

Form Factors and High-Mass Moments in $B \to K\pi\ell\ell$

Javier Virto

Universitat de Barcelona

arXiv:1908.02267 [hep-ph] in collaboration with S. Descotes-Genon, A. Khodjamirian

Workshop on the Implications of LHCb Measurements – CERN – October 16th, 2019

Local $B \rightarrow V$ Form Factors

- 1. Definition: $\mathcal{F}_i(q^2) \sim \langle V(k) | \bar{q} \Gamma_i b | B(q+k) \rangle$
- 2. Necessary for:
 - Semileptonic decays: $B \to \rho \ell \nu$, $B_s \to K^* \ell \nu$, ...
 - Non-Leptonic decays: $B \to K^*\pi$, ...
 - "Rare" FCNC decays: $B \to K^* \bar{\nu} \nu$, $B \to K^* \ell^+ \ell^-$

Local $B \to K^*$ Form Factors

- ► Two main approaches: (1) Lattice QCD (large q^2) (2) LCSRs (low q^2)
- ► Two approaches to LCSRs, in terms of (Left) K* LCDAs (Right) B LCDAs
- $ightharpoonup q^2$ dependence can be parametrized model-independently

Subject of this talk

However:

- ρ, K^*, \ldots are not stable in QCD (e.g. $K^* \to K\pi$ strong decay)
- · Form factor calculations done in the narrow-width limit

This talk:

$$B \to K^*X$$
 $---- \to B \to K\pi X$

Naively, corrections from finite width are

$$\mathcal{W} \sim 1 + \text{coeff.} \times \frac{\Gamma}{M} + \cdots$$

Target precision: $\sim 10\%$ $\Gamma/M \sim 20\%(\rho), 6\%(K^*), 0.5\%(\phi)$

But there are also "non-resonant" effects (higher resonances, S, D-waves, ...)

$B \to K\pi$ Form factors

Definition of Lorentz-Invariant Form Factors:

$$i\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma^{\mu}b|\bar{B}^{0}(q+k)\rangle = F_{\perp} k_{\perp}^{\mu}$$

$$-i\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma^{\mu}\gamma_{5}b|\bar{B}^{0}(q+k)\rangle = F_{t} k_{t}^{\mu} + F_{0} k_{0}^{\mu} + F_{\parallel} k_{\parallel}^{\mu}$$

$$\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\sigma^{\mu\nu}q_{\nu}b|\bar{B}^{0}(q+k)\rangle = F_{\perp}^{T} k_{\perp}^{\mu}$$

$$\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\sigma^{\mu\nu}q_{\nu}\gamma_{5}b|\bar{B}^{0}(q+k)\rangle = F_{0}^{T} k_{0}^{\mu} + F_{\parallel}^{T} k_{\parallel}^{\mu}$$

Functions $F_i^{(T)}(k^2, q^2, q \cdot \bar{k})$. Partial-wave expansion:

$$F_{0,t}(k^2, q^2, q \cdot \bar{k}) = \sum_{\ell=0}^{\infty} \sqrt{2\ell+1} F_{0,t}^{(\ell)}(k^2, q^2) P_{\ell}^{(0)}(\cos \theta_{\kappa})$$

$$F_{\perp,\parallel}(k^2, q^2, q \cdot \bar{k}) = \sum_{\ell=1}^{\infty} \sqrt{2\ell+1} F_{\perp,\parallel}^{(\ell)}(k^2, q^2) \frac{P_{\ell}^{(1)}(\cos \theta_{\kappa})}{\sin \theta_{\kappa}}$$

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006

[Analyticity+Unitarity+Duality]

Consider a correlation function:

$$\mathcal{P}_{ab}(k,q) = i \int d^4x \, e^{ik \cdot x} \langle 0 | \mathrm{T}\{j_a(x), j_b(0)\} | \overline{B}{}^0(q+k) \rangle$$

▶ Traditionally, $h(k) = K^* + continuum \Rightarrow 2 \operatorname{Im} \mathcal{P}_{ab}(k,q) \sim f_K^* F^{BK*} \delta(k^2 - m_{K^*}) + \cdots$

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006

[Analyticity+Unitarity+Duality]

Consider a correlation function:

$$\mathcal{P}_{ab}(k,q) = i \int d^4x \, e^{ik \cdot x} \langle 0 | \mathrm{T}\{j_a(x), j_b(0)\} | \bar{B}^0(q+k) \rangle$$

- ▶ Traditionally, $h(k) = K^* + continuum \Rightarrow 2 \operatorname{Im} \mathcal{P}_{ab}(k,q) \sim f_{K}^* F^{BK*} \delta(k^2 m_{K^*}) + \cdots$
- ► Generalization for unstable mesons cheng, Khodjamirian, Virto 2017: $h(k) = K\pi + \cdots$

LCSRs with B-meson DAs, natural for this generalization.

