

Hunting τ -loops in $B^+ \to K^+ \mu^+ \mu^-$

Matthias KönigPhysik-Institut
Universität Zürich

"Implications of LHCb Measurements" CERN, Oct 16, 2019

Anomalies in semileptonic B-decays:

$$B \to K \mu^+ \mu^-$$
 FCNC (\to loop level) process in the Standard Model

$$b > \gamma s$$

$$\mu \qquad \mu$$

Anomalies in semileptonic B-decays:

$$B\to K\mu^+\mu^ \;$$
 FCNC (\to loop level) process in the Standard Model

$$\gamma$$
 s μ

$$B \to D \tau \nu$$

Charged current (\rightarrow tree level) process in the Standard Model

Anomalies in semileptonic B-decays:

$$B\to K\mu^+\mu^ $$
 FCNC (\to loop level) process in the Standard Model

$$\gamma$$
 s

$$\underline{B\to D\tau\nu}$$

Charged current (\rightarrow tree level) process in the Standard Model

New physics

explanations favor NP mostly in the **third generation**, possible connection to the SM flavor puzzle! \rightarrow large effects in τ , smaller effects in μ

In these cases, one expects large effects from τ in $B \to K$ as well!

What's the situation on $b \to s \tau \tau$?

In these cases, one expects large effects from τ in $B \to K$ as well!

What's the situation on $b \to s\tau\tau$?

■ $B \to K \tau^+ \tau^-$ experimentally **challenging**:

$$Br(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \cdot 10^{-3}$$

 $Br_{SM}(B^+ \to K^+ \tau^+ \tau^-) = 1.2 \cdot 10^{-7}$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

In these cases, one expects large effects from τ in $B \to K$ as well!

What's the situation on $b \to s\tau\tau$?

■ $B \to K \tau^+ \tau^-$ experimentally **challenging**:

$$Br(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \cdot 10^{-3}$$

 $Br_{SM}(B^+ \to K^+ \tau^+ \tau^-) = 1.2 \cdot 10^{-7}$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

■ $B_s \to \tau^+ \tau^-$ likewise:

$$Br(B_s \to \tau^+ \tau^-) < 6.8 \cdot 10^{-3}$$

 $Br_{SM}(B_s \to \tau^+ \tau^-) = 7.73 \cdot 10^{-7}$

[LHCb (2017), Phys.Rev.Lett. 118 no.25, 251802]

In these cases, one expects large effects from τ in $B \to K$ as well!

What's the situation on $b \to s\tau\tau$?

■ $B \to K \tau^+ \tau^-$ experimentally **challenging**:

$${\rm Br}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \cdot 10^{-3}$$

 ${\rm Br}_{\rm SM}(B^+ \to K^+ \tau^+ \tau^-) = 1.2 \cdot 10^{-7}$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

■ $B_s \to \tau^+ \tau^-$ likewise:

Br(
$$B_s \to \tau^+ \tau^-$$
) < 6.8 · 10⁻³
Br_{SM}($B_s \to \tau^+ \tau^-$) = 7.73 · 10⁻⁷

[LHCb (2017), Phys.Rev.Lett. 118 no.25, 251802]

There is a **lot** of room for **new physics**!

In these cases, one expects large effects from τ in $B \to K$ as well!

What's the situation on $b \to s\tau\tau$?

■ $B \to K \tau^+ \tau^-$ experimentally **challenging**:

$${\rm Br}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \cdot 10^{-3} {\rm Br}_{\rm SM}(B^+ \to K^+ \tau^+ \tau^-) = 1.2 \cdot 10^{-7}$$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

■ $B_s \to \tau^+ \tau^-$ likewise:

Br(
$$B_s \to \tau^+ \tau^-$$
) < 6.8 · 10⁻³
Br_{SM}($B_s \to \tau^+ \tau^-$) = 7.73 · 10⁻⁷

[LHCb (2017), Phys.Rev.Lett. 118 no.25, 251802]

There is a **lot** of room for **new physics**!

Also: **Lots of data** on $b \rightarrow s\mu\mu$!

Idea: Can we probe $b \to s \tau \tau$ through its **loop-contribution** to the $b \to s \mu \mu$ spectrum?

Idea: Can we probe $b\to s\tau\tau$ through its **loop-contribution** to the $b\to s\mu\mu$ spectrum?

