Probing the nucleon and nuclei at small x

Heikki Mäntysaari

University of Jyväskylä, Department of Physics
Finland

October 17, 2019 / Implications of LHCb measurements and future prospects
Exploring the QCD phase diagram: the LHCb potential

Non-linear QCD matter at $x \ll 1$
Density $\sim A^{1/3}$
Color Glass Condensate effective theory of QCD

LHCb is a fantastic detector

- Large parton densities at small $x \sim e^{-y}/\sqrt{s}$
- LHCb has good capabilities at forward rapidities
- Non-linear saturation effects \Rightarrow e.g. nuclear suppression

This talk: inclusive spectra, correlations, photoproduction, exclusive processes (my wish list!)
Probing protons and nuclei at high energy

CGC: unified framework to describe inclusive and exclusive scattering

Inclusive $q + A \rightarrow q + X$

$\sigma \sim \text{dipole amplitude} \sim \text{gluon}$

q in A and A^*

Deep inelastic scattering

$\sigma \sim \text{dipole amplitude} \sim \text{gluon}$

(optical theorem)

Exclusive processes

$\sigma \sim \text{dipole amplitude}^2$
Probing protons and nuclei at high energy

CGC: unified framework to describe inclusive and exclusive scattering

\[q + A \rightarrow q + X \]
\[\sigma \sim \text{dipole amplitude} \sim \text{gluon} \]
\(q \) in \(A \) and \(A^* \)

Deep inelastic scattering
\[\sigma \sim \text{dipole amplitude} \sim \text{gluon} \]
(optical theorem)

- Cross section written in terms of universal dipole amplitude
 (same in inclusive and exclusive!)
- **CGC**: perturbative evolution of dipole, predict \(x \) dependence
- Recall: You are doing \(\gamma - p \) and \(\gamma - Pb \) also (large \(b \)!

\[\sigma \sim \text{dipole amplitude}^2 \]
1. Inclusive particle production $p + Pb$

$$R_{pA} = \frac{dN^p/dA}{N_{bin}dN^{pp}}$$

- Large nuclear suppression: forward RHIC, midrapidity LHC
- Some forward data from RHIC, tension between experiments
- LHC midrapidity: probe structure complicated ($x_1, x_2 \ll 1$)
- My wish: forward spectra in $p + p$ and $p + Pb$, and R_{pA}!
- Important when determining how saturation effects modify the nuclear structure at small x
Forward spectra – thank you!

- Nice and useful data (both R_{pA} and spectra)
- CGC calculations compatible with data, but J/Ψ and D formation is complicated
- More inclusive (e.g. charged hadron, or π) measurements would have more impact

B. Ducloué, T. Lappi, H.M, 1612.04585

B. Ducloué, T. Lappi, H.M, 1503.02789
2. Diffraction, vector meson photoproduction

High energy factorization:

1. $\gamma^* \rightarrow q\bar{q}$ splitting,
 wave function $\Psi^\gamma(r, Q^2, z)$
2. $q\bar{q}$ dipole scatters elastically
3. $q\bar{q} \rightarrow J/\Psi$,
 wave function $\Psi^V(r, Q^2, z)$

Diffractive scattering amplitude

$$ A_{\gamma^* p \rightarrow Vp} \sim \int d^2b dz d^2r \psi^\gamma \psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b) $$

- Impact parameter is the Fourier conjugate to the momentum transfer
 → Access to the spatial structure
- Recall: $N \sim$ gluon, so $\sigma \sim$ gluon2
Two classes of diffractive events

Coherent diffraction:
Target proton/nucleus remains in the same quantum state
Probes average density

\[
\frac{d\sigma}{dt} \sim |\langle A^{\gamma^* p \rightarrow Vp} \rangle|^2
\]

