V_{cb} and form factors in $B ightarrow D^{(*)} \ell u$

Martin Jung

Talk at the workshop "Implications of LHCb measurements and future prospects" 17th of October 2019

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, \mathrm{FF}^2$
- Determination of $|V_{ij}|$ (7/9)

Beyond the Standard Model:

- Leptonic decays ~ m_l²
 ▶ large relative NP influence possible (e.g. H[±])
- NP in semi-leptonic decays small/moderate
 Need to understand the SM very precisely!
 e.g. radiative corrections [see R. Szafron's talk]

Key advantages:

- Large rates
- Minimal hadronic input \Rightarrow systematically improvable
- Differential distributions ⇒ large set of observables

Lepton-non-Universality in $b \rightarrow c \tau \nu$ 2019

- *R*(*D*^(*)): BaBar, Belle, LHCb
 ▶ average 3.xσ from SM
- Other $b \rightarrow c$ observables:
 - ▶ largely SM-like (R(J/ψ) large even w/ NP)
- *R*(*K*^(*)): ~ 4σ from SM
 ▶ between light leptons
- $b
 ightarrow s\ell\ell$ global fit: $\sim 5\sigma$

∼ 15% of a SM tree decay ~ V_{cb}: This is a huge effect!
 Need contribution of ~ 5 - 10% (w/ interference) or ≥ 40% (w/o interference) of SM

Check SM prediction (main topic of this talk)

NP analyses [talks by D.Guadagnoli,O.Sumensari,Soni,M.König,A.Peñuelas]
 Require form factors independent of data!

Form factor parametrizations

FFs central non-perturbative input in semileptonic decays, e.g.

$$\langle D(p_D)|\bar{c}\gamma^{\mu}b|\bar{B}(p_B)\rangle = f_{+}(q^2)\left[(p_B^{\mu}+p_D^{\mu})-\frac{M_B^2-M_D^2}{q^2}q^{\mu}\right] + f_{0}(q^2)\frac{M_B^2-M_D^2}{q^2}q^{\mu}$$

"BGL parametrization":

- Analytic structure: account for cuts and poles explicitly
 remainder can be expanded in simple power series in z
- Use quark-hadron-duality (+crossing sym., unitarity)
 Absolute bounds on coefficients, rapid convergence
 Efficient expansion of individual FFs with few coefficients

"HQE parametrization" (\rightarrow CLN)

Exploit heavy-quark spin-flavour symmetry for m_{b,c} → ∞
 All B^(*) → D^(*) FFs given by Isgur-Wise function ξ(z)

Systematic expansion in $1/m_{b,c}$ and α_s

- Also z expansion, no bounds on individual coefficients
- Less parameters in total, FFs related

Puzzling V_{cb} results

The V_{cb} puzzle has been around for 20+ years...

- $\sim 3\sigma$ between exclusive (mostly $B
 ightarrow D^* \ell
 u$) and inclusive V_{cb}
- Inclusive determination: includes $O(1/m_b^3, \alpha_s/m_b^2, \alpha_s^2)$
 - Excellent theoretical control, $|V_{cb}| = 42.00 \pm 0.64$
- Exclusive determinations: B → D^(*)ℓν, using CLN (fixed!)
 CLN: HQE @ O(1/m_{c,b}, α_s) + slope-curvature relation in ξ Recent developments:
 - Unfolded differential measurements made available by Belle
 Different parametrizations possible
 - Lattice calculations for $B \rightarrow D$ FFs at non-zero recoil
 - \blacksquare Agreement of analyses for $B \rightarrow D$
 - B → D* FFs: several analyses ongoing [see O. Witzel's talk] So far: only one FF at zero recoil
 Larger differences in theory analyses
 - Specifically treatment of $1/m_c^2$ important
 - New LCSR analysis of all $B \rightarrow D^{(*)}$ FFs [Gubernari/Kokulu/vDyk'18]

V_{cb} from $B \rightarrow D$

2015: Unfolded $B \rightarrow D\ell\nu$ spectra [Belle] + finite recoil LQCD [HPQCD,MILC]

BGL analysis by Bigi/Gambino:

- Improved unitarity constraints
- Lattice data "contradict" CLN (sensitivity to higher 1/m orders)

▶ $|V_{cb}| = 40.49(96) \times 10^{-3}$, compatible with V_{cb}^{incl} and $B \rightarrow D^*$ HQE analysis w/ partial $1/m_c^2$ works [Bernlochner+'17,MJ/Straub'18]

V_{cb} from $B ightarrow D^*$ 2017

2017: Prel. unfolded spectrum (4 variables) from Belle
However, in this case no finite-recoil FFs available from lattice
w/ Belle results SM fit in BGL possible (including lattice (+LCSR)) Results: [Bigi+,Grinstein+]

- Both CLN and BGL yield excellent fits
 - $|V_{cb}^{CLN}| = 38.2(15) \times 10^{-3}$
 - ▶ $|V_{cb}^{\text{BGL}}| = 41.7(21)[40.4(17)] \times 10^{-3} \text{ (w/ or w/o LCSR)}$

BGL $1 - 2\sigma$ higher, larger difference than expected!