Electroweak loop, but **large enhancements** motivated by NP and allowed by current bounds!

Idea: Can we probe $b \to s \tau \tau$ through its **loop-contribution** to the $b \to s \mu \mu$ spectrum?

Electroweak loop, but **large enhancements** motivated by NP and allowed by current bounds!

Based on:

Hunting for $B \to K \tau^+ \tau^-$ imprints on the $B \to K \mu^+ \mu^-$ dimuon spectrum C. Cornella, G. Isidori, MK, S. Liechti, P. Owen, N. Serra

[in preparation]

Outline

- **1** EFT description of $B \to K\ell\ell$
- 2 Long-distance hadronic effects
- τ -loops in $b \to s\mu\mu$
- 4 Sensitivity and future projections
- 5 Conclusions

EFT description of $B \to K\ell\ell$

Weak effective Lagrangian: $\mathcal{L}_{\mathrm{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i(\mu) \mathcal{O}_i$

FCNC operators:

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}$$

$$\mathcal{O}_9^l = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{l}\gamma^\mu l)$$

$$b$$
 γ s l

 $\mathcal{O}_{10}^l = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{l}\gamma^\mu \gamma_5 l)$

Weak effective Lagrangian: $\mathcal{L}_{\mathrm{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i(\mu) \mathcal{O}_i$

FCNC operators:

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}$$

$$\mathcal{O}_9^l = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{l}\gamma^\mu l)$$

Four-quark operators:

$$\mathcal{O}_1^q = (\bar{s}\gamma_\mu P_L q)(\bar{q}\gamma_\mu P_L b)$$

$$\mathcal{O}_2^q = (\bar{s}^\alpha \gamma_\mu P_L q^\beta)(\bar{q}^\beta \gamma_\mu P_L b^\alpha)$$

 $\mathcal{O}_{10}^l = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{l}\gamma^\mu \gamma_5 l)$

Differential decay rate:

$$\frac{d\Gamma}{dq^2} = \frac{\alpha_{\rm em}^2 G_F^2 |V_{tb}V_{ts}^*|^2}{128 \pi^5} \kappa \beta \left\{ \frac{2}{3} \kappa^2 \beta^2 \left| \mathcal{C}_{10}^{\mu} f_+(q^2) \right|^2 + \frac{4m_{\mu}^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10}^{\mu} f_0(q^2) \right|^2 + \kappa^2 \left(1 - \frac{1}{3} \beta \right) \left| \mathcal{C}_9^{\mu} f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\},$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $C_i(\mu)$
- Hadronic matrix elements: form factors $f_i(q^2)$

Differential decay rate:

$$\frac{d\Gamma}{dq^2} = \frac{\alpha_{\rm em}^2 G_F^2 |V_{tb} V_{ts}^*|^2}{128 \pi^5} \kappa \beta \left\{ \frac{2}{3} \kappa^2 \beta^2 \left| \mathcal{C}_{10}^{\mu} f_+(q^2) \right|^2 + \frac{4m_{\mu}^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10}^{\mu} f_0(q^2) \right|^2 + \kappa^2 \left(1 - \frac{1}{3} \beta \right) \left| \mathcal{C}_9^{\mu} f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\},$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $C_i(\mu)$
- Hadronic matrix elements: form factors $f_i(q^2)$

Real world more complicated than that. Introduce:

$$C_9^{\mu} \to C_9^{\text{eff}}(q^2) = C_9^{\mu} + Y_i(q^2)$$

Differential decay rate:

$$\frac{d\Gamma}{dq^2} = \frac{\alpha_{\rm em}^2 G_F^2 |V_{tb} V_{ts}^*|^2}{128 \pi^5} \kappa \beta \left\{ \frac{2}{3} \kappa^2 \beta^2 \left| \mathcal{C}_{10}^{\mu} f_+(q^2) \right|^2 + \frac{4m_{\mu}^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10}^{\mu} f_0(q^2) \right|^2 + \kappa^2 \left(1 - \frac{1}{3} \beta \right) \left| \mathcal{C}_9^{\mu} f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\},$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $C_i(\mu)$
- Hadronic matrix elements: form factors $f_i(q^2)$

Real world more complicated than that. Introduce:

$$\mathcal{C}_9^\mu \to \mathcal{C}_9^{\mathrm{eff}}(q^2) = \mathcal{C}_9^\mu + Y_i(q^2)$$
 short-distance SM/NP