Light-Cone Sum Rules for *P*-wave $B \to K\pi$ Form Factors

$$\int_{s_{\text{th}}}^{s_0} ds \ e^{-s/M^2} \ \omega_i(s, q^2) \ f_+^*(s) \ F_i^{(T)(\ell=1)}(s, q^2) = \mathcal{P}_i^{(T), \text{OPE}}(q^2, \sigma_0, M^2)$$

- · so Effective threshold
- $\omega_i(s, q^2)$ (known) kinematic factors
- · $\langle K^{-}(k_1)\pi^{+}(k_2)|\bar{s}\gamma_{\mu}d|0\rangle = f_{+}(k^2)\overline{k}_{\mu} + \frac{m_K^2 m_{\pi}^2}{k^2}f_0(k^2)k_{\mu}$
- $\mathcal{P}_{i}^{(T),OPE}$ OPE result for the correlation function

$$\int_{s_{\text{th}}}^{s_0} ds \ e^{-s/M^2} \ \omega_i(s, q^2) \ f_+^*(s) \ F_i^{(T)(\ell=1)}(s, q^2) = \mathcal{P}_i^{(T), \text{OPE}}(q^2, \sigma_0, M^2)$$

- Generalize LCSRs in Khodjamirian, Mannel, Offen 2006 beyond the K^* case, including LCSRs for A_0 , $T_{2,3}$
- Recalculate P_i^{(T),OPE} including 3-particle contributions, and extended consistently to twist-4 accuracy. Full (numerical) agreement with Gubernari,Kokulu,van Dyk 2018 (not input parameters)
- Revisit $s_0 \Rightarrow \text{significantly lower value!!} f_{K^*}$ is derived quantity
- · Study of Narrow-width limit, Finite-Width effects, and effects beyond the K*
- Applications to $B \to K\pi\ell\ell$

$K\pi$ form factor $f_+(s)$ from $\tau \to K\pi\nu_{\tau}$

Differential decay rate of $au o K\pi
u_{ au}$:

$$\frac{d\Gamma}{ds} = \frac{N_{\tau}}{s^3} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left(1 + 2\frac{s}{m_{\tau}^2}\right) \lambda_{K\pi}^{3/2} |\widetilde{f}_+(s)|^2 \left\{1 + \frac{3(\Delta m^2)^2}{(1 + 2s/m_{\tau}^2) \, \lambda_{K\pi}} \, |\widetilde{f}_0(s)|^2 \right\}$$

with the normalization [Total BR will give $|f_+(0)|^2 = 0.99$, consistent with $f_+^{LQCD}(0) = 0.97$]

$$N_{\tau} = \frac{G_F^2 |V_{us}|^2 |f_+(0)|^2 m_{\tau}^3}{1536\pi^3} S_{EW}^{\text{had}}$$

Belle fits to models: [This gives $f_{K^*} \simeq 205$ MeV, compared to $f_{K^*} = 217(5)$ MeV (NWL)]

$$\widetilde{f}_{+}(s) = \sum_{R} \frac{\xi_{R} \, m_{R}^{2}}{m_{R}^{2} - s - i\sqrt{s} \, \Gamma_{R}(s)} \; , \quad f_{0}(s) = f_{+}(0) \cdot \sum_{R_{0}} \frac{\xi_{R_{0}} \, s}{m_{R_{0}}^{2} - s - i\sqrt{s} \, \Gamma_{R_{0}}(s)} \; ,$$

Model 1: $\xi_{K^*(892)} = 1, \; \xi_{K^*_n(800)} = 1.27, \; \xi_{K^*_n(1430)} = 0.954 \, e^{i \, 0.62}$

Model 2: $\xi_{K^*(892)} = 0.988 e^{-i \, 0.07}, \ \xi_{K^*(1410)} = 0.074 e^{i \, 1.37}, \ \xi_{K_0^*(800)} = 1.57$

