	0.26	0.20	0.14	0.30	0.22	0.13

Table 7: Deconstruction of the different effects explaining the difference between our results for the form factors at $q^{2}=0$ and those in Ref. [12]. The difference stems mainly from the inclusion of the twist-four two-particle contributions. See the text for more details.

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006
Consider a correlation function of the type:

$$
\mathcal{P}_{a b}(k, q)=i \int d^{4} x e^{i k \cdot x}\langle 0| T\left\{j_{a}(x), j_{b}(0)\right\}\left|\bar{B}^{0}(q+k)\right\rangle
$$

which obeys a dispersion relation:

$$
\mathcal{P}_{a b}^{\mathrm{OPE}}\left(k^{2}, q^{2}\right)=\frac{1}{\pi} \int_{s_{\mathrm{th}}}^{\infty} d s \frac{\operatorname{Im} \mathcal{P}_{a b}\left(s, q^{2}\right)}{s-k^{2}}
$$

Duality + Borel transformation:

$$
\frac{1}{\pi} \int_{s_{\text {th }}}^{s_{0}} d s e^{-s / M^{2}} \operatorname{Im} \mathcal{P}_{a b}\left(s, q^{2}\right)=\mathcal{P}_{a b}^{\mathrm{OPE}}\left(q^{2}, \sigma_{0}, M^{2}\right),
$$

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006
From Unitarity:

$$
2 \operatorname{Im} \mathcal{P}_{a b}(k, q)=\sum_{h} \int d \tau_{h}\langle 0| j_{a}|h(k)\rangle \underbrace{\langle h(k)| j_{b}\left|\bar{B}^{0}(q+k)\right\rangle}_{\text {form factor }}
$$

- Traditionally,

$$
h(k)=K^{*}+\text { continuum } \Rightarrow 2 \operatorname{Im} \mathcal{P}_{a b}(k, q) \sim f_{K}^{*} F^{B K *} \delta\left(k^{2}-m_{K^{*}}\right)+\cdots
$$

- Generalization for unstable mesons cheng, Khodjamirian, Virto 2017

$$
h(k)=K \pi+\cdots
$$

LCSRs with B-meson DAs, natural for this generalization.