Differential decay rate:

$$\frac{d\Gamma}{dq^2} = \frac{\alpha_{\rm em}^2 G_F^2 |V_{tb} V_{ts}^*|^2}{128 \pi^5} \kappa \beta \left\{ \frac{2}{3} \kappa^2 \beta^2 \left| \mathcal{C}_{10}^{\mu} f_+(q^2) \right|^2 + \frac{4m_{\mu}^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10}^{\mu} f_0(q^2) \right|^2 + \kappa^2 \left(1 - \frac{1}{3} \beta \right) \left| \mathcal{C}_{9}^{\mu} f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\},$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $C_i(\mu)$
- Hadronic matrix elements: form factors $f_i(q^2)$

Real world more complicated than that. Introduce:

$$\mathcal{C}_9^\mu \to \mathcal{C}_9^{\mathrm{eff}}(q^2) = \mathcal{C}_9^\mu + Y_i(q^2)$$
 short-distance SM/NP

Leave it to QCD to make live interesting:

Depending on q^2 , the intermediate state live at **non-perturbative** scales \Rightarrow Hadronic intermediate states rather than quarks.

Leave it to QCD to make live interesting:

Depending on q^2 , the intermediate state live at **non-perturbative** scales

 \Rightarrow Hadronic intermediate states rather than quarks.

To extract bounds on a q^2 -dependent signal, we need to ${\bf understand}\ {\bf the}$ ${\bf shape}$ of the SM spectrum.

Leave it to QCD to make live interesting:

Depending on q^2 , the intermediate state live at **non-perturbative** scales

 \Rightarrow Hadronic intermediate states rather than quarks.

To extract bounds on a q^2 -dependent signal, we need to **understand the shape** of the SM spectrum.

Not a straightforward computation by first principles.

The way around: Find a region in q^2 , where the intermediate state is **dominated by short-distance** physics.

The way around: Find a region in q^2 , where the intermediate state is **dominated by short-distance** physics.

Example: Charm-quark loop at $q^2 \sim 0$

Charm quarks hard $(k^2 \sim m_c^2)$

Can compute QCD corrections using the established bag of tricks

 $(factorizable/non-factorizable\ corrections,\ ...)$

The way around: Find a region in q^2 , where the intermediate state is **dominated by short-distance** physics.

Example: Charm-quark loop at $q^2 \sim 0$

Charm quarks hard $(k^2 \sim m_c^2)$

Can compute QCD corrections using the established bag of tricks

 $(factorizable/non-factorizable\ corrections,\ ...)$

Then: Extrapolate to high- q^2 region using analyticity of amplitude.

[Khodjamirian et al. (2010), JHEP 1009 089; Khodjamirian et al. (2013), JHEP 1302 010]

Charm loops - resonances

Leading contribution: Intermediate charmonium resonances.

Charm loops - resonances

Leading contribution: Intermediate charmonium resonances.

The q^2 -dependence is described by a relativistic Breit-Wigner.

$$\Delta Y_{c\bar{c}}^{1P}(s) = \eta_V e^{i\delta_V} \frac{s}{m_V^2} \frac{m_V \Gamma_V}{s - m_V^2 + i m_V \Gamma_V}$$

[Lyon & Zwicky (2014); LHCb (2017), Eur.Phys.J. C77 161]

Two-particle intermediate states:

Two-particle intermediate states:

 q^2 dependence through subtracted hadronic dispersion relation:

$$\Delta Y_{c\bar{c}}^{\rm 2P}(s) = \frac{s}{\pi} \sum_{V} \int_{\tau_{V}}^{\infty} \frac{d\tilde{s}}{\tilde{s}} \, \frac{\rho_{V}(\tilde{s})}{\tilde{s} - s}$$

$$V \in \{DD, D^*D, D^*D^*\}$$

[Khodjamirian et al. (2010), JHEP 1009 089; Khodjamirian et al. (2013), JHEP 1302 010]

Two-particle intermediate states:

 q^2 dependence through subtracted hadronic dispersion relation:

$$\Delta Y_{c\bar{c}}^{\rm 2P}(s) = \frac{s}{\pi} \sum_{V} \int_{\tau_{V}}^{\infty} \frac{d\tilde{s}}{\tilde{s}} \, \frac{\rho_{V}(\tilde{s})}{\tilde{s} - s}$$

$$V \in \{DD, D^*D, D^*D^*\}$$

[Khodjamirian et al. (2010), JHEP 1009 089; Khodjamirian et al. (2013), JHEP 1302 010]

What are the various $\rho_V(s)$? \rightarrow estimate!