$K\pi$ form factor $f_+(s)$ from $\tau \to K\pi\nu_{\tau}$

Data from Belle, arXiv:0706.2231 [hep-ex]

Effective threshold: 2-point SVZ sum rule

Knowing $|f_+(s)|$ we can extract s_0 from a QCD sum rule:

$$\Pi_{\mu\nu}(k) = i \int d^4x e^{ikx} \langle 0|T\{\bar{d}(x)\gamma_{\mu}s(x), \bar{s}(0)\gamma_{\nu}d(0)|0\rangle$$
$$= (k_{\mu}k_{\nu} - k^2g_{\mu\nu})\Pi(k^2) + k_{\mu}k_{\nu}\widetilde{\Pi}(k^2)$$

$$\Pi(M^2, s_0) \equiv \frac{1}{\pi} \int_{s_{\rm th}}^{s_0} ds \, e^{-s/M^2} {\rm Im} \Pi(s) = \int_{s_{\rm th}}^{s_0} ds \, e^{-s/M^2} \frac{\lambda_{K\pi}^{3/2}(s)}{32\pi^2 s^3} \, |f_+(s)|^2$$

$$\Pi^{\text{OPE}}(M^2, s_0) = \frac{1}{8\pi^2} \int_{m_s^2}^{s_0} ds \, e^{-s/M^2} \frac{(s - m_s^2)^2 (2s + m_s^2)}{s^3} + \frac{\alpha_s(M)}{\pi} \frac{M^2}{4\pi^2} \left(1 - e^{-s_0/M^2}\right) + \frac{V_4}{M^2} + \frac{V_6}{2M^4}$$

Effective threshold: 2-point SVZ sum rule

Borel parameter M^2	Effective threshold s_0			
$1.00~{ m GeV^2}$	$1.28 \pm 0.18 \; \mathrm{GeV^2} \; (\mathrm{Model} \; 1)$ $1.25 \pm 0.18 \; \mathrm{GeV^2} \; (\mathrm{Model} \; 2)$	$1.26 \pm 0.18~\mathrm{GeV^2}~\mathrm{(Average)}$		
$1.25~{ m GeV^2}$	$1.33 \pm 0.12 \; \mathrm{GeV^2} \; (\mathrm{Model} \; 1)$ $1.31 \pm 0.12 \; \mathrm{GeV^2} \; (\mathrm{Model} \; 2)$	$1.31 \pm 0.12~\mathrm{GeV^2}~\mathrm{(Average)}$		
$1.50~\rm GeV^2$	$1.36 \pm 0.09 \; \mathrm{GeV^2} \; (\mathrm{Model} \; 1)$ $1.34 \pm 0.09 \; \mathrm{GeV^2} \; (\mathrm{Model} \; 2)$	$1.35 \pm 0.09~\mathrm{GeV^2}~\mathrm{(Average)}$		

Table 3: Values for the effective threshold s_0 extracted from the SVZ sum rules.

Significantly low value compared to the usual $s_0^{K^*} \simeq 1.7~\text{GeV}^2 \sim (\sqrt{S_0^\rho} + m_s)^2$

Models for $B \to K\pi$ form factors

Assume that the *P*-wave $K\pi$ state couples to its interpolating current $\bar{s}\Gamma d$ resonantly, through a set of Breit-Wigner-type vector resonances:

$$\langle K(k_1)\pi(k_2)|\bar{S}\gamma^{\mu}d|X\rangle = \sum_{R,\eta} BW_R(k^2)\langle K(k_1)\pi(k_2)|R(k,\eta)\rangle\langle R(k,\eta)|\bar{S}\gamma^{\mu}d|X\rangle$$

$$f_{+}(s) = -\sum_{R} \frac{m_{R} f_{R} g_{RK\pi} e^{i\phi_{R}(s)}}{m_{R}^{2} - s - i\sqrt{s} \Gamma_{R}(s)}$$

$$F_{i}^{(T),(\ell=1)}(s,q^{2}) = \sum_{R} \frac{Y_{R,i}^{(T)}(s,q^{2}) g_{RK\pi} \mathcal{F}_{R,i}^{(T)}(q^{2}) e^{i\phi_{R}(s)}}{m_{R}^{2} - s - i\sqrt{s} \Gamma_{R}(s)}$$

This model is totally equivalent to the model fitted by Belle for $f_+(s)$.