Incoherent/target dissociation:
Total diffractive − coherent cross section
Target breaks up

\[
d\sigma_{\gamma^* p \rightarrow Vp} \sim \langle|A^{\gamma^* p \rightarrow Vp}|^2\rangle - |\langle A^{\gamma^* p \rightarrow Vp} \rangle|^2
\]

Variance, measures the amount of fluctuations!

\[
\frac{d\sigma}{dt} |t|
\]

Coherent/Elastic
Incoherent/Breakup

t_1 t_2 t_3 t_4

Good, Walker, PRD 120, 1960
Miettinen, Pumplin, PRD 18, 1978
Kovchegov, McLerran, PRD 60, 1999
Kovner, Wiedemann, PRD 64, 2001
Two classes of diffractive events

Coherent diffraction:
Target proton/nucleus remains in the same quantum state
Probes average density

\[
\frac{d\sigma^{\gamma^* p \rightarrow Vp}}{dt} \sim |\langle A^{\gamma^* p \rightarrow Vp} \rangle|^2
\]

Incoherent/target dissociation:
Total diffractive − coherent cross section
Target breaks up

\[
\frac{d\sigma^{\gamma^* p \rightarrow Vp^*}}{dt} \sim \langle |A^{\gamma^* p \rightarrow Vp}|^2 \rangle − |\langle A^{\gamma^* p \rightarrow Vp} \rangle|^2
\]

Variance, measures the amount of fluctuations!
Probing nuclear effects

- Sensitivity on gluons ($\sigma \sim \text{gluon}^2$)
- $x \sim e^{-y/\sqrt{s}}$
- CGC calculations compatible
- pp, pA and AA data already from ALICE, CMS and LHCb
- My wish list: coherent and incoherent, A/p ratios and t spectra!
- Coherent-incoherent separation?

Clear nuclear effects (coherent): impulse approximation = scaled $\gamma + p$
Coherent diffraction

\[\frac{d\sigma}{dy} (\text{mb}) \]

\(y \)-distribution of the cross-section for the reaction \(\text{Pb+Pb} \rightarrow \text{Pb+Pb} + J/\psi \) at \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \).

- ALICE Coherent \(J/\psi \)
- Reflected

\(\gamma A \): nPDFs and CGC calculations compatible

\(pp \): HERA measurements extended to large \(W \), deviation from the power law?

\(\sigma_{\gamma p} \rightarrow J/\psi p \) [nb]

- Power law fit to H1 data
- JMRT NLO prediction

\(W \) [GeV]

- LHCb (\(\sqrt{s} = 13 \text{ TeV} \))
- LHCb (\(\sqrt{s} = 7 \text{ TeV} \))
- ALICE
- H1
- ZEUS
- Fixed target exp.
Constraining proton fluctuations: $\gamma + p \rightarrow J/\Psi + p \ (W = 75 \text{ GeV})$

Proton geometry from HERA J/Ψ data
(Coherent \sim average, incoherent \sim fluctuations)

HERA data requires large event-by-event fluctuations

CGC calculation H.M, B. Schenke, 1607.01711
Energy dependence – LHC advantage

ALICE measurement in $\gamma + p \rightarrow J/\Psi + p(p^*)$ collisions (p+Pb UPC)

$x \sim 10^{-2} \rightarrow 2 \cdot 10^{-5}$

- Incoherent cross section ≈ 0 at small x
- Smoother proton (black disk) at small x?

(Qualitatively) compatible with CGC evolution

H. M, B: Schenke, 1806.06783, also Cepila et al, 1608.07559
The most complete description of the partonic structure

\[W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \int \frac{dz^- d^2 z_{\perp}}{16\pi^3} e^{ixP^+ z^- - i\vec{k}_{\perp} \cdot \vec{z}_{\perp}} \langle P - \frac{\Delta}{2} | q(-z/2) \gamma^+ q(z/2) | P + \frac{\Delta}{2} \rangle \]
Diffractive dijets and the Wigner distribution: more differential imaging