First-principle calculation of the spectral densities $\rho_V(s)$ not viable.

First-principle calculation of the spectral densities $\rho_V(s)$ not viable.

ightarrow Can estimate $ho_V(s)$ from $VV'
ightarrow \mu\mu$ using helicity arguments.

First-principle calculation of the spectral densities $\rho_V(s)$ not viable.

 \rightarrow Can estimate $\rho_V(s)$ from $VV' \rightarrow \mu\mu$ using helicity arguments.

From this we find: $\rho_V = \sum_n c_n^V \beta^n (4m_V^2/s)$, $\beta(\tau) = \sqrt{1-\tau}$

First-principle calculation of the spectral densities $\rho_V(s)$ not viable.

 \rightarrow Can estimate $\rho_V(s)$ from $VV' \rightarrow \mu\mu$ using helicity arguments.

From this we find:
$$\rho_V = \sum_n c_n^V \beta^n (4m_V^2/s)$$
, $\beta(\tau) = \sqrt{1-\tau}$

Keeping only the **leading** partial waves:

$$\rho_{DD} = \left(1 - \frac{4m_D^2}{s}\right)^{3/2} \quad \rho_{DD^*} = \left(1 - \frac{4m_{DD^*}^2}{s}\right)^{1/2} \quad \rho_{D^*D^*} = \left(1 - \frac{4m_D^{*2}}{s}\right)^{3/2}$$

Charm loops - two-particle states

$$\rho_{DD} = \left(1 - \frac{4m_D^2}{s}\right)^{3/2} \quad \rho_{DD^*} = \left(1 - \frac{4m_{DD^*}^2}{s}\right)^{1/2} \quad \rho_{D^*D^*} = \left(1 - \frac{4m_D^{*2}}{s}\right)^{3/2}$$

Light resonances

While the **charm-contributions** are the largest ones, light quarks still need to be accounted for.

Light resonances

While the **charm-contributions** are the largest ones, light quarks still need to be accounted for.

They are strongly CKM-suppressed with respect to the leading charm.

ightarrow We limit ourselves to single-particle contributions.

Light resonances

While the **charm-contributions** are the largest ones, light quarks still need to be accounted for.

They are strongly CKM-suppressed with respect to the leading charm.

ightarrow We limit ourselves to single-particle contributions.

$$Y_{ ext{light}}^{1P}(s) = \sum_{V} \eta_{V} e^{i\delta_{V}} \frac{m_{V} \Gamma_{V}}{s - m_{V}^{2} + i m_{V} \Gamma_{V}}$$

with
$$V = \rho, \omega, \phi$$
.

In our approach, we only fix the q^2 -shape of the contributions.

In our approach, we only fix the q^2 -shape of the contributions.

 $\label{eq:magnitudes} \mbox{Magnitudes and phases are floating parameters in the fit.}$

In our approach, we only fix the q^2 -shape of the contributions.

Magnitudes and phases are floating parameters in the fit.

The hadronic long-distance contributions are written as:

$$Y_{\text{hadr}}(s) = \Delta Y_{c\bar{c}}^{1P}(s) + \Delta Y_{c\bar{c}}^{2P}(s) + Y_{\text{light}}^{1P}(s)$$

All $\Delta Y_{c\overline{c}}^{i}(0) = 0$ by construction!

In our approach, we only fix the q^2 -shape of the contributions.

Magnitudes and phases are floating parameters in the fit.

The hadronic long-distance contributions are written as:

$$Y_{\text{hadr}}(s) = \Delta Y_{c\bar{c}}^{1P}(s) + \Delta Y_{c\bar{c}}^{2P}(s) + Y_{\text{light}}^{1P}(s)$$

All $\Delta Y_{c\bar{c}}^i(0) = 0$ by construction!

We can constrain our fit by requiring $\Delta Y^i_{c\bar{c}}(0)$ to be close to the perturbative result.

