$V_{c b}$ and form factors in $B \rightarrow D^{(*)} \ell \nu$

Martin Jung

Talk at the workshop
"Implications of LHCb measurements and future prospects" 17th of October 2019

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim\left|V_{i j}\right|^{2} G_{F}^{2} \mathrm{FF}^{2}$
- Determination of $\left|V_{i j}\right|(7 / 9)$

Beyond the Standard Model:

- Leptonic decays $\sim m_{l}^{2}$

\rightarrow large relative NP influence possible (e.g. $H^{ \pm}$)
- NP in semi-leptonic decays small/moderate
\rightarrow Need to understand the SM very precisely!

e.g. radiative corrections [see R. Szafron's talk]

Key advantages:

- Large rates
- Minimal hadronic input \Rightarrow systematically improvable
- Differential distributions \Rightarrow large set of observables

Lepton-non-Universality in $b \rightarrow c \tau \nu 2019$

contours 68%, filled 95% CL

- $R\left(D^{(*)}\right)$: BaBar, Belle, LHCb
\rightarrow average 3.x σ from SM
- Other $b \rightarrow c$ observables:

4 largely SM-like

$$
(R(J / \psi) \text { large even } \mathrm{w} / \mathrm{NP})
$$

- $R\left(K^{(*)}\right): \sim 4 \sigma$ from SM
\rightarrow between light leptons
- $b \rightarrow$ sll global fit: $\sim 5 \sigma$
$\sim 15 \%$ of a SM tree decay $\sim V_{c b}$: This is a huge effect!
\rightarrow Need contribution of $\sim 5-10 \%$ (w/ interference) or $\gtrsim 40 \%$ (w/o interference) of SM
\leftrightarrows Check SM prediction (main topic of this talk)
4 NP analyses [talks by D.Guadagnoli,O.Sumensari,Soni,M.König,A.Peñuelas]
\rightarrow Require form factors independent of data!

Form factor parametrizations

FFs central non-perturbative input in semileptonic decays, e.g.

$$
\left\langle D\left(p_{D}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[\left(p_{B}^{\mu}+p_{D}^{\mu}\right)-\frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu}
$$

"BGL parametrization":

- Analytic structure: account for cuts and poles explicitly
\rightarrow remainder can be expanded in simple power series in z
- Use quark-hadron-duality (+crossing sym., unitarity)

4 Absolute bounds on coefficients, rapid convergence
4 Efficient expansion of individual FFs with few coefficients "HQE parametrization" (\rightarrow CLN)

- Exploit heavy-quark spin-flavour symmetry for $m_{b, c} \rightarrow \infty$

4 All $B^{(*)} \rightarrow D^{(*)}$ FFs given by Isgur-Wise function $\xi(z)$
4 Systematic expansion in $1 / m_{b, c}$ and α_{s}
\rightarrow Also z expansion, no bounds on individual coefficients
\leftrightarrows Less parameters in total, FFs related

Puzzling $V_{c b}$ results

The $V_{c b}$ puzzle has been around for $20+$ years. .

- $\sim 3 \sigma$ between exclusive (mostly $B \rightarrow D^{*} \ell \nu$) and inclusive $V_{c b}$
- Inclusive determination: includes $\mathcal{O}\left(1 / m_{b}^{3}, \alpha_{s} / m_{b}^{2}, \alpha_{s}^{2}\right)$

4 Excellent theoretical control, $\left|V_{c b}\right|=42.00 \pm 0.64$

- Exclusive determinations: $B \rightarrow D^{(*)} \ell \nu$, using CLN (fixed!)
\leftrightarrows CLN: HQE @ $\mathcal{O}\left(1 / m_{c, b}, \alpha_{s}\right)+$ slope-curvature relation in ξ Recent developments:
- Unfolded differential measurements made available by Belle

4 Different parametrizations possible

- Lattice calculations for $B \rightarrow D$ FFs at non-zero recoil
\rightarrow Agreement of analyses for $B \rightarrow D$
- $B \rightarrow D^{*}$ FFs: several analyses ongoing [see O. Witzel's talk] So far: only one FF at zero recoil
4 Larger differences in theory analyses
4 Specifically treatment of $1 / m_{c}^{2}$ important
- New LCSR analysis of all $B \rightarrow D^{(*)}$ FFs [Gubernari/Kokulu/vDyk'18]

