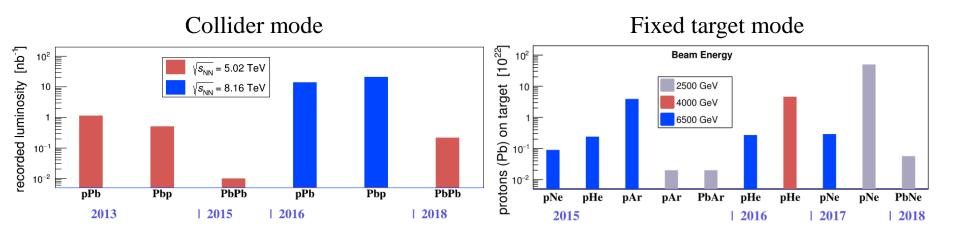

Recent LHCb results from heavy ion collisions


Jiayin Sun Tsinghua University

Implications of LHCb measurements and future prospects

LHCb heavy ion collision modes

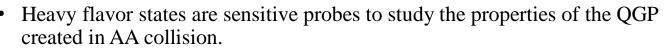
Recent heavy-ion results

- Results in Collider mode
 - Open heavy flavor in *p*Pb collisions
 - Prompt D^0 and Λ_c^+ production in *p*Pb collisions at 5.02 TeV *Λ*⁺_c: JHEP 02 (2019) 102
 - B^+ , B^0 and Λ_h^0 production in pPb collisions at 8.16 TeV PRD99 052011 (2019)
 - Quarkonium in *p*Pb collisions
 - J/ψ production in pPb collisions at 8.16 TeV
 - Upsilon $\Upsilon(nS)$ production in *p*Pb collisions at 8.16 TeV
 - Quarkonium in Ultra-Peripheral PbPb (preliminary)

PLB 774 (2017) 159

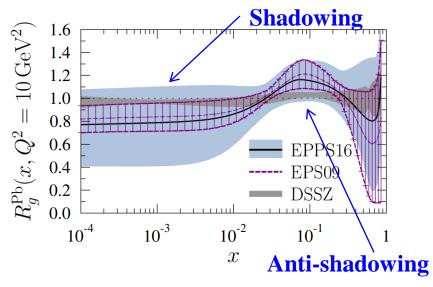
*D*⁰: JHEP 10 (2017) 090

JHEP 11 (2018) 194

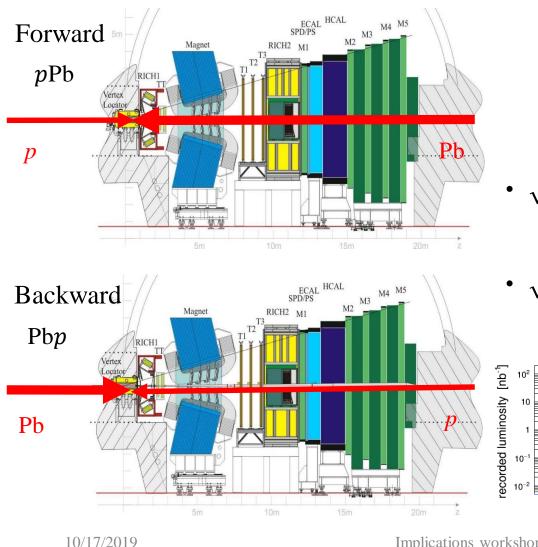

LHCb-CONF-2018-003

Albert Bursche's talk Thursday 15:45

- Fixed target results
 - PRL 122 (2019) 132002 • Charm production in *p*He and *p*Ar at 87, 110 GeV
 - Antiproton production cross-section in *p*He at 110 GeV PRL 121 (2018) 222001


Heavy flavor in pPb collisions

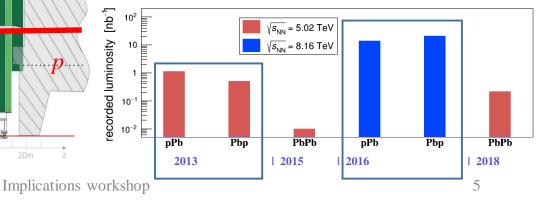
- Produced in the early stage of the collisions
- Strong interaction with the medium
- Quarkonium states sequential melting
- Baryon/meson ratio in charm and bottom sectors probes hadronisation
- Heavy flavor in *p*A collisions provide baseline measurements to disentangle cold nuclear matter effects from effects of hot and dense medium.
- LHCb well suited for such measurements:
 - Heavy flavor measurement down to $p_{\rm T}$ close to 0
 - Separation of prompt and *b* decay components
- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Gluon saturation
 - Multiple scattering of partons in the nucleus
 - Final state


10/17/2019

Implications workshop

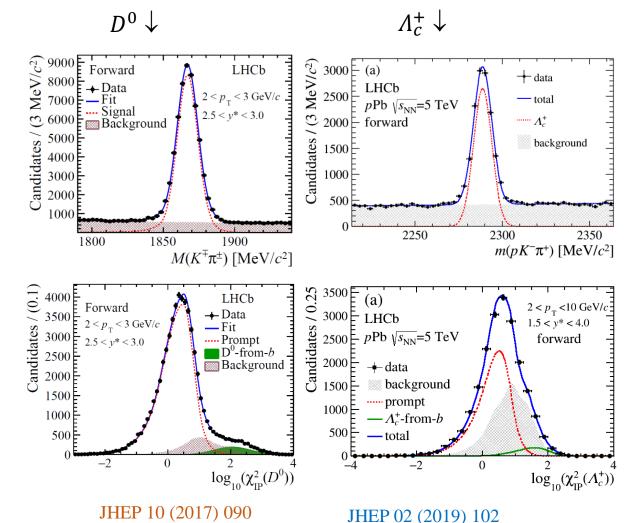
4 arXiv:1802.05927

LHCb pPb datasets


- Rapidity Coverage
 - *y*^{*}: rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

$$\sqrt{s_{NN}} = 5.02 \text{ TeV} (2013)$$

• $pPb (1.06 \text{ nb}^{-1}) + Pbp (0.52 \text{ nb}^{-1})$


$$\sqrt{s_{NN}} = 8.16 \text{ TeV} (2016)$$

• $pPb (13.6 \text{ nb}^{-1}) + Pbp (21.8 \text{ nb}^{-1})$

Prompt D^0 and Λ_c^+ measurement in *p*Pb at 5 TeV

 $\frac{IP}{D^0} \frac{K^-}{\pi^+}$

Reconstructed through decay channel:

 $\begin{array}{c} D^0 \rightarrow K^-\pi^+ \\ \Lambda^+_c \rightarrow p K^-\pi^+ \end{array}$

Inclusive D^0/Λ_c^+ signals from fitting invariant mass dist.:

- Signal: Crystal Ball+Gaussian (D^0) Gaussin (Λ_c^+)
- Background: linear

Prompt charm fraction extracted from fitting impact parameter dist.:

- Prompt: simulation
- from-*b*: simulation (D^0) sPlot+MC (Λ_c^+)
- Background: sideband in data

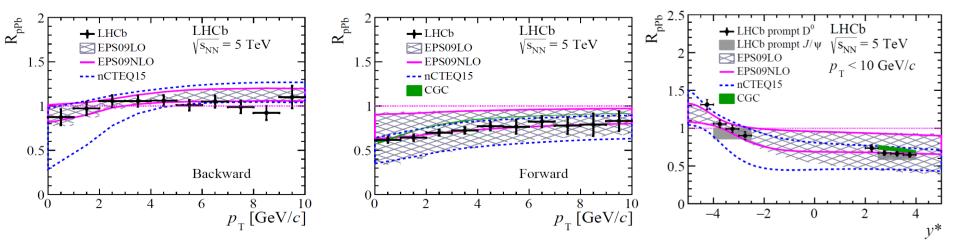
Prompt D^0 at 5.02 TeV nuclear modification factor in *p*Pb

Models: JHEP 10 (2003) 046 Eur. Phys. J. C77 (2017) 1

Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$$

• pp reference directly measured by LHCb


- R_{pPb} suppressed at forward rapidity • slight increase with increasing p_T
- R_{pPb} closer to 1 at backward rapidity

• hint of enhancement at large rapidity

- Measurements consistent with models with nPDF, CGC
- Results constrain nPDFs in low x PRL 121,052004(2018)

arXiv:1906.03943

Hich JHEP 10 (2017) 090

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5.02 TeV $R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\rm T})}{\sigma_{D^0}(y^*, p_{\rm T})}$

ALICE

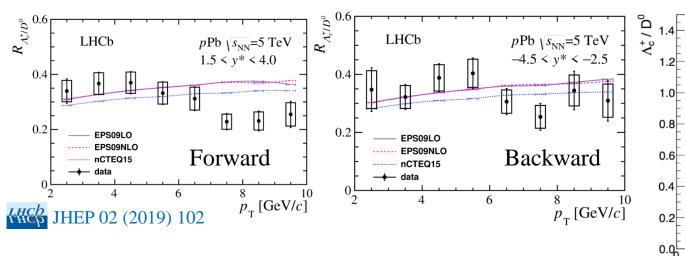
JHEP 04 (2018) 108

10

p_ (GeV/c)

ALICE

LHCb

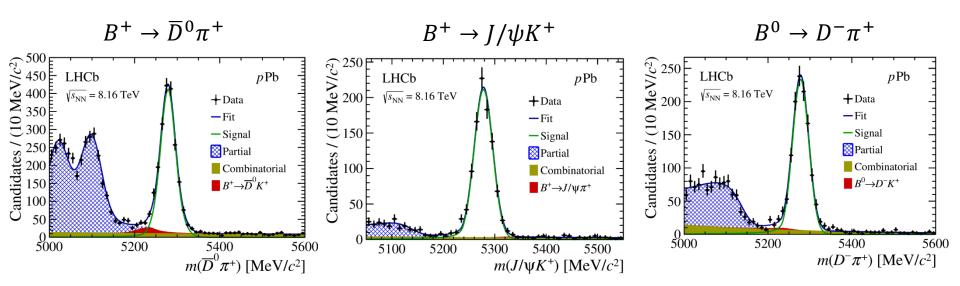

pp, $\sqrt{s} = 7$ TeV, |y| < 0.5

• pp, $\sqrt{s} = 7$ TeV, 2 < y < 4.5

5

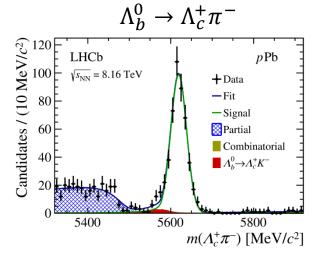
Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

p–Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV, -0.96 < y < 0.04



- Sensitive to charm hadronisation mechanisms
- Model based on measured *pp* cross-section
- nPDF uncertainty mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower.

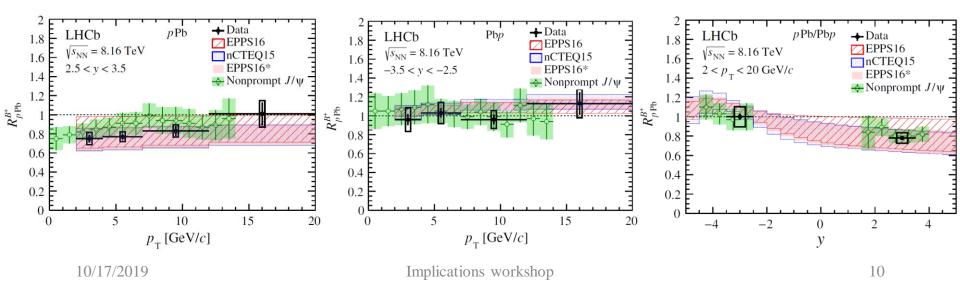
- Forward:
 - Consistent at lower $p_{\rm T}$
 - Below theories at higher $p_{\rm T}$
- Backward:
 - Consistent for all $p_{\rm T}$
- Consistent with LHCb *pp* results ~0.3
- Lower than ALICE points in midrapidity for both *pp* and *p*Pb


Beauty hadron production in pPb at 8.16 TeV

PRD99 052011 (2019)

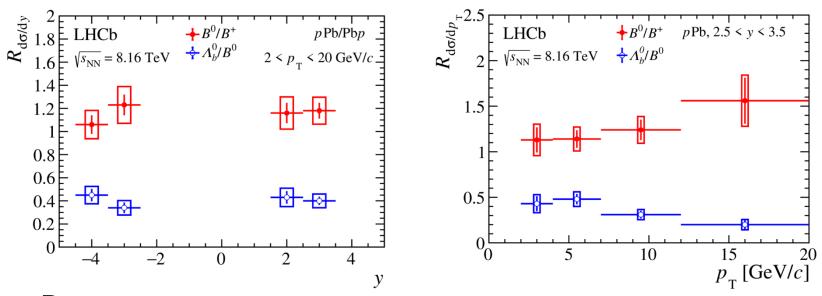
Reconstructed through exclusive hadronic decay modes:

Decay	pPb	Pb <i>p</i>	
$B^+ o ar{D}^0 \pi^+$	1958 ± 54	1806 ± 55	
$B^+ ightarrow J/\psi K^+$	0883 ± 32	0907 ± 33	
$B^0 ightarrow D^- \pi^+$	1151 ± 38	0889 ± 34	
$\Lambda_b^0 o \Lambda_c^+ \pi^-$	0484 ± 24	0399 ± 23	

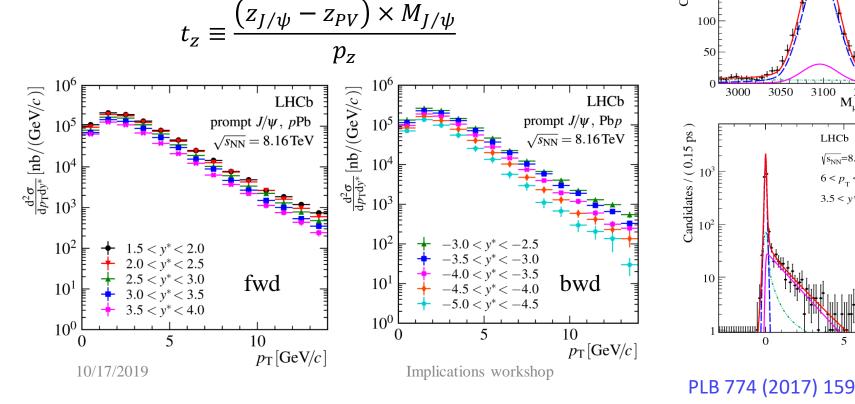

b-hadron production in *p*Pb at 8.16 TeV B^+ nuclear modification factor

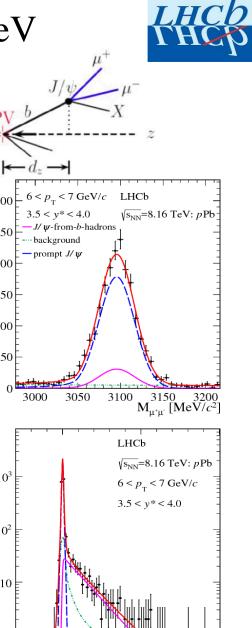
$$R_{pPb}(y^*, p_{T}) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_{T}, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_{T}, \sqrt{s_{NN}})/dx}, A=208$$

- *pp* reference interpolated between 7 & 13 TeV measurements from LHCb
- R_{pPb} suppressed at forward rapidity • increase with increasing p_T
- R_{pPb} consistent with 1 at backward rapidity


- Measurements consistent with calculations with nPDFs EPPS16 and nCTEQ15
- Consistent with J/ψ -from-b
- Trend similar to $D^0 R_{pPb}$

b-hadron production in *p*Pb at 8.16 TeV Production cross-section ratio


PRD99 052011 (2019)



- R_{B^0/B^+}
 - No significant dependence on rapidity and $p_{\rm T}$
- $R_{\Lambda_b^0/B^0}$
 - ~0.4, no strong rapidity dependence
 - Similar values observed in LHCb pp measurement JHEP 08 (2014) 143
 - Decreases with $p_{\rm T}$ when $p_{\rm T} > 5 \text{ GeV}/c$

Prompt and nonprompt J/ψ in pPb at 8.16 TeV

- Sources
 - Prompt: direct production, feed down from heavier states $\psi(2S), \chi_c$
 - Nonprompt: from-*b*-hadrons decays
- Reconstructed through $I/\psi \rightarrow \mu^+\mu^-$
- Prompt and nonprompt (from-*b*-hadrons) separated: the pseudo proper decay time

5

 $t_{\rm z}$ [ps]

12

 $(6 \text{ MeV}/c^2)$

Candidates

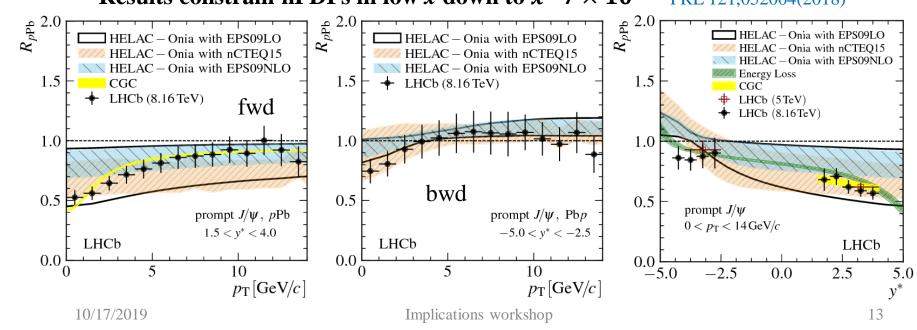
250

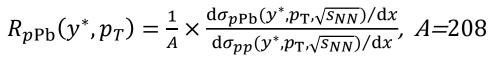
200

150

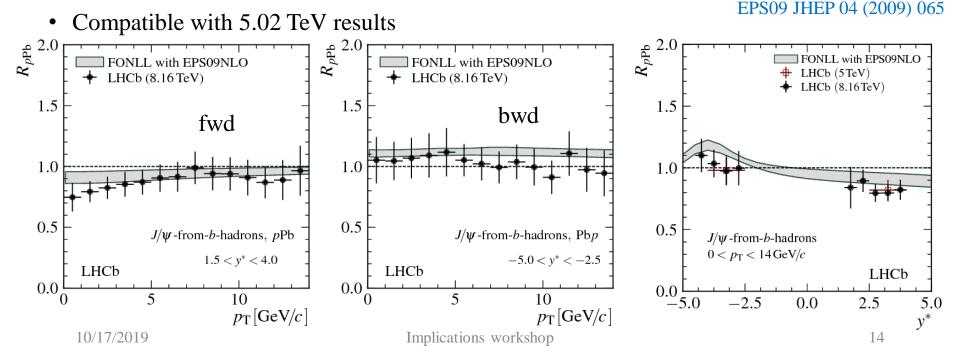
50

10


0


Prompt J/ψ at 8.16 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, \ A=208$