Intriguing result, but requires confirmation exp. + lattice

Uncertainties due to parametrization were underestimated
Using BGL, no indication of a V_{cb} puzzle in 2017 data
Lattice data will give additional insights
N.B.: This discussion relates to SM R(D, D*) predictions

$V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19]

(see also [Fajfer+,Nierste+,Bernlochner+,Bigi+,Grinstein+,Nandi+...])
 Recent untagged analysis by Belle with 4 1D distributions [1809.03290]
 "Tension with the (V_{cb}) value from the inclusive approach remains"

Analysis of 2017+2018 Belle data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z^2 to include uncertainties

$$|V_{cb}^{D^*}| = 39.6^{+1.1}_{-1.0} \times 10^{-3}$$

 $R(D^*) = 0.254^{+0.007}_{-0.006}$

2018: no parametrization dependence

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $ightarrow |V_{cb}|$

NP: can affect the q^2 -dependence, introduces additional FFs

To determine general NP, FF shapes needed from theory

In [MJ/Straub'18,Bordone/MJ/vDyk'19], we use all available theory input:

Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])

• LQCD for
$$f_{+,0}(q^2)$$
 $(B \to D)$, $h_{A_1}(q_{\max}^2)$ $(B \to D^*)$
[HPQCD'15,'17,Fermilab/MILC'14,'15]

• LCSR for all FFs but *f*_T [Gubernari/Kokulu/vDyk'18]

 $q^2 \, [\text{GeV}^2]$

9/22

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

- Fits 3/2/1 and 2/1/0 are theory-only fits(!)
- k/l/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- w-distribution yields information on FF shape $ightarrow V_{cb}$
- Angular distributions more strongly constrained by theory, only
- \blacktriangleright Predicted shapes perfectly confirmed by $B \rightarrow D^{(*)} \ell \nu$ data
- V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

- $B \rightarrow D^*$ BGL coefficient ratios from:
 - 1. Data (Belle'17+'18) + weak unitarity (yellow)
 - 2. HQE theory fit 2/1/0 (red)
 - 3. HQE theory fit 3/2/1 (blue)

Again compatibility of theory with data

2/1/0 underestimates the uncertainties massively

▶ For $b_i, c_i (\rightarrow f, \mathcal{F}_1)$ data and theory complementary

An example NP analysis: $b ightarrow c \ell u (\ell = e, \mu)$ [MJ/Straub'18]

NP in left-handed vector current: $\tilde{V}_{cb}^{\ell} = V_{cb} \left[|1 + C_{V_L}^{\ell}|^2 + \sum_{\ell' \neq \ell} |C_{V_L}^{\ell\ell'}|^2 \right]^{1/2}$ Only subset of data usable $B \rightarrow D, D^*$ in agreement No sign of LFNU \clubsuit constrained to be $\lesssim \% \times V_{cb}$

² NP in right-handed vector current: Usual suspect for excl. vs. incl. [e.g. Voloshin'97] Test of SMEFT [Catá/MJ'15] Full $B \rightarrow D^{(*)}$ data usable $B \rightarrow D^*$: Qualitative change No constraint over SM

Conclusions

b
ightarrow c transitions important in the SM and beyond; various puzzles

- Recent developments allow for qualitatively new analyses
 - **b** BGL analyses of $B \rightarrow D^{(*)}$ reduce V_{cb} puzzle
 - 2017+2018 data: still $V_{cb} \sim 1.9\sigma$ from $V_{cb}^{\text{incl.}}$
 - Large parametrization dependence in Belle 2017 data
- For NP theory determination of form factors required
 First analysis at 1/m²_c provides all FFs
 Parametrization dependence in Belle data removed
 - Scellent agreement w/ data, $1/m_c$ expansion works
- Averaging $B
 ightarrow (D, D^*, X_c) \ell \nu$: "Tension" at $1.x\sigma$
- NP in $b
 ightarrow c \ell \nu$: strong constraints, qualitative progress for V_R

Exciting times ahead in semileptonic decays!