$V_{c b}$ from $B \rightarrow D$

2015: Unfolded $B \rightarrow D \ell \nu$ spectra [Belle] + finite recoil LQCD [HPQCD,MILC]

BGL analysis by Bigi/Gambino:

- Improved unitarity constraints
- Lattice data "contradict" CLN (sensitivity to higher $1 / m$ orders)
$\leftrightarrows\left|V_{c b}\right|=40.49(96) \times 10^{-3}$, compatible with $V_{c b}^{\text {incl }}$ and $B \rightarrow D^{*}$
HQE analysis w/ partial $1 / m_{c}^{2}$ works [Bernlochner+'17,MJ/Straub'18]

$V_{c b}$ from $B \rightarrow D^{*} 2017$

2017: Prel. unfolded spectrum (4 variables) from Belle
4 However, in this case no finite-recoil FFs available from lattice
\leftrightarrows w/ Belle results SM fit in BGL possible (including lattice (+LCSR))
Results: [Bigi+,Grinstein+]

- Both CLN and BGL yield excellent fits
$\rightarrow\left|V_{c b}^{C L N}\right|=38.2(15) \times 10^{-3}$
$\rightarrow\left|V_{c b}^{\text {BGL }}\right|=41.7(21)[40.4(17)] \times 10^{-3}(\mathrm{w} /$ or w / o LCSR $)$
4 BGL $1-2 \sigma$ higher, larger difference than expected!
\rightarrow Intriguing result, but requires confirmation exp. + lattice

Uncertainties due to parametrization were underestimated 4 Using BGL, no indication of a $V_{c b}$ puzzle in 2017 data
4 Lattice data will give additional insights
N.B.: This discussion relates to $\mathrm{SM} R\left(D, D^{*}\right)$ predictions

$V_{c b}+R\left(D^{*}\right) \mathrm{w} /$ data + lattice + unitarity [Gambino/MJ/Schacht'19]

 (see also [Fajfer+,Nierste+,Bernlochner+,Bigi+,Grinstein+,Nandi+...])Recent untagged analysis by Belle with 4 1D distributions [1809.03290]
4 "Tension with the ($V_{c b}$) value from the inclusive approach remains"
Analysis of 2017+2018 Belle data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important

$$
\left|V_{c b}^{D^{*}}\right|=39.6_{-1.0}^{+1.1} \times 10^{-3}
$$

- All FFs to z^{2} to include uncertainties
- 2018: no parametrization dependence

$$
R\left(D^{*}\right)=0.254_{-0.006}^{+0.007}
$$

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow\left|V_{c b}\right|$
NP: can affect the q^{2}-dependence, introduces additional FFs
4 To determine general NP, FF shapes needed from theory
In [MJ/Straub'18,Bordone/MJ/vDyk'19], we use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+, 0}\left(q^{2}\right)(B \rightarrow D), h_{A_{1}}\left(q_{\max }^{2}\right)\left(B \rightarrow D^{*}\right)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs but f_{T} [Gubernari/Kokulu/vDyk'18]
- Consistent HQET expansion to $\mathcal{O}\left(\alpha_{s}, 1 / m_{b}, 1 / m_{c}^{2}\right)$
4 improved description [Bordone/MJ/vDyk'19]

FFs under control;

$$
\begin{aligned}
& R\left(D^{*}\right)=0.247(6) \\
& V_{c b}=40.0(11) \times 10^{-3}
\end{aligned}
$$

Robustness of the HQE expansion up to $1 / m_{c}^{2}$

[Bordone/MJ/vDyk'19]
Testing FFs by comparing to data and fits in BGL parametrization:

- Fits $3 / 2 / 1$ and $2 / 1 / 0$ are theory-only fits(!)
- $k / I / m$ denotes orders in z at $\mathcal{O}\left(1,1 / m_{c}, 1 / m_{c}^{2}\right)$
- w-distribution yields information on FF shape $\rightarrow V_{c b}$
- Angular distributions more strongly constrained by theory, only
\leftrightarrows Predicted shapes perfectly confirmed by $B \rightarrow D^{(*)} \ell \nu$ data
$\leftrightarrows V_{c b}$ from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1 / m_{c}^{2}$
[Bordone/MJ/vDyk'19]
Testing FFs by comparing to data and fits in BGL parametrization:

- $B \rightarrow D^{*}$ BGL coefficient ratios from:

1. Data (Belle'17+'18) + weak unitarity (yellow)
2. HQE theory fit $2 / 1 / 0$ (red)
3. HQE theory fit $3 / 2 / 1$ (blue)
\rightarrow Again compatibility of theory with data
$\leftrightarrows 2 / 1 / 0$ underestimates the uncertainties massively
\Leftrightarrow For $b_{i}, c_{i}\left(\rightarrow f, \mathcal{F}_{1}\right)$ data and theory complementary

An example NP analysis: $b \rightarrow c \ell \nu(\ell=e, \mu)$ [MJ/Straub'18]

NP in left-handed vector current:
$\tilde{V}_{c b}^{\ell}=V_{c b}\left[\left[1+\left.C_{V_{L}}^{e}\right|^{2}+\sum_{\ell^{\prime} \neq \ell}\left|C_{V_{L} \ell^{\prime}}\right|^{2}\right]^{1 / 2}\right.$
Only subset of data usable $B \rightarrow D, D^{*}$ in agreement No sign of LFNU
4 constrained to be $\lesssim \% \times V_{c b}$

NP in right-handed vector current: Usual suspect for excl. vs. incl.
[e.g. Voloshin'97]
Test of SMEFT [Catá/MJ'15]
Full $B \rightarrow D^{(*)}$ data usable
$B \rightarrow D^{*}$: Qualitative change
No constraint over SM

Conclusions

$b \rightarrow c$ transitions important in the SM and beyond; various puzzles

- Recent developments allow for qualitatively new analyses
\leftrightarrow BGL analyses of $B \rightarrow D^{(*)}$ reduce $V_{c b}$ puzzle
$42017+2018$ data: still $V_{c b} \sim 1.9 \sigma$ from $V_{c b}^{\text {incl. }}$
\rightarrow Large parametrization dependence in Belle 2017 data
- For NP theory determination of form factors required

4 First analysis at $1 / m_{c}^{2}$ provides all FFs
4 Parametrization dependence in Belle data removed
\rightarrow Excellent agreement w/ data, $1 / m_{c}$ expansion works

- Averaging $B \rightarrow\left(D, D^{*}, X_{c}\right) \ell \nu$: "Tension" at $1 . x \sigma$
- NP in $b \rightarrow c \ell \nu$: strong constraints, qualitative progress for V_{R}

> Exciting times ahead in semileptonic decays!

$$
B \rightarrow D \pi \text { vs. } B \rightarrow D^{*} \mathrm{I}\left[\mathrm{MJ} / \operatorname{Dyvk}\left({ }^{\prime} 19\right)\right]
$$

Claim in 2018 [Chavez-Saab/Toledo] : $R(D \pi) \sim 0.275$, "Closing the gap"...
4 This was wrong, erratum: 0.253 (in line $w /$ others)
Erratum due to numerical issue; here: conceptual issue
The amplitudes for the decay chain are written as

$$
\begin{aligned}
\left\langle D^{*}(k, \eta)\right| \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b|\bar{B}(k+q)\rangle & \equiv \eta_{\alpha}^{*}(k) \mathcal{M}^{\mu \alpha} \\
\langle D \pi| \mathcal{L}_{\mathrm{QCD}}\left|D^{*}(k, \eta)\right\rangle & =\eta_{\alpha^{\prime}}(k) \mathcal{M}^{\alpha^{\prime}}
\end{aligned}
$$

- $\mathcal{M}^{\mu \alpha}$ is then parametrized in a standard way by FFs
- The polarization sum in narrow width approximation yields

$$
\sum_{\lambda= \pm 1,0} \eta(\lambda)_{\alpha} \eta^{*}(\lambda)_{\alpha^{\prime}}=-\left(g_{\alpha \alpha^{\prime}}-\frac{k_{\alpha} k_{\alpha^{\prime}}}{M_{D^{*}}^{2}}\right)
$$