Light-Cone Sum Rule + BW model

$$\sum_{R} \mathcal{F}_{R,i}^{(T)}(q^{2}) d_{R,i}^{(T)} I_{R}(S_{0}, M^{2}) = \mathcal{P}_{i}^{(T),OPE}(q^{2}, \sigma_{0}, M^{2})$$

with

$$I_R(s_0, M^2) = \frac{m_R}{16 \, \pi^2} \int_{s_{\rm th}}^{s_0} ds \, e^{-s/M^2} \, \frac{g_{RK\pi} \, \lambda_{K\pi}^{3/2}(s) \, |f_+(s)|}{s^{5/2} \sqrt{(m_R^2 - s)^2 + s \, \Gamma_R^2(s)}}$$

and

$$d_{R,\perp} = -d_{R,-} = (m_B + m_R)^{-1}, \quad d_{R,\parallel} = \frac{(m_B + m_R)}{2}, \quad d_{R,t} = -m_R,$$

$$d_{R,\perp}^T = -d_{R,-}^T = 1, \quad d_{R,\parallel}^T = \frac{(m_B^2 - m_R^2)}{2}.$$

Narrow-width limit

Consider the sum rule with a single resonance R:

$$\mathcal{F}_{R,i}^{(T)}(q^2) d_{R,i}^{(T)} I_R(S_0, M^2) = \mathcal{P}_i^{(T),OPE}(q^2, \sigma_0, M^2)$$

$$I_{R}(s_{0}, M^{2}) = 3 m_{R} f_{R} \mathcal{B}(R \to K^{+} \pi^{-}) \int_{s_{th}}^{s_{0}} ds \, e^{-s/M^{2}} \frac{m_{R}}{\sqrt{s}} \left[\frac{1}{\pi} \frac{\sqrt{s} \Gamma_{R}(s)}{(m_{R}^{2} - s)^{2} + s \Gamma_{R}^{2}(s)} \right]$$

$$\frac{\Gamma_{R}^{\text{tot}} \to 0}{2} 3 m_{R} f_{R} \mathcal{B}(R \to K^{+} \pi^{-}) e^{-m_{R}^{2}/M^{2}}$$

$$\Rightarrow \quad 3\,m_R {\color{red}f_R}\, d_{R,i}^{(T)}\, {\color{blue}\mathcal{F}_{R,i}^{(T)}}(q^2)\, e^{-m_R^2/M^2}\, \mathcal{B}(R\to K^+\pi^-) = \mathcal{P}_i^{(T),\mathrm{OPE}}(q^2,\sigma_0,M^2)$$

This agrees with Khodjamirian, Mannel, Offen 2006

Finite-width effects

Consider the sum rule with a single K^* :

$$\mathcal{F}_{K^*,i}^{(T)}(q^2) d_{K^*,i}^{(T)} I_{K^*}(S_0,M^2) = \mathcal{P}_i^{(T),\mathrm{OPE}}(q^2,\sigma_0,M^2)$$

Define the "Width ratio" \mathcal{W}_{K^*} :

$$\mathcal{W}_{K^*} \equiv \frac{\mathcal{F}_{K^*,i}^{(T)}(q^2)}{\mathcal{F}_{K^*,i}^{(T)}(q^2)_{\mathrm{NWL}}} = \frac{I_{K^*}(s_0,M^2)\big|_{\Gamma_{K^*}\to 0}}{I_{K^*}(s_0,M^2)} = \frac{2m_{K^*}f_{K^*}e^{-m_{K^*}^2/M^2}}{I_{K^*}(s_0,M^2)}$$

- $\mathcal{W}_{\mathsf{K}^*}$ is independent of the form factor type
- \mathcal{W}_{K^*} is independent of q^2
- \Rightarrow BRs are corrected by $|\mathcal{W}_{K^*}|^2$, ratios are uncorrected! + true in q^2 bins.