At low q^2 , the slope of the **perturbative** charm contribution is:

$$\left. \frac{d}{dq^2} \Delta Y_{c\bar{c}}^{\text{pert}} \right|_{q^2 = 0} = \frac{4}{15m_c^2} \left(C_2 + \frac{1}{3}C_1 \right) \approx (1.7 \pm 1.7) \cdot 10^{-2} \,\text{GeV}^{-2}$$

At low q^2 , the slope of the **perturbative** charm contribution is:

$$\left. \frac{d}{dq^2} \Delta Y_{c\bar{c}}^{\text{pert}} \right|_{q^2 = 0} = \frac{4}{15m_c^2} \left(C_2 + \frac{1}{3}C_1 \right) \approx (1.7 \pm 1.7) \cdot 10^{-2} \,\text{GeV}^{-2}$$

This yields the following set of constraints:

$$\operatorname{Re}\left[\sum_{j=\Psi(1S),\dots} \eta_{j} e^{i\delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}} + \eta_{\bar{D}} e^{i\delta_{j}} \frac{1}{6m_{\bar{D}}^{2}} + \sum_{j=D,D^{*}} \eta_{j} e^{i\delta_{j}} \frac{1}{10m_{j}^{2}}\right] = (1.7 \pm 2.2) \cdot 10^{-2} \,\operatorname{GeV}^{-2}$$

$$\left|\sum_{j=\Psi(1S),\dots} \eta_{j} e^{i\delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}} + \eta_{\bar{D}} e^{i\delta_{j}} \frac{1}{6m_{\bar{D}}^{2}} + \sum_{j=D,D^{*}} \eta_{j} e^{i\delta_{j}} \frac{1}{10m_{j}^{2}}\right| \leq 5 \cdot 10^{-2} \,\operatorname{GeV}^{-2}$$

At low q^2 , the slope of the **perturbative** charm contribution is:

$$\left. \frac{d}{dq^2} \Delta Y_{c\bar{c}}^{\rm pert} \right|_{q^2 = 0} = \frac{4}{15m_c^2} \left(\mathcal{C}_2 + \frac{1}{3} \mathcal{C}_1 \right) \approx (1.7 \pm 1.7) \cdot 10^{-2} \,\text{GeV}^{-2}$$

This yields the following set of constraints:

$$\operatorname{Re}\left[\sum_{j=\Psi(1S),\dots} \eta_{j}e^{i\delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}} + \eta_{\bar{D}}e^{i\delta_{j}} \frac{1}{6m_{\bar{D}}^{2}} + \sum_{j=D,D^{*}} \eta_{j}e^{i\delta_{j}} \frac{1}{10m_{j}^{2}}\right] = (1.7 \pm 2.2) \cdot 10^{-2} \text{ GeV}^{-2}$$

$$\left|\sum_{j=\Psi(1S),\dots} \eta_{j}e^{i\delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}} + \eta_{\bar{D}}e^{i\delta_{j}} \frac{1}{6m_{\bar{D}}^{2}} + \sum_{j=D,D^{*}} \eta_{j}e^{i\delta_{j}} \frac{1}{10m_{j}^{2}}\right| \leq 5 \cdot 10^{-2} \text{ GeV}^{-2}$$

Similarly, we can put an upper limit on the η from ΔY directly:

$$\left|\eta_{D,D^*,\bar{D}}\right| \leq 0.2 \, .$$

 τ -loops in $b \to s \mu \mu$

The au loops enter as a contribution to $C_9^{\rm eff}(q^2)$:

$$Y_{\tau\bar{\tau}}(q^2) = -\frac{\alpha}{2\pi} C_9^{\tau} \left[h_s \left(m_{\tau}^2, q^2 \right) - \frac{1}{3} h_p \left(m_{\tau}^2, q^2 \right) \right]$$

Intriguing channel because:

lacktriangle It has an s-wave contribution o large

The τ loops enter as a contribution to $C_{\alpha}^{\text{eff}}(q^2)$:

$$Y_{\tau\bar{\tau}}(q^2) = -\frac{\alpha}{2\pi} C_9^{\tau} \left[h_s \left(m_{\tau}^2, q^2 \right) - \frac{1}{3} h_p \left(m_{\tau}^2, q^2 \right) \right]$$