$B ightarrow D\pi$ vs. $B ightarrow D^{*}$ [[MJ/vDyk('19)]

Claim in 2018 [Chavez-Saab/Toledo] : $R(D\pi) \sim 0.275$, "Closing the gap"... This was wrong, erratum: 0.253 (in line w/ others) Erratum due to numerical issue; here: conceptual issue

The amplitudes for the decay chain are written as

$$egin{aligned} &\langle D^*(k,\eta) | \, ar{c} \gamma^\mu (1-\gamma_5) b \, | ar{B}(k+q)
angle \equiv \eta^*_lpha(k) \mathcal{M}^{\mulpha} \ &\langle D\pi | \, \mathcal{L}_{ ext{QCD}} \, | D^*(k,\eta)
angle = \eta_{lpha'}(k) \mathcal{M}^{lpha'} \end{aligned}$$

- $\mathcal{M}^{\mu lpha}$ is then parametrized in a standard way by FFs
- The polarization sum in narrow width approximation yields

$$\sum_{\lambda=\pm 1,0} \eta(\lambda)_{\alpha} \eta^*(\lambda)_{\alpha'} = -\left(g_{\alpha\alpha'} - \frac{k_{\alpha}k_{\alpha'}}{M_{D^*}^2}\right)$$

• For $k_{\alpha}k^{\alpha} = M_{D^*}^2$, a contribution $\sim k^{\alpha}$ in $\mathcal{M}^{\alpha\mu}$ vanishes!

$B ightarrow D\pi$ vs. $B ightarrow D^{*}$ [[$_{ m [MJ/vDyk('19)]}$

Allowing for a propagating off-shell D^* : Additional terms have to be suppressed by $\Gamma_{D^*}/|k_{D^*}|!$

Why does that not happen in [Chavez-Saab/Toledo'18]?

- $\mathcal{M}^{\alpha\mu}$ has to fulfill on-shell-condition $k_{\alpha}\mathcal{M}^{\alpha\mu} = 0$ for on-shell D^* !
- The standard FF parametrization does not fulfill this
 Usually irrelevant due to the narrow-width approximation
 Off-shell D*: k_αM^{αμ} = 0 must be ensured modifying FFs

$$egin{aligned} q^\mu &\mapsto q^\mu - rac{(q \cdot k)}{k^2} k^\mu\,, \ g^{\mu
u} &- rac{q^\mu q^
u}{q^2} &\mapsto g^{\mu
u} - rac{q^\mu q^
u}{q^2} - rac{k^\mu k^
u}{k^2} + rac{(q \cdot k)\,k^\mu q^
u}{k^2\,q^2} \end{aligned}$$

Result: expected suppression of off-shell contributions Tiny, can be safely neglected

BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP

• Relevant for $\sigma_{\rm BR}/{\rm BR} \sim \mathcal{O}(\%)$

Branching ratio measurements require normalization...

- *B* factories: depends on $\Upsilon o B^+B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0}\equiv \Gamma(\Upsilon o B^+B^-)/\Gamma(\Upsilon o B^0 ar{B}^0)\equiv 1$
 - LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)

Higgs EFT(s) - relating cc and nc processes

Linear embedding of h:

- h part of doublet H
- Appropriate for weaklycoupled NP
- Power-counting: dimensions
 Finite powers of fields
- LO: SM

Non-linear embedding of *h*:

- *h* singlet, *U* Goldstones
- Appropriate for stronglycoupled NP
- Power-counting: loops (~ χPT)
 Arbitrary powers of h/v, φ
- LO: SM + modified Higgs-sector₂₂

Implications of the Higgs EFT for flavour EFT [Cata/MJ'15]

At scales μ ≪ μ_{EW}: remove top + heavy gauge bosons
 Construct EFT from "light" fermions + QCD, QED
 Gauge group: SU(3)_C × U(1)_{em}

Example: $b \rightarrow c \tau \nu$ transitions:

$$\mathcal{L}_{ ext{eff}}^{b
ightarrow c au
u} = -rac{4G_F}{\sqrt{2}} V_{cb} \sum_j^5 C_j \mathcal{O}_j$$

$$\mathcal{O}_{V_{L,R}} = (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\tau}\gamma_{\mu}\nu$$
$$\mathcal{O}_{S_{L,R}} = (\bar{c}P_{L,R}b)\bar{\tau}\nu$$
$$\mathcal{O}_{T} = (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\tau}\sigma_{\mu\nu}\nu$$

- All operators present already in the linear EFT
- However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* $\sum_{U=u,c,t} \lambda_{US} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{ts} C_S^{(d)}$ [see also Cirigliano+'12,Alonso+'15] • The relations are charged in the second income EFT.
- These relations are absent in the non-linear EFT
- Flavour physics can distinguish between Higgs embeddings!