Finite-width effects

$$W_{K^*} \simeq 1 + 1.9 \frac{\Gamma_{K^*}}{m_{K^*}}$$
 $W_{K^*} = 1.09 \pm 0.01$

 \Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$

Beyond the K*(892)

Consider the sum rule with $R = \{K^*(892), K^*(1410)\}$:

$$\sum_{R} \mathcal{F}_{R,i}^{(T)}(q^2) \ d_{R,i}^{(T)} \ I_{R}(s_0, M^2) = \mathcal{P}_{i}^{(T),OPE}(q^2, \sigma_0, M^2)$$

		$M^2=1.00{\rm GeV^2}$	$M^2=1.25{\rm GeV}^2$	$M^2=1.50\mathrm{GeV}^2$
Model 1	$I_{K^*(892)}$ $I_{K^*(1410)}$	0.1506(23) 0.0050(07)	0.1781(16) 0.0062(07)	0.1992(13) 0.0072(06)
Model 2	$I_{K^*(892)}$ $I_{K^*(1410)}$	0.1491(22) 0.0048(07)	0.1766(20) 0.0061(06)	0.1975(16) 0.0070(06)

Table 8: Values for the quantities I_R for $R = \{K^*(892), K^*(1410)\}$ for the different values of the Borel parameter M^2 and for the two models for the $K\pi$ form factor. The $K^*(1410)$ contribution is very suppressed in the sum rules, with $I_{K^*(1410)}/I_{K^*(892)} \simeq 0.03$ in all cases.

Beyond the *K**(892)

Set $\mathcal{F}_{\mathit{K*}\,(1410)} = \alpha\,\mathcal{F}_{\mathit{K*}\,(892)}$ with α a floating parameter

$$\alpha = 1$$
: $\mathcal{F}_{K^*,\perp}(0) = 0.28$; $\alpha = 10$: $\mathcal{F}_{K^*,\perp}(0) = 0.22$; $\alpha = 50$: $\mathcal{F}_{K^*,\perp}(0) = 0.11$.

Differential decay rate including S,P,D waves – – [$d\Omega = d\cos\theta_\ell\,d\cos\theta_K\,d\phi$]

$$\frac{d\Gamma}{dq^2dk^2d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \, \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2, k^2)$ have been measured by LHCb (arXiv: 1609.04736) in the bins

$$\sqrt{k^2} \in [1.33, 1.53] \text{GeV} , \quad q^2 \in [1.1, 6] \text{GeV}^2$$

Differential decay rate including S,P,D waves – – [$d\Omega = d\cos\theta_\ell d\cos\theta_K d\phi$]

$$\frac{d\Gamma}{dq^2dk^2d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \, \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2,k^2)$ have been measured by LHCb (arXiv: 1609.04736) in the bins

$$\sqrt{k^2} \in [1.33, 1.53] \text{GeV} , \quad q^2 \in [1.1, 6] \text{GeV}^2$$

Differential decay rate including S,P,D waves – – [$d\Omega = d\cos\theta_\ell\,d\cos\theta_K\,d\phi$]

$$\frac{d\Gamma}{dq^2dk^2d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2, k^2)$ depend on S, P, D-wave amplitudes:

i	$f_i(\Omega)$	$\Gamma_i^{L,{ m tr}}(q^2)/{f k}q^2$	$\eta_i^{L o R}$
1	$P_0^0 Y_0^0$	$\left[H_0^L ^2 + H_{\parallel}^L ^2 + H_{\perp}^L ^2 + S^L ^2 + D_0^L ^2 + D_{\parallel}^L ^2 + D_{\perp}^L ^2 ight]$	+1
2	$P_1^0 Y_0^0$	$2\left[rac{2}{\sqrt{5}}Re(H_0^LD_0^{L*}) + Re(S^LH_0^{L*}) + \sqrt{rac{3}{5}}Re(H_\parallel^LD_\parallel^{L*} + H_\perp^LD_\perp^{L*}) ight]$	+1
3	$P_2^0 Y_0^0$	$\frac{\sqrt{5}}{7} \left(D_{\parallel}^{L} ^{2} + D_{\perp}^{L} ^{2} \right) - \frac{1}{\sqrt{5}} \left(H_{\parallel}^{L} ^{2} + H_{\perp}^{L} ^{2} \right) + \frac{2}{\sqrt{5}} H_{0}^{L} ^{2} + \frac{10}{7\sqrt{5}} D_{0}^{L} ^{2} + 2 \operatorname{Re}(S^{L}D_{0}^{L*})$	+1
4	$P_3^0 Y_0^0$	$rac{6}{\sqrt{35}} \left[-Re(H_{\parallel}^L D_{\parallel}^{L*} + H_{\perp}^L D_{\perp}^{L*}) + \sqrt{3} Re(H_0^L D_0^{L*}) \right]$	+1
5	$P_4^0 Y_0^0$	$rac{2}{7}\left[-2(D_{\parallel}^{L} ^{2}+ D_{\perp}^{L} ^{2})+3 D_{0}^{L} ^{2} ight]$	+1
6	$P_0^0 Y_2^0$	$\tfrac{1}{2\sqrt{5}} \left[\left(D_{\parallel}^L ^2 + D_{\perp}^L ^2 \right) + \left(H_{\parallel}^L ^2 + H_{\perp}^L ^2 \right) - 2 S^L ^2 - 2 D_0^L ^2 - 2 H_0^L ^2 \right]$	+1
7	$P_1^0 Y_2^0$	$\left[rac{\sqrt{3}}{5}Re(H_{\parallel}^{L}D_{\parallel}^{L*}+H_{\perp}^{L}D_{\perp}^{L*})-rac{2}{\sqrt{5}}Re(S^{L}H_{0}^{L*})-rac{4}{5}Re(H_{0}^{L}D_{0}^{L*}) ight]$	+1
8	$P_2^0 Y_2^0$	$\left[\frac{1}{14} (D_{\parallel}^{L} ^{2} + D_{\perp}^{L} ^{2}) - \frac{2}{7} D_{0}^{L} ^{2} - \frac{1}{10} (H_{\parallel}^{L} ^{2} + H_{\perp}^{L} ^{2}) - \frac{2}{5} H_{0}^{L} ^{2} - \frac{2}{\sqrt{5}} Re(S^{L}D_{0}^{L*}) \right]$	+1
9	$P_3^0 Y_2^0$	$-rac{3}{5\sqrt{7}}\left[Re(H_{\parallel}^{L}D_{\parallel}^{L*}+H_{\perp}^{L}D_{\perp}^{L*})+2\sqrt{3}Re(H_{0}^{L}D_{0}^{L*}) ight]$	+1
10	$P_4^0 Y_2^0$	$-rac{2}{7\sqrt{5}}\left[D_{\parallel}^{L} ^{2}+ D_{\perp}^{L} ^{2}+3 D_{0}^{L} ^{2} ight]$	+1
11	$P_1^1 \sqrt{2} Re(Y_2^1)$	$-rac{3}{\sqrt{10}}\left[\sqrt{rac{2}{3}}Re(H_{\parallel}^{L}S^{L*})-\sqrt{rac{2}{15}}Re(H_{\parallel}^{L}D_{0}^{L*})+\sqrt{rac{2}{5}}Re(D_{\parallel}^{L}H_{0}^{L*}) ight]$	+1
12	$P_{2}^{1}\sqrt{2}Re(Y_{2}^{1})$	$-\frac{3}{\pi}\left[Re(H_{+}^{L}H_{0}^{L*})+\sqrt{\frac{5}{\pi}}Re(D_{+}^{L}S^{L*})+\frac{5}{-\pi}Re(D_{+}^{L}D_{0}^{L*})\right]$	+1

Combinations of moments depending only on P-wave:

$$\begin{aligned} |\widehat{A}_{\parallel}^{L}|^{2} + |\widehat{A}_{\parallel}^{R}|^{2} &= \frac{1}{36} (5\widetilde{\Gamma}_{1} - 7\sqrt{5}\widetilde{\Gamma}_{3} + 5\sqrt{5}\widetilde{\Gamma}_{6} - 35\widetilde{\Gamma}_{8} - 5\sqrt{15}\widetilde{\Gamma}_{19} + 35\sqrt{3}\widetilde{\Gamma}_{21}) \\ |\widehat{A}_{\perp}^{L}|^{2} + |\widehat{A}_{\perp}^{R}|^{2} &= \frac{1}{36} (5\widetilde{\Gamma}_{1} - 7\sqrt{5}\widetilde{\Gamma}_{3} + 5\sqrt{5}\widetilde{\Gamma}_{6} - 35\widetilde{\Gamma}_{8} + 5\sqrt{15}\widetilde{\Gamma}_{19} - 35\sqrt{3}\widetilde{\Gamma}_{21}) \\ \operatorname{Im}(\widehat{A}_{\perp}^{L}\widehat{A}_{\parallel}^{L*} + \widehat{A}_{\perp}^{R}\widehat{A}_{\parallel}^{R*}) &= \frac{5}{36} (\sqrt{15}\widetilde{\Gamma}_{24} - 7\sqrt{3}\widetilde{\Gamma}_{26}) \\ \operatorname{Re}(\widehat{A}_{\perp}^{L}\widehat{A}_{\parallel}^{L*} - \widehat{A}_{\perp}^{R}\widehat{A}_{\parallel}^{R*}) &= \frac{1}{36} (-5\sqrt{3}\widetilde{\Gamma}_{29} + 7\sqrt{15}\widetilde{\Gamma}_{31}) \end{aligned}$$