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies

The τ loops enter as a contribution to $C_{\alpha}^{\text{eff}}(q^2)$:

$$Y_{\tau\bar{\tau}}(q^2) = -\frac{\alpha}{2\pi} C_9^{\tau} \left[h_s \left(m_{\tau}^2, q^2 \right) - \frac{1}{3} h_p \left(m_{\tau}^2, q^2 \right) \right]$$

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies
- Current direct bounds are rather weak, implying $C_{\rm o}^{\tau} \lesssim 580$

The τ loops enter as a contribution to $C_{\alpha}^{\text{eff}}(q^2)$:

$$Y_{\tau\bar{\tau}}(q^2) = -\frac{\alpha}{2\pi} C_9^{\tau} \left[h_s \left(m_{\tau}^2, q^2 \right) - \frac{1}{3} h_p \left(m_{\tau}^2, q^2 \right) \right]$$

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies
- Current direct bounds are rather weak, implying $C_0^{\tau} \lesssim 580$
- Very distinct shape of the spectrum, with a "cusp" at $q^2=4m_{\pi}^2$

The au loops enter as a contribution to $C_9^{\rm eff}(q^2)$:

$$Y_{\tau\bar{\tau}}(q^2) = -\frac{\alpha}{2\pi} C_9^{\tau} \left[h_s \left(m_{\tau}^2, q^2 \right) - \frac{1}{3} h_p \left(m_{\tau}^2, q^2 \right) \right]$$

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies
- $lue{}$ Current direct bounds are rather weak, implying $\mathcal{C}_9^ au \lesssim 580$
- \blacksquare Very distinct shape of the spectrum, with a "cusp" at $q^2=4m_\tau^2$
- Again: LHCb has **lots** of data on $B \to K\mu\mu$!

With the amount of data LHCb has, we can find a bound competitive to the current one!

Preliminary sensitivity:

Preliminary sensitivity:

$$Br(B^+ \to K^+ \tau^+ \tau^-) \lesssim 2.3 \cdot 10^{-3} @ 95\%CL$$

using $9~{\rm fb}^{-1}$ of pseudodata (40k events after cutting resonances).

Preliminary sensitivity:

$$Br(B^+ \to K^+ \tau^+ \tau^-) \lesssim 2.3 \cdot 10^{-3} @ 95\%CL$$

using $9~{\rm fb}^{-1}$ of pseudodata (40k events after cutting resonances).

Numbers preliminary! Full fit with resonance parameters (η_i, δ_i) can look different!

Preliminary sensitivity:

$${\rm Br}(B^+ \to K^+ \tau^+ \tau^-) \lesssim 2.3 \cdot 10^{-3} \ @ 95\%{\rm CL}$$

using $9~{
m fb}^{-1}$ of pseudodata (40k events after cutting resonances).

Numbers preliminary! Full fit with resonance parameters (η_i, δ_i) can look different!

Equivalent to the bound from BaBar, to improve with higher statistics.

■ If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a **distinct distortion** of the q^2 spectrum, with a cusp nicely set between the ψ and ψ' resonances!

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a **distinct distortion** of the q^2 spectrum, with a cusp nicely set between the ψ and ψ' resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a **distinct distortion** of the q^2 spectrum, with a cusp nicely set between the ψ and ψ' resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- We fix the q^2 -shape of the contributions. Magnitudes and phases are floating parameters in the fit.

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a **distinct distortion** of the q^2 spectrum, with a cusp nicely set between the ψ and ψ' resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- $lue{}$ We fix the q^2 -shape of the contributions. Magnitudes and phases are floating parameters in the fit.
- Bound competitive with $B \to K \tau \tau!$

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a **distinct distortion** of the q^2 spectrum, with a cusp nicely set between the ψ and ψ' resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- We fix the q^2 -shape of the contributions. Magnitudes and phases are floating parameters in the fit.
- Bound competitive with $B \to K \tau \tau!$
- Future perspective: Bound will tighten with more statistics, better hadronic form factors.

- If the anomalies in semileptonic B decays hold any water, $B \to K \tau \tau$ should exhibit a large enhancement.
- Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- lacksquare Tau loops lead to a **distinct distortion** of the q^2 spectrum, with a

Thank you for your attention!

- are floating parameters in the fit.
- Bound competitive with $B \to K \tau \tau!$
- Future perspective: Bound will tighten with more statistics, better hadronic form factors.

Bonus slides