Two momenta, extra handle

\[\gamma^* + p \to \text{jet}_1 + \text{jet}_2 + p \]

\[\Delta = k_1 + k_2 \text{ recoil momentum} \]
\[P = \frac{1}{2}(k_1 - k_2) \text{ dijet momentum} \]
\[\text{Nearly back-to-back jets, } |P| > |\Delta| \]

\[d\sigma \sim \nu_0(1 + 2\nu_2 \cos[2\theta(P, \Delta)]) \]

Hatta, Xiao, Yuan, 1601.01585
Hagiwara et al, 1706.01765

\(\nu_2 \) in principle connected to elliptic part of gluon Wigner distribution in certain limit \((Q^2 \to 0 [=\text{LHC}], |P| \gg |\Delta|)\)

H. M, N. Mueller, B. Schenke, 1902.05087:
CGC calculation of dijet cross section and Wigner
CGC calculation of dijet production

\[\gamma^* + p \rightarrow \text{jet}_1 + \text{jet}_2 + p \]

\[q^\perp - \Delta^\perp \]

Altinoluk, Armesto, Beuf, Rezaeian, 1511.07452

\[\frac{d\sigma}{dP d\Delta} \sim \int_{bb'} e^{-i(b-b')\cdot \Delta} e^{-i(r-r')\cdot P} N(r, b) N(r', b') \otimes \cdots \]

- \(P \) and \(\Delta \) are conjugates to dipole size and impact parameter.
 - Coordinate space: Dipole-target interaction \(N(r, b) \) depends on \(\theta(r, b) \)
 - Momentum space: Cross section depends on \(\theta(P, \Delta) \)
 - Mixed space: Wigner distribution \(xW(k, b) \) depends on \(\theta(k, b) \)

\[d\sigma \sim v_0(1 + 2v_2 \cos[2\theta(P, \Delta)]) \]

- \(\Delta = k_1 + k_2 \)
- \(P = \frac{1}{2}(k_1 - k_2) \)

Y. Hatta, B-W. Xiao, F. Yuan, 1601.01585
Charm dijets, extracted $v_2 \left(\gamma^* + p \rightarrow \text{jet} + \text{jet} + p \right)$

Electron-ion collider kinematics: modulation \sim few% (L) or \sim 0.1% (T)

UPC at LHC: only transverse real phototons

CGC calculation H.M. N. Mueller, B. Schenke, 1902.05087: Wigner distribution has similar features

Larger modulation at larger Δ, but connection to Wigner more complicated

$$d\sigma \sim v_0 \left(1 + 2v_2 \cos[2\theta(P, \Delta)] \right)$$
Energy dependence of total v_2 (transverse + longitudinal)

With JIMWLK (pert. x evolution)
- v_2 decreases by factor ~ 2 in the EIC energy range
- Dominant reason: proton grows
 \Rightarrow Smaller density gradients

No JIMWLK:
- No energy dependence

Analysis in EIC kinematics, much more evolution at the LHC energies
4. Inclusive photoproduction processes

Inclusive $\gamma + p/A$ processes: just being started...

- **ATLAS**: first dijet measurements at large p_T
- **Advantage**: Also useful for nuclear PDF analyses

Many processes I would want to see ($p_T \sim$ a few GeV)

- Inclusive hadron/jet spectra
- Dijet azimuthal correlations
- Saturation: back-to-back correlation vanishes in $p \rightarrow A$

H.M, Lappi, 1209.2853

- Nuclear suppression factors
- Rapidity (Bjorken-x) dependencies

ATLAS-CONF-2017-011

Heikki Mäntysaari (JYU)
Conclusions

- LHCb has a unique kinematical coverage
- Access large parton densities and non-linear QCD at small x
- Inclusive forward spectra and nuclear modification factors
 - Very basic observable, would have high impact
- Coherent and incoherent vector meson production
 - Access non-linear effects, probe geometry and geometry fluctuations
- Diffractive dijet production
 - Potential to constrain the gluon Wigner distribution
- Inclusive photoproduction
 - Spectra, correlations,...
 - Useful for nuclear PDF studies also
BACKUPS
Constraining proton fluctuations

Simple constituent quark inspired picture:

- Sample quark positions from a Gaussian distribution (width B_{qc}).
- Small-x gluons are located around the valence quarks (width B_q).
- Combination of B_{qc} and B_q sets the degree of geometric fluctuations.