Binned LHCb results (arXiv: 1609.04736) imply:

$$\begin{split} \tau_{B} \, \langle |\widehat{A}_{\parallel}^{L}|^{2} + |\widehat{A}_{\parallel}^{R}|^{2} \rangle & \equiv & \langle M_{\parallel} \rangle = (1.07 \pm 1.13) \times 10^{-8} \\ \tau_{B} \, \langle |\widehat{A}_{\perp}^{L}|^{2} + |\widehat{A}_{\perp}^{R}|^{2} \rangle & \equiv & \langle M_{\perp} \rangle = (0.94 \pm 1.06) \times 10^{-8} \\ \tau_{B} \, \langle \mathrm{Im} (\widehat{A}_{\perp}^{L} \widehat{A}_{\parallel}^{L*} + \widehat{A}_{\perp}^{R} \widehat{A}_{\parallel}^{R*}) \rangle & \equiv & \langle M_{\mathrm{im}} \rangle = (-0.75 \pm 0.79) \times 10^{-8} \\ \tau_{B} \, \langle \mathrm{Re} (\widehat{A}_{\perp}^{L} \widehat{A}_{\parallel}^{L*} - \widehat{A}_{\perp}^{R} \widehat{A}_{\parallel}^{R*}) \rangle & \equiv & \langle M_{\mathrm{re}} \rangle = (0.27 \pm 0.50) \times 10^{-8} \end{split}$$

Example: $\langle M_{\parallel} \rangle$:

Bounds: From $\langle M_{\parallel} \rangle$: $\alpha \lesssim$ 11; From $\langle M_{\perp} \rangle$: $\alpha \lesssim$ 17; From $\langle M_{\rm re} \rangle$: $\alpha \lesssim$ 18.

Upper bounds on P-wave from differential BR:

$$\frac{d\Gamma}{da^2dk^2} = \widetilde{\Gamma}_1 = |\widehat{A}_{\parallel}^L|^2 + |\widehat{A}_{\parallel}^R|^2 + |\widehat{A}_{\perp}^L|^2 + |\widehat{A}_{\perp}^R|^2 + |\widehat{A}_{0}^L|^2 + |\widehat{A}_{0}^R|^2 + \dots$$

$$\begin{array}{lll} 10^8 \cdot \langle \mathcal{B} \rangle_{[0.10,0.98]} & = & 1.41 \pm 0.27 \rightarrow \alpha \lesssim 5 \\ 10^8 \cdot \langle \mathcal{B} \rangle_{[1.10,2.50]} & = & 1.60 \pm 0.29 \rightarrow \alpha \lesssim 6 \\ 10^8 \cdot \langle \mathcal{B} \rangle_{[2.50,4.00]} & = & 1.37 \pm 0.26 \rightarrow \alpha \lesssim 5 \\ 10^8 \cdot \langle \mathcal{B} \rangle_{[4.00,6.00]} & = & 1.12 \pm 0.26 \rightarrow \alpha \lesssim 4 \\ 10^8 \cdot \langle \mathcal{B} \rangle_{[6.00,8.00]} & = & 0.98 \pm 0.23 \rightarrow \alpha \lesssim 3 \end{array}$$

Bounds are easily improved with some info on S-wave form factors.

Summary

- · Absolutely no excuse to do the transition $K^* \to K\pi$ in your life
- Recalculation of all $B \to K^*$ form factors from LCSRs with B-DAs with twist-4 accuracy
- Finite-Width effects are 20% at the level of BRs, universal and q^2 -independent \Rightarrow Global factor 1.2 in BRs; but ratios (e.g. P'_5 unaffected.)
- Higher resonance effects can have dramatic effect on $B \to K^*$. High mass BRs and Moments very efficient to bound this possibility
- Measurements of angular moments in bins across the q² and k² spectra ⇒ very useful