4 For $k_{\alpha} k^{\alpha}=M_{D^{*}}^{2}$, a contribution $\sim k^{\alpha}$ in $\mathcal{M}^{\alpha \mu}$ vanishes!

$$
B \rightarrow D \pi \text { vs. } B \rightarrow D^{*} \mathrm{II}_{[\mathrm{mJ} / \operatorname{vyk}(' 19)]}
$$

Allowing for a propagating off-shell D^{*} :
Additional terms have to be suppressed by $\Gamma_{D^{*}} /\left|k_{D^{*}}\right|$!
Why does that not happen in [Chavez-Saab/Toledo'18] ?

- $\mathcal{M}^{\alpha \mu}$ has to fulfill on-shell-condition $k_{\alpha} \mathcal{M}^{\alpha \mu}=0$ for on-shell D^{*} !
- The standard FF parametrization does not fulfill this

4 Usually irrelevant due to the narrow-width approximation
4 Off-shell $D^{*}: k_{\alpha} \mathcal{M}^{\alpha \mu}=0$ must be ensured modifiying FFs

$$
\begin{aligned}
q^{\mu} & \mapsto q^{\mu}-\frac{(q \cdot k)}{k^{2}} k^{\mu} \\
g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}} & \mapsto g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}-\frac{k^{\mu} k^{\nu}}{k^{2}}+\frac{(q \cdot k) k^{\mu} q^{\nu}}{k^{2} q^{2}} .
\end{aligned}
$$

Result: expected suppression of off-shell contributions
\leftrightarrow Tiny, can be safely neglected

BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP
4 Relevant for $\sigma_{\mathrm{BR}} / \mathrm{BR} \sim \mathcal{O}(\%)$
Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \rightarrow B^{+} B^{-}$vs. $B^{0} \bar{B}^{0}$
- LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma\left(\Upsilon \rightarrow B^{+} B^{-}\right) / \Gamma\left(\Upsilon \rightarrow B^{0} \bar{B}^{0}\right) \equiv 1$
- LHCb: assumes $f_{u} \equiv f_{d}$, uses $r_{+0}^{\mathrm{HFAG}}=1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon \rightarrow B B$ [Atwood/Marciano'90]
- Measurements in $r_{+0}^{\text {HFAG }}$ assume isospin in exclusive decays

4 This is one thing we want to test!
\rightarrow Avoiding this assumption yields $r_{+0}=1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)

Higgs EFT(s) - relating cc and nc processes

Apparent gap between EW and NP scales:

\rightarrow EFT approach at the electroweak scale:
\checkmark SM particle content
\checkmark SM gauge group
? Embedding of h
? Power-counting
\leftrightarrows Formulate NLO

Linear embedding of h :

- h part of doublet H
- Appropriate for weaklycoupled NP
- Power-counting: dimensions

4 Finite powers of fields

- LO: SM

Non-linear embedding of h :

- h singlet, U Goldstones
- Appropriate for stronglycoupled NP
- Power-counting: loops ($\sim \chi \mathrm{PT}$)

4 Arbitrary powers of $h / v, \phi$

- LO: SM + modified Higgs-sect $\otimes r_{22}$

Implications of the Higgs EFT for flavour EFT [Cata/M」'15]

At scales $\mu \ll \mu_{E W}$: remove top + heavy gauge bosons
4 Construct EFT from "light" fermions + QCD, QED
4 Gauge group: $S U(3)_{C} \times U(1)_{\mathrm{em}}$
Example: $b \rightarrow c \tau \nu$ transitions:

$$
\begin{aligned}
\mathcal{O}_{V_{L, R}} & =\left(\bar{c} \gamma^{\mu} P_{L, R} b\right) \bar{\tau} \gamma_{\mu} \nu \\
\mathcal{O}_{S_{L, R}} & =\left(\bar{c} P_{L, R} b\right) \bar{\tau} \nu \\
\mathcal{O}_{T} & =\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right) \bar{\tau} \sigma_{\mu \nu} \nu
\end{aligned}
$$

$$
\mathcal{L}_{\mathrm{eff}}^{b \rightarrow c \tau \nu}=-\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{j}^{5} C_{j} \mathcal{O}_{j}
$$