Tree-level matching of HEFT(s) on flavour-EFT

Implications of HEFT for the flavour-EFTs? [Cata/MJ'15]
 Differences between linear and non-linear realization?
 Separate "generic" operators from non-linear HEFT

Two types of contributions:

- 1. Operators already present at the EW scale \rightarrow identification
- 2. Tree-level contributions of HEFT operators with SM ones • *e.g.* HEFT $\bar{b}sZ$ vertex with $Z \rightarrow \ell\ell$
- Both of the same order

Previous work (linear EFT) e.g. [D'Ambrosio+'02,Cirigliano+'09,Alonso+'14]

A word of caution: flavour hierarchies have to be considered! Mostly relevant when SM is highly suppressed, *e.g.* for EDMs

Implications of the Higgs EFT for flavour $_{\text{[Cata/MJ'15]}} q \rightarrow q'\ell\ell$:

- Tensor operators absent in linear EFT for d → d'ℓℓ [Alonso+'14]
 Present in general! (already in linear EFT for u → u'ℓℓ)
- Scalar operators: linear EFT C_S^(d) = −C_P^(d), C_S^{'(d)} = C_P^{'(d)} [Alonso+'14]
 Analogous for u → u'ℓℓ, but no relations in general!

 $m{q}
ightarrow m{q'} \ell
u$:

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* $\sum_{U=u,c,t} \lambda_{Us} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{ts} C_S^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!

- Surprising, since no Higgs is involved
- Difficult differently [e.g. Barr+, Azatov+'15]

Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$B ightarrow D(e,\mu) u$	BR	BaBar	global fit	2008
$B ightarrow D\ell u$	$\frac{d\Gamma}{dw}$	BaBar	hadronic tag	2009
$B ightarrow D(e,\mu) u$	<u>dΓ</u> dw dI dw	Belle	hadronic tag	2015
$B ightarrow D^*(e,\mu) u$	BR	BaBar	global fit	2008
$B ightarrow D^* \ell u$	BR	BaBar	hadronic tag	2007
$B ightarrow D^* \ell u$	BR	BaBar	untagged B^0	2007
$B ightarrow D^* \ell u$	BR	BaBar	untagged B^\pm	2007
$B ightarrow D^*(e,\mu) u$	$\frac{d\Gamma_{L,T}}{dw}$	Belle	untagged	2010
$B o D^* \ell \nu$	$\frac{d\Gamma}{d(w,\cos\theta_V,\cos\theta_I,\phi)}$	Belle	hadronic tag	2017

Different categories of data:

- Only total rates vs. differential distributions
- e, μ -averaged vs. individual measurements
- Correlation matrices given or not
- Sometimes presentation prevents use in non-universal scenarios 😕
- ▶ Recent Belle analyses (mostly) exemplary 🙂

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\text{max}}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 (q^2 - q_{\text{max}}^2)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\text{max}}^2)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Scalar contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\text{max}}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 (q^2 - q_{\text{max}}^2)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\text{max}}^2)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Fit with scalar couplings (generic $C_{S_{L,R}}$):

Slightly favours large contributions in muon couplings with $C^{\mu}_{S_{R}} \approx -_{2}C^{\mu}_{SR}$

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , scalar NP increases rates Close to $q^2 \rightarrow q_{\text{max}}^2$ in the SM: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_+^2 (q^2 - q_{\text{max}}^2)^{3/2}$ With scalar contributions: $\frac{d\Gamma(B \rightarrow D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\text{max}}^2)^{1/2}$ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Also for LQ U_1 (or V_2): $B \to D$ stronger than $B \to D^*, X_c$:

Possible large contribution in $C^{\mu}_{S_{R}}$ excluded by $B \rightarrow D$

Tensor operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , tensor contributions increase rates Close to $q^2 \rightarrow q_{\min}^2$: $\frac{d\Gamma_T(B \rightarrow D^* \ell \nu)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2\right) + 16m_B^2 C_T^2 T_1(0)^2 + O\left(\frac{m_D^2 *}{m_B^2}\right)$ Fundpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Tensor contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):

Tensor operators

For $m_{\ell} \rightarrow 0$, no interference with SM For fixed V_{cb} , tensor contributions increase rates Close to $q^2 \rightarrow q_{\min}^2$: $\frac{d\Gamma_T(B \rightarrow D^* \ell \nu)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2\right) + 16m_B^2 C_T^2 T_1(0)^2 + O\left(\frac{m_D^2 *}{m_B^2}\right)$ Fundpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Fit for generic C_{S_L} and C_T (including LQs S_1 and R_1):

 $B o D^*$ favours large contributions in $\, C^{e,\mu}_{S_L}$, ruled out by $B o D_{_{22/22}}$