Proton = 3 overlapping hot spots

$$T_{proton}(b) = \sum_{i=1}^{3} T_q(b - b_i) \quad T_q(b) \sim e^{-b^2/(2B_q)}$$

+ density fluctuations for each hot spot

H.M, Schenke, 1607.01711, 1603.04349, also more complicated geometries

Similar setup e.g. in Bendova, Cepila, Contreras; Cepila, Contreras, Krelina, Takaki; Traini, Blaizot
Realistic setup: angular correlations from CGC

CGC setup

- Proton local density $Q_s^2(b)$
- Random color charges, Yang-Mills equations
- Perturbative small-x evolution
- Dipole-proton scattering amplitude N

 Dipole size r, impact parameter b

\[N(r, b, y) = v_0(1 + 2v_2 \cos[2\theta(r, b)]) \]

Evolution suppresses elliptic modulation

Expect to see that also in dijet production

Parameters constrained by HERA F_2 and J/Ψ data

H. M., B. Schenke 1607.01711, 1806.06783
Diffraction at high energy

High energy factorization

1. $\gamma \rightarrow q + \bar{q}$ (photon wave function Ψ)
2. Dipole-target interaction (dipole amplitude N)
3. $q + \bar{q} \rightarrow J/\Psi, \rho, \ldots$ (J/Ψ wave function)
 or $q + \bar{q} \rightarrow$ dijet

Target remains intact (Good-Walker picture)

\[
\frac{d\sigma}{dt} \sim |\langle A \rangle|^2
\]

Note: $N \sim xg$, so $\sigma \sim$ gluon2

+ access to geometry: $t \leftrightarrow b$ Fourier transform

Advantage of CGC: unified framework to describe inclusive and diffractive scattering
Charm dijets, dependence on dijet momentum $|P| \ (\gamma^* + p \rightarrow \text{jet} + \text{jet} + p)$

Transverse component dominates at $Q^2 = 1\text{GeV}^2$

Diffractive dips also in Δ spectra (not shown)

P conjugate to dipole size r, dip \sim size of the projectile $\sim 1/\sqrt{m_c^2 + z(1 - z)Q^2}$
Baseline study

Introduce r, b correlation to the IPsat

Calculate two quark production ($\text{quark} \approx \text{jet}$)

$$N(r, b, x) = 1 - \exp \left\{ -r^2 F(x, r) T_p(b) C_\theta(r, b) \right\},$$

$$C_\theta(r, b) = 1 - \tilde{c} \left[\frac{1}{2} - \cos^2 \theta(r, b) \right]$$

$T(b)$: proton density profile

- $\tilde{c} = 0$: Standard IPsat (dashed)
- $\tilde{c} > 0$: Artificial dependence on $r \cdot b$ (solid line)

Dijet cross section has no dependence on $\theta(P, \Delta)$ if $\tilde{c} = 0$ (dashed line)
Larger modulation away from correlation limit

- Significant modulation at large $|\Delta|$
- ... where connection to Wigner is less clear
- But can calculate σ and Wigner from CGC (H. M, N. Mueller, B. Schenke, 1902.05087)
- Similar result in calculation including soft gluon radiation in the final state (Hatta, Mueller, Ueda, Yuan, 1907.09491)

Salazar, Schenke, 1905.03763
Wigner and Husimi distributions – to the mixed space

Compare predicted dijet v_n to gluon Wigner and Husimi distributions