- All operators present already in the linear EFT
- However: Relations between different transitions:
$C_{V_{R}}$ is lepton-flavour universal [see also Cirigliano+'09]
Relations between charged- and neutral-current processes, e.g.

$$
\sum_{U=u, c, t} \lambda_{U_{S}} C_{S_{R}}^{(U)}=-\frac{e^{2}}{8 \pi^{2}} \lambda_{t s} C_{S}^{(d)} \text { [see also Cirigliano+'12,Alonso+'15] }
$$

- These relations are absent in the non-linear EFT

4 Flavour physics can distinguish between Higgs embeddings!

Tree-level matching of HEFT(s) on flavour-EFT

Implications of HEFT for the flavour-EFTs? [Cata/MJ'15]
Differences between linear and non-linear realization?
\rightarrow Separate "generic" operators from non-linear HEFT

Two types of contributions:

1. Operators already present at the EW scale \rightarrow identification
2. Tree-level contributions of HEFT operators with SM ones
\rightarrow e.g. HEFT $\bar{b} s Z$ vertex with $Z \rightarrow \ell \ell$
4 Both of the same order
Previous work (linear EFT) e.g. [D'Ambrosio+'02,Cirigliano+'09,Alonso+'14]
A word of caution: flavour hierarchies have to be considered!
4 Mostly relevant when SM is highly suppressed, e.g. for EDMs

Implications of the Higgs EFT for flavour [Cata/MJ ${ }^{15]}$

$\boldsymbol{q} \rightarrow \boldsymbol{q}^{\prime} \boldsymbol{\ell} \ell:$

- Tensor operators absent in linear EFT for $d \rightarrow d^{\prime} \ell \ell$ [Alonso+'14]

4 Present in general! (already in linear EFT for $u \rightarrow u^{\prime} \ell \ell$)

- Scalar operators: linear EFT $C_{S}^{(d)}=-C_{P}^{(d)}, C_{S}^{\prime(d)}=C_{P}^{\prime(d)}$ [Alonso+'14]
\rightarrow Analogous for $u \rightarrow u^{\prime} \ell \ell$, but no relations in general!

$\boldsymbol{q} \rightarrow \boldsymbol{q}^{\prime} \ell \boldsymbol{\nu}:$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions:
$C_{V_{R}}$ is lepton-flavour universal [see also Cirigliano+'09]
Relations between charged- and neutral-current processes, e.g.
$\sum_{U=u, c, t} \lambda_{U_{S}} C_{S_{R}}^{(U)}=-\frac{e^{2}}{8 \pi^{2}} \lambda_{t s} C_{S}^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!
4 Surprising, since no Higgs is involved
\rightarrow Difficult differently [e.g. Barr+, Azatov+'15]

Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$\boldsymbol{B} \rightarrow \boldsymbol{D}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	BR	BaBar	global fit	2008
$B \rightarrow D \ell \nu$	$\frac{d \Gamma}{d w}$	BaBar	hadronic tag	2009
$\boldsymbol{B} \rightarrow \boldsymbol{D}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	$\frac{d \Gamma}{d w}$	Belle	hadronic tag	2015
$\boldsymbol{B} \rightarrow \boldsymbol{D}^{*}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	BR	BaBar	global fit	2008
$B \rightarrow D^{*} \ell \nu$	BR	BaBar	hadronic tag	2007
$B \rightarrow D^{*} \ell \nu$	BR	BaBar	untagged B^{0}	2007
$B \rightarrow D^{*} \ell \nu$	BR	BaBar	untagged $B^{ \pm}$	2007
$\boldsymbol{B} \rightarrow \boldsymbol{D}^{*}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	$\frac{d \Gamma_{L, \tau}}{d w}$	Belle	untagged	2010
$B \rightarrow D^{*} \ell \nu$	$\frac{d \Gamma}{d\left(w, \cos \theta_{V}, \cos \theta_{l}, \phi\right)}$	Belle	hadronic tag	2017

Different categories of data:

- Only total rates vs. differential distributions
- e, μ-averaged vs. individual measurements
- Correlation matrices given or not