- *pp* reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: suppression up to 50% at low $p_{\rm T}$, decreasing with increasing $p_{\rm T}$
- Backward rapidity: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs at low *x*
- Results constrain nPDFs in low x down to $x \sim 7 \times 10^{-6}$ PRL 121,052004(2018)

J/ψ -from-*b*-hadrons at 8.16 TeV nuclear modification factor in *p*Pb

- pp reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: smaller suppression up to 30% at low $p_{\rm T}$, reach unity at higher $p_{\rm T}$
- **Backward**: compatible with unity
- FONLL with EPS09NLO consistent with data

$\Upsilon(nS)$ in pPb collisions at 8.16 TeV

New differential analysis using 2016 *p*Pb data Nice $\Upsilon(3S)$ signals in forward and backward configurations

Samples	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	
$p \mathrm{Pb}$	2705 ± 87	584 ± 49	262 ± 44	
$\mathrm{Pb}p$	3072 ± 82	679 ± 54	159 ± 39	

 10^{4}

10³ ⊨

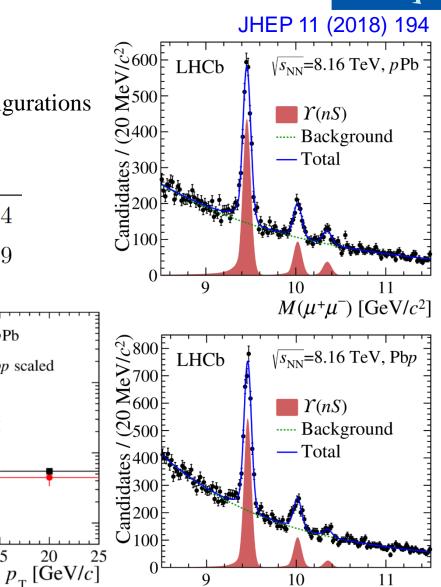
 10^{2}

0

LHCb

 $\Upsilon(2S)$

 $1.5 < y \le 4.0$


 $10 = \sqrt{s_{NN}} = 8.16 \text{ TeV}$

5

 $\Upsilon(2S)$

[nb/(GeV/c)]

 $d\sigma/dp_{T}$

 $\Upsilon(1S)$

 $\sqrt{s_{\rm NN}}$ =8.16 TeV

5

10

 $\Upsilon(1S), pPb$

10

0

LHCb

20

 $p_{\rm T}$ [GeV/c]

15

<v*<2.0

 $2.0 < v^* < 2.5$

 $2.5 \le v \le 3.0$

3.0<v*<3.5

3.5 < v * < 4.0

Implications workshop

10

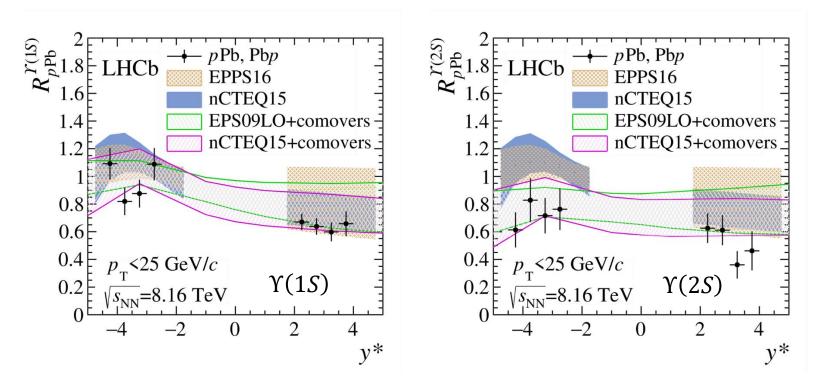
15

20

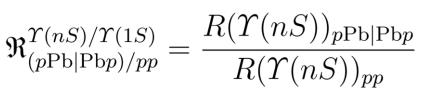
🔶 pPb

pp scaled

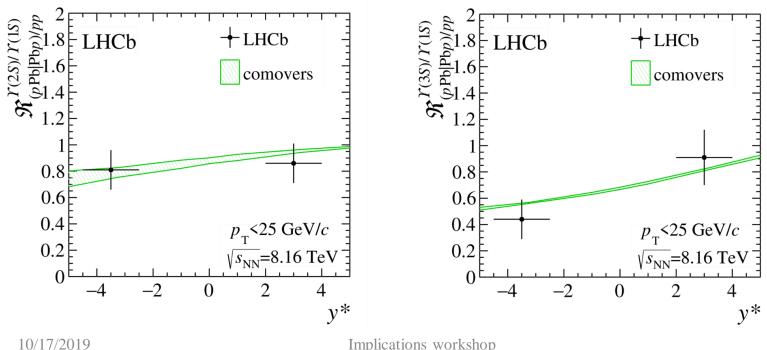
 $M(\mu^+\mu^-)$ [GeV/ c^2]



$\Upsilon(nS)$ nuclear modification factor

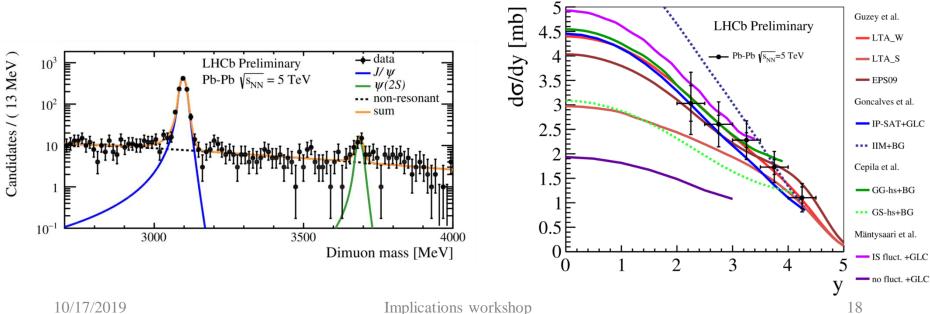


$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, \ A=208$$


pp reference: interpolation of LHCb measurements at 2.76, 7, 8 and 13 TeV Forward rapidity: suppression for both states, compatible with nPDFs Backward rapidity: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation

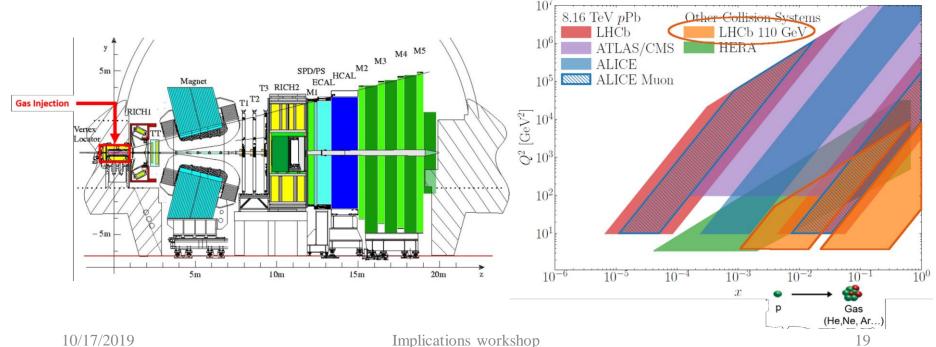
Double ratio

- JHEP 11 (2018) 194
- $R(\Upsilon(nS)) = \frac{\left[\mathrm{d}^2\sigma/\mathrm{d}p_{\mathrm{T}}dy^*\right](\Upsilon(nS))}{\left[\mathrm{d}^2\sigma/\mathrm{d}p_{\mathrm{T}}dy^*\right](\Upsilon(1S))}$
- Double ratio of $\Upsilon(nS)/\Upsilon(1S)$ in *p*Pb and *pp*
- $\Upsilon(3S)$ more suppressed than $\Upsilon(2S)$ in the backward rapidity
- Suggests final state effects...
- Agrees with predictions of "comovers" model



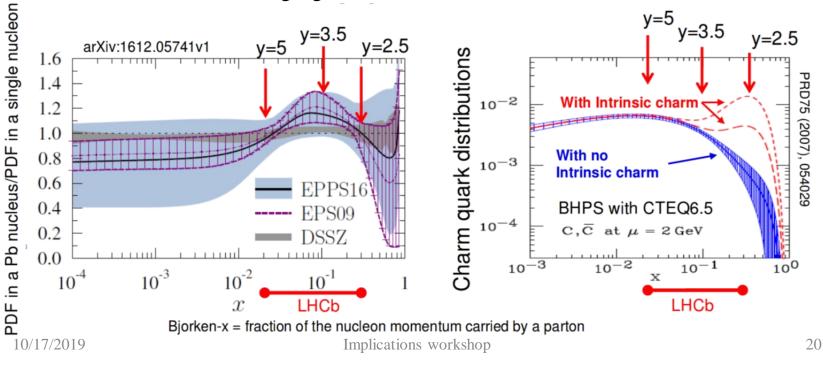
J/ψ in PbPb ultra peripheral collisions

- $J/\psi \rightarrow \mu^+\mu^-$ in ultra peripheral collisions (UPC) PbPb collisions at 5 TeV
- First preliminary result by LHCb on PbPb collisions
- Coherent J/ψ photo-production


Albert Bursche's talk Thursday 15:45

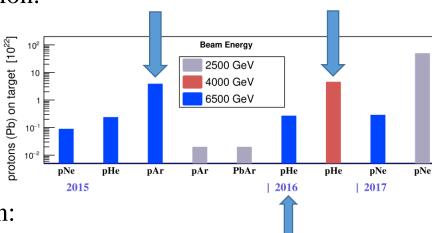
Fixed target physics

- JINST 9 (2014) P12005
- LHCb: only experiment at the LHC can operate in fixed-target mode
- The System for Measuring Overlap with Gas (SMOG) allows the injection of a small amount of noble gas into the LHC beam close to the interaction point
- Allows *p*-gas and ion-gas collisions (He, Ne, Ar,... ~ 2×10^7 mbar)
- $\sqrt{s_{NN}} = 69-110 \text{ GeV}$ between 20 GeV (SPS) and 200 GeV (RHIC)
- $-2.8 < y^* < 0.2$
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon



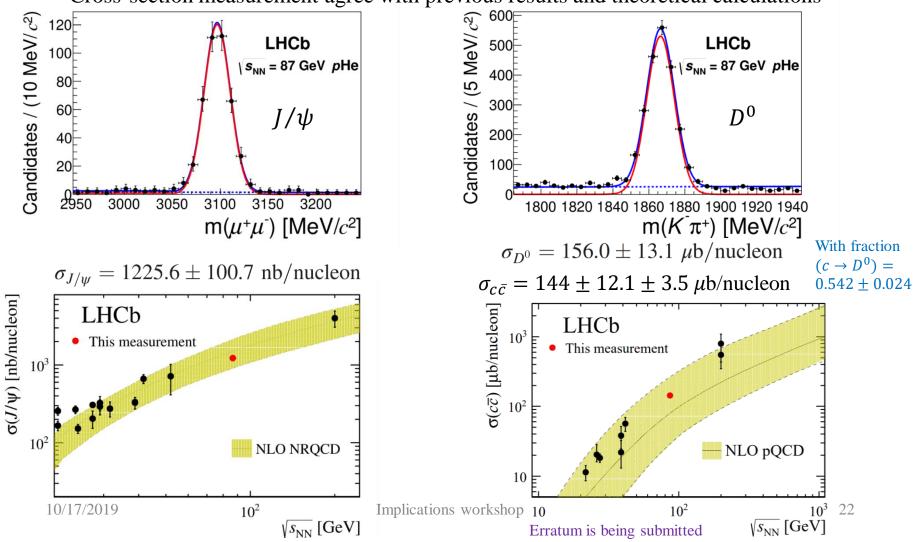
Fixed target physics

JINST 9 (2014) P12005


- LHCb: only experiment at the LHC can operate in fixed-target mode
- The System for Measuring Overlap with Gas (SMOG) allows a small amount of noble gas injection inside the LHC beam close to the interaction point
- Allows *p*-gas and ion-gas collisions (He, Ne, Ar,... ~ 2×10^7 mbar)
- $\sqrt{s_{NN}} = 69-110 \text{ GeV}$ between 20 GeV (SPS) and 200 GeV (RHIC)
- $-2.8 < y^* < 0.2$
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon

Data samples:

- Measurement of J/ψ and D^0 production:
 - *p*Ar at $\sqrt{s_{NN}} = 110.4 \text{ GeV} (2015)$
 - $\sim 4 \times 10^{22}$ Protons On Target
 - *p*He at $\sqrt{s_{NN}} = 86.6 \text{ GeV} (2016)$
 - ~ 5×10^{22} Protons On Target
 - $\mathcal{L}_{pHe} = 7.6 \pm 0.5 \text{nb}^{-1}$

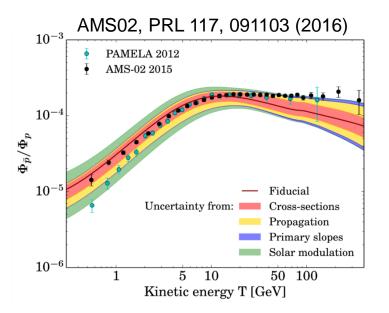

- Measurement of antiproton production:
 - *p*He at $\sqrt{s_{NN}} = 110 \text{ GeV} (2016)$
 - $\mathcal{L}_{p\mathrm{He}} \sim 0.5 \mathrm{nb}^{-1}$

$E_{\rm beam}(p)$	рр	p-SMOG	p-Pb/Pb-p	Pb-SMOG	Pb-Pb
450 GeV	0.90 TeV				
1.38 TeV	2.76 TeV				
2.5 TeV	5 TeV	69 GeV			
3.5 TeV	7 TeV				
4.0 TeV	8 TeV	87 GeV	5. TeV	54 GeV	
6.5 TeV	13 TeV	110 GeV	8.2 TeV	69 GeV	5.1 TeV
7.0 TeV	14 TeV	115 GeV	8.8 TeV	72 GeV	5.5 TeV
	450 GeV 1.38 TeV 2.5 TeV 3.5 TeV 4.0 TeV	450 GeV0.90 TeV1.38 TeV2.76 TeV2.5 TeV5 TeV3.5 TeV7 TeV4.0 TeV8 TeV6.5 TeV13 TeV	450 GeV0.90 TeV1.38 TeV2.76 TeV2.5 TeV5 TeV3.5 TeV7 TeV4.0 TeV8 TeV8 TeV110 GeV	450 GeV 0.90 TeV 1 1 1 1 450 GeV 0.90 TeV 4 4 1 <t< th=""><th>450 GeV 0.90 TeV 1</th></t<>	450 GeV 0.90 TeV 1

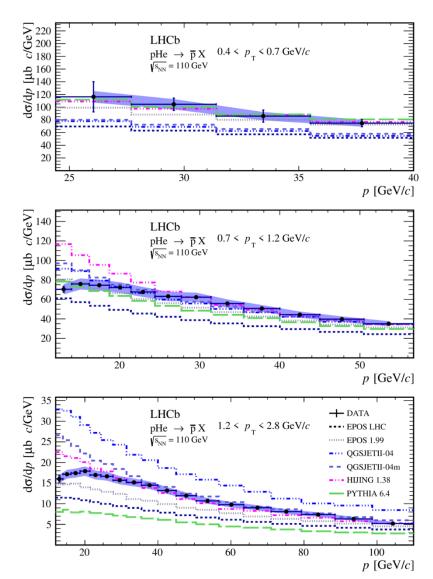

Charm production in fixed-target pA collision

- J/ψ and D^0 inclusive cross-section in *p*He collisions at 86.6 GeV
- First determination of $c\bar{c}$ cross-section at this energy scale
- Cross-section measurement agree with previous results and theoretical calculations

Charm production in fixed-target pA collision



- Differential cross-section (*p*He @ 86.6 GeV), differential yields (*p*Ar @ 110.4 GeV)
- Reasonable agreement with Helac-Onia predictions in rapidity shape
- -2.53<y*<-1.73 → 0.17<x<0.37
- No evidence of strong intrinsic charm contribution observed


Models:

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

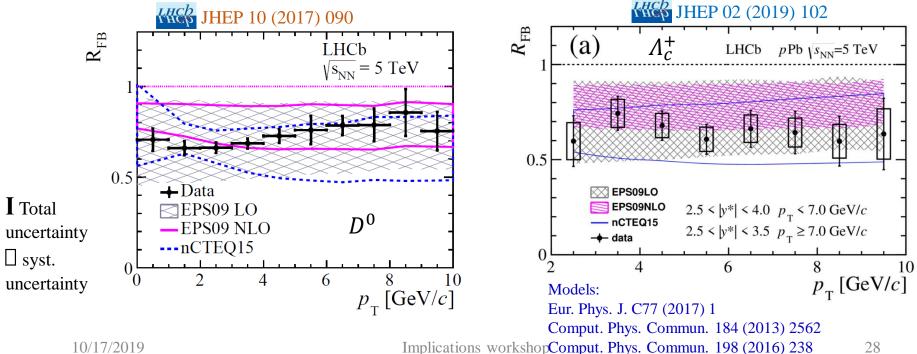
\bar{p} production in pHe collisions

- AMS-2: possible anti-proton excess at high energies
- \bar{p}/p ratio predictions limited by uncertainties on \bar{p} production cross-sections, particularly for *p*-He
- Prompt production at $\sqrt{s_{NN}} = 110 \text{ GeV}$
- First measurement of \bar{p} production in pHe
- Uncertainty (below 10%) smaller than the spread of models

Conclusions

- Production cross-sections of open charm and beauty hadrons in *p*Pb collisions at 5.02 TeV and 8.16 TeV
 - Precise prompt D^0 meson measurement down to zero p_T . Relative suppression to pp collisions in the forward rapidity observed.
 - Prompt Λ_c^+/D^0 ratio consistent with theoretical calculations and *pp* results
 - First measurement of *b*-hadrons using exclusive hadronic modes. Smaller relative suppression in the forward rapidity than D^0 meson at low $p_{\rm T}$.
 - First direct measurement of Λ_b^0 baryon in heavy ion collisions. Λ_b^0/B^0 ratio ~ 0.4
- Production of quarkonia in *p*Pb collisions at 8.16 TeV
 - J/ψ : relative suppression similar to open heavy flavor results
 - $\Upsilon(nS)$: relative suppression of $\Upsilon(nS)$ states observed in *p*Pb
- Fixed-target mode (SMOG)
 - Charm production: no evidence of strong intrinsic charm contribution
 - Antiproton: valuable inputs to astrophysics