Thank You

Extra

Form Factor	This work	Ref. [12]	Ref. [24]	Ref. [15]	Ref. [17]
$\mathcal{F}_{K^*,\perp}(0) = V^{BK^*}(0)$	0.26(15)	0.39(11)	0.36(18)	0.32(11)	0.34(4)
$\mathcal{F}_{K^*,\parallel}(0) = A_1^{BK^*}(0)$	0.20(12)	0.30(8)	0.25(13)	0.26(8)	0.27(3)
$\mathcal{F}_{K^*,-}(0) = A_2^{BK^*}(0)$	0.14(13)	0.26(8)	0.23(15)	0.24(9)	0.23(5)
$\mathcal{F}_{K^*,t}(0) = A_0^{BK^*}(0)$	0.30(7)	-	0.29(8)	0.31(7)	0.36(5)
$\mathcal{F}_{K^*,\perp}^T(0) = T_1^{BK^*}(0)$	0.22(13)	0.33(10)	0.31(14)	0.29(10)	0.28(3)
$\mathcal{F}_{K^*,\parallel}^T(0) = T_2^{BK^*}(0)$	0.22(13)	0.33(10)	0.31(14)	0.29(10)	0.28(3)
$\mathcal{F}_{K^*,-}^T(0) = T_3^{BK^*}(0)$	0.13(12)	-	0.22(14)	0.20(8)	0.18(3)

Table 6: Results for the form factors at $q^2 = 0$ in the narrow-width limit, compared to corresponding results in the literature. The approach in Ref. [17] is a completely different LCSR approach, in terms of K^* DAs.

$\mathcal{F}^{BK^*}(q^2=0)$	V^{BK^*}	$A_1^{BK^*}$	$A_2^{BK^*}$	$A_0^{BK^*}$	$T_{1,2}^{BK^*}$	$T_3^{BK^*}$
Ref. [12]	0.39	0.30	0.26	_	0.33	_
Inputs [12], no g_+	0.38	0.29	0.26	0.31	0.33	0.25
Inputs [12], with g_+	0.27	0.21	0.14	0.31	0.24	0.14
Our inputs, but $s_0 = 1.7 \mathrm{GeV}^2$	0.33	0.26	0.17	0.38	0.29	0.17
Our inputs, our s_0 , no g_+	0.36	0.28	0.25	0.30	0.31	0.23
Our inputs, our s_0 , with g_+	0.26	0.20	0.14	0.30	0.22	0.13

Table 7: Deconstruction of the different effects explaining the difference between our results for the form factors at $q^2=0$ and those in Ref. [12]. The difference stems mainly from the inclusion of the twist-four two-particle contributions. See the text for more details.

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006

Consider a correlation function of the type:

$$\mathcal{P}_{ab}(k,q) = i \int d^4x \, e^{ik \cdot x} \langle 0 | \mathrm{T}\{j_a(x), j_b(0)\} | \bar{B}^0(q+k) \rangle$$

which obeys a dispersion relation:

$$\mathcal{P}_{ab}^{\mathsf{OPE}}(k^2, q^2) = \frac{1}{\pi} \int_{s_{\mathsf{th}}}^{\infty} ds \, \frac{\mathrm{Im} \mathcal{P}_{ab}(s, q^2)}{s - k^2}$$

Duality + Borel transformation:

$$\frac{1}{\pi} \int_{s}^{s_0} ds \, e^{-s/M^2} \, \mathrm{Im} \mathcal{P}_{ab}(s, q^2) = \mathcal{P}_{ab}^{OPE}(q^2, \sigma_0, M^2) \,,$$

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006

From Unitarity:

$$2\operatorname{Im}\mathcal{P}_{ab}(k,q) = \sum_{h} \int d\tau_{h} \langle 0|j_{a}|h(k)\rangle \underbrace{\langle h(k)|j_{b}|\bar{B}^{0}(q+k)\rangle}_{\text{form factor}}$$

▶ Traditionally,

$$h(k) = \mathit{K}^* + continuum \quad \Rightarrow \quad 2\operatorname{Im}\mathcal{P}_{ab}(k,q) \sim f_{\mathit{K}}^* \, F^{\mathit{BK}*} \delta(k^2 - m_{\mathit{K}^*}) + \cdots$$

▶ Generalization for unstable mesons cheng, Khodjamirian, Virto 2017

$$h(k) = K\pi + \cdots$$

LCSRs with *B*-meson DAs, natural for this generalization.