↔Sometimes presentation prevents use in non-universal scenarios
\rightarrow Recent Belle analyses (mostly) exemplary

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4) For fixed $V_{c b}$, scalar NP increases rates

Close to $q^{2} \rightarrow q_{\text {max }}^{2}$ in the $\mathrm{SM}: \frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{+}^{2}\left(q^{2}-q_{\max }^{2}\right)^{3 / 2}$
With scalar contributions: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{0}^{2}\left|C_{S_{R}}+C_{S_{L}}\right|^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{1 / 2}$
\rightarrow Endpoint very sensitive to scalar contributions! [see also Nierste+'08]
Scalar contributions ruled out by the distributions ($\Gamma_{1}=\Gamma_{2}$):

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, scalar NP increases rates
Close to $q^{2} \rightarrow q_{\text {max }}^{2}$ in the $\mathrm{SM}: \frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{+}^{2}\left(q^{2}-q_{\max }^{2}\right)^{3 / 2}$
With scalar contributions: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{0}^{2}\left|C_{S_{R}}+C_{S_{L}}\right|^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{1 / 2}$
\rightarrow Endpoint very sensitive to scalar contributions! [see also Nierste+'08]
Fit with scalar couplings (generic $C_{S_{L, R}}$):

Slightly favours large contributions in muon couplings with $C_{S_{R}}^{\mu} \approx{ }_{2} C_{S_{2}}^{\mu}$

Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, scalar NP increases rates
Close to $q^{2} \rightarrow q_{\text {max }}^{2}$ in the $\mathrm{SM}: \frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{+}^{2}\left(q^{2}-q_{\max }^{2}\right)^{3 / 2}$
With scalar contributions: $\frac{d \Gamma(B \rightarrow D \ell \nu)}{d q^{2}} \propto f_{0}^{2}\left|C_{S_{R}}+C_{S_{L}}\right|^{2}\left(q^{2}-q_{\text {max }}^{2}\right)^{1 / 2}$
\rightarrow Endpoint very sensitive to scalar contributions! [see also Nierste+'08]
Also for LQ $U_{1}\left(\right.$ or $\left.V_{2}\right): B \rightarrow D$ stronger than $B \rightarrow D^{*}, X_{c}$:

Possible large contribution in $C_{S_{P}}^{\mu}$ excluded by $B \rightarrow D$

Tensor operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, tensor contributions increase rates
Close to $q^{2} \rightarrow q_{\text {min }}^{2}$:

$$
\frac{d \Gamma_{T}\left(B \rightarrow D^{*} \ell \nu\right)}{d q^{2}} \propto q^{2} C_{V_{L}}^{2}\left(A_{1}(0)^{2}+V(0)^{2}\right)+16 m_{B}^{2} C_{T}^{2} T_{1}(0)^{2}+O\left(\frac{m_{D^{*}}^{2}}{m_{B}^{2}}\right)
$$

4 Endpoint ($\left.q^{2} \sim 0\right)$ very sensitive to tensor contributions!
Tensor contributions ruled out by the distributions ($\Gamma_{1}=\Gamma_{2}$):

Tensor operators

For $m_{\ell} \rightarrow 0$, no interference with SM
4 For fixed $V_{c b}$, tensor contributions increase rates
Close to $q^{2} \rightarrow q_{\text {min }}^{2}$:

$$
\frac{d \Gamma_{T}\left(B \rightarrow D^{*} \ell \nu\right)}{d q^{2}} \propto q^{2} C_{V_{L}}^{2}\left(A_{1}(0)^{2}+V(0)^{2}\right)+16 m_{B}^{2} C_{T}^{2} T_{1}(0)^{2}+O\left(\frac{m_{D^{*}}^{2}}{m_{B}^{2}}\right)
$$

4 Endpoint ($\left.q^{2} \sim 0\right)$ very sensitive to tensor contributions!
Fit for generic $C_{S_{L}}$ and C_{T} (including LQs S_{1} and R_{1}):

$B \rightarrow D^{*}$ favours large contributions in $C_{S_{L}, \mu}^{e, \mu}$, ruled out by $B \rightarrow D$