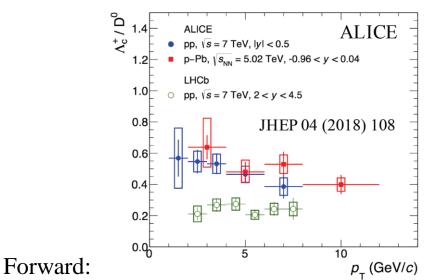
Conclusions


- For the future:
 - Upcoming results:
 - D^0 and Z production cross sections in *p*Pb at 8.16 TeV
 - X(3872) and ψ (2S) in high multiplicity *pp* collision at 8 TeV
 - Charmonia in UPC PbPb (2018)
 - Various ongoing analyses:
 - Charmed hadrons, direct photons, χ_c , V⁰, etc. in *p*Pb, PbPb and SMOG data
 - 2018 PbPb dataset (20 times larger than 2015)
 - *p*Ne and PbNe data sets at 69 GeV
 - Upgrade of SMOG system: SMOG2
 - More gases (H₂, deuteron...)
 - Density of the target gas increase \rightarrow luminosity increase up to a factor of 100

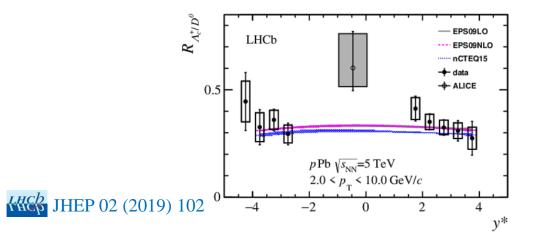
Backup

Prompt charm production at 5.02 TeV forward-backward production ratio

- $R_{\rm FB}$ does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs ٠
 - Model parameterisation constrained by existing LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- D^0 meson show smaller uncertainties than nPDF calculations •

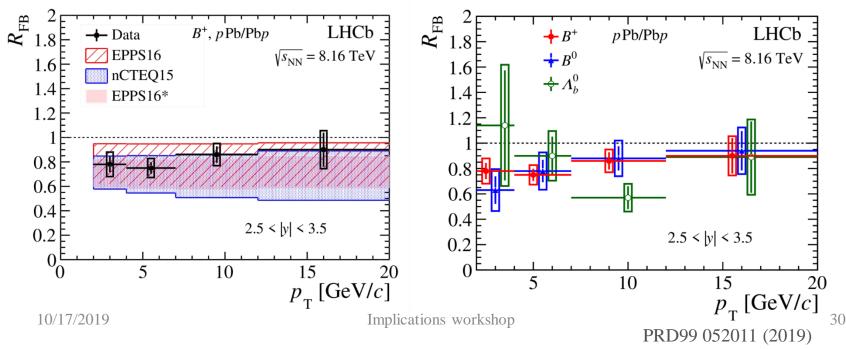


 $R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|v^*|, p_{\rm T})}$


Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5.02 TeV $R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\rm T})}{\sigma_{\rm D^0}(y^*, p_{\rm T})}$

- Consistent at lower $p_{\rm T}$
- Below theories at higher $p_{\rm T}$
- Backward:
 - Consistent for all $p_{\rm T}$
- Consistent with LHCb *pp* results ~0.3
- Lower than ALICE points in midrapidity for both *pp* and *p*Pb

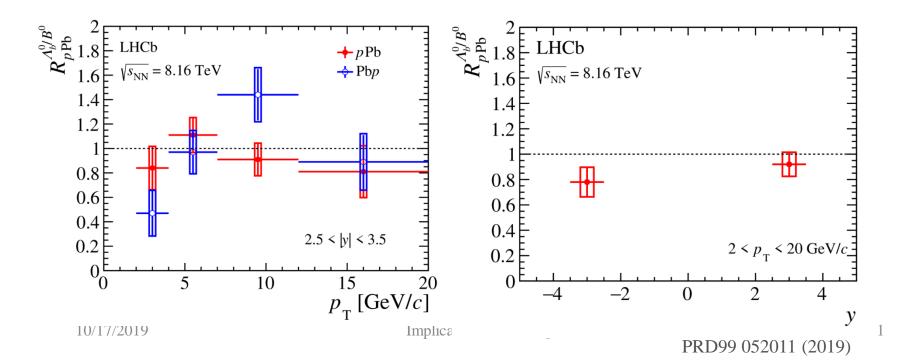
- Sensitive to charm hadronisation mechanisms
- Model based on measured *pp* cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower.
- Slight increase with increasing $p_{\rm T}$



b-hadron production in *p*Pb at 8.16 TeV B^+ , B^0 and Λ_b^0 forward-backward production ratio

- *B*⁺ production suppressed in the forward rapidity region compared to the backward.
- Limited statistics to observe clear trend wrt $p_{\rm T}$
- Consistent with nPDF expectations
- Small uncertainty on $B^+ R_{FB}$ compared to nPDF

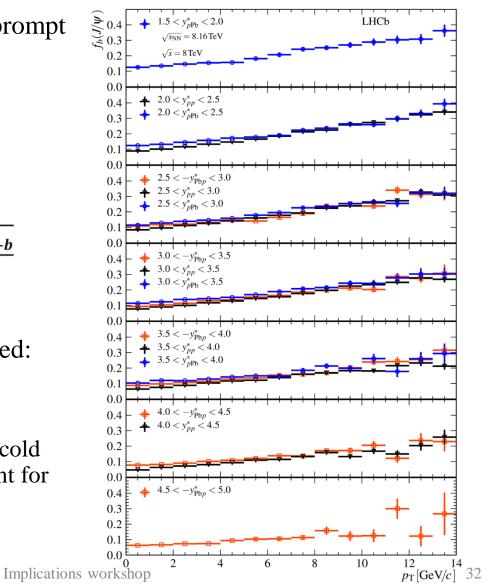
$$R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$$


• Consistent $R_{\rm FB}$ between B^+ , B^0 and Λ_b^0

b-hadron production in *p*Pb at 8.16 TeV B^0 and Λ_b^0 relative modification

- forward rapidity: consistent with 1
- backward rapidity: hint of more suppression for Λ_b^0 .

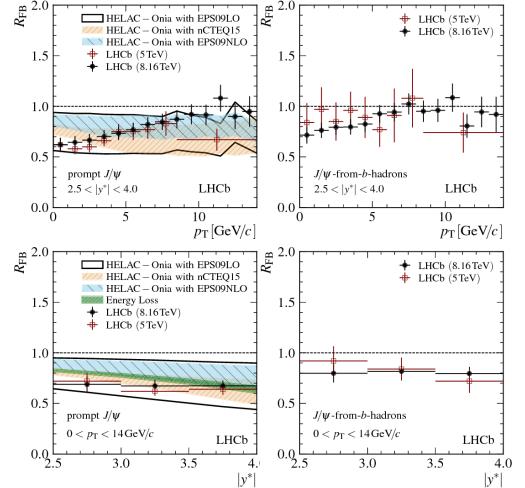
Prompt and nonprompt J/ψ in *p*Pb at 8 TeV



PLB 774 (2017) 159

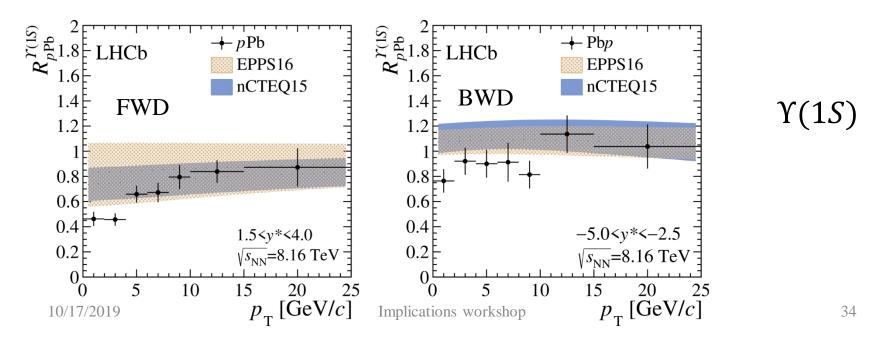
- Separation of prompt and nonprompt J/ψ with $p_{\rm T}$ down to 0
- Fraction from *b* hadrons:

$$f_b = \frac{\frac{\mathrm{d}^2 \sigma_{J/\psi\text{-from-}b}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*}}{\frac{\mathrm{d}^2 \sigma_{\mathrm{Prompt}J/\psi}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*} + \frac{\mathrm{d}^2 \sigma_{J/\psi\text{-from-}b}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*}}$$


- *pp*, forward, backward compared:
 - similar trends
 - Increasing with $p_{\rm T}$
 - Small differences at low $p_{\rm T}$: cold nuclear matter effects different for the prompt and nonprompt

Prompt J/ψ at 8 TeV forward-backward production ratio

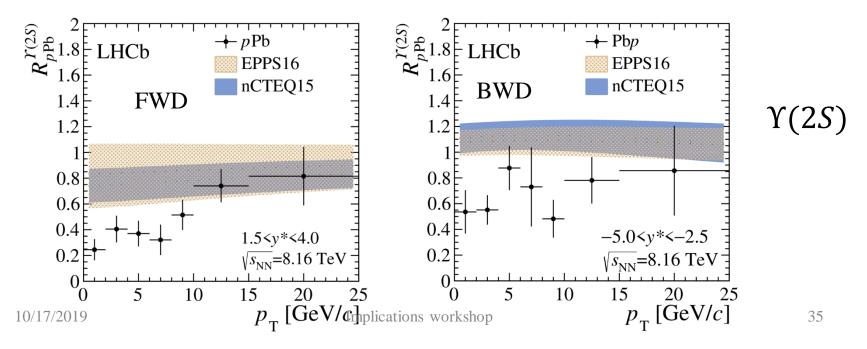
- $R_{\text{FB}} = \frac{\mathrm{d}\sigma(+|y^*|,p_{\mathrm{T}})/\mathrm{d}x}{\mathrm{d}\sigma(-|y^*|,p_{\mathrm{T}})/\mathrm{d}x}$
- *R*_{FB} does not need inputs from *pp* collisions.
- Prompt J/ψ :
 - Clear forward-backward asymmetry
 - Increasing trend with increasing $p_{\rm T}$
- Nonprompt J/ψ :
 - Closer to unity
- Models for prompt J/ψ only
- Consistent with 5 TeV results


$\Upsilon(1S)$ nuclear modification factor

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$$

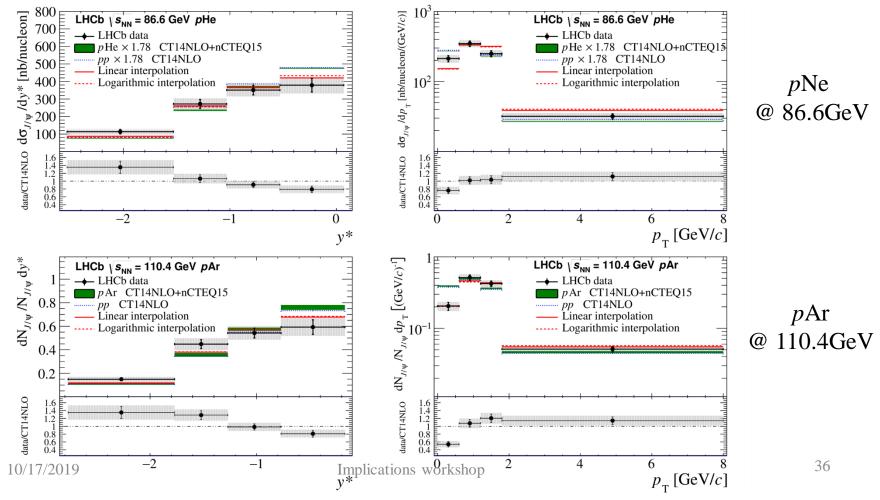
pp reference: interpolation of LHCb measurements at 2.76, 7, 8 and 13 TeV Forward rapidity: suppression for for $\Upsilon(1S)$ and $\Upsilon(2S)$ states, compatible with nPDFs

Backward rapidity: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation


$\Upsilon(2S)$ nuclear modification factor

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$$

pp reference: interpolation of LHCb measurements at 2.76, 7, 8 and 13 TeV Forward rapidity: suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$ states, compatible with nPDFs


Backward rapidity: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation

J/ψ production in fixed-target pN collision Phys. Rev. Lett. 122 (2019) 132002

- Differential cross-section (*p*Ne @ 86.6GeV)
- Differential yields (pAr @ 110.4GeV)
- Helac-Onia underestimate the J/ψ cross-section by a factor of 1.78
- Reasonable agreement in rapidity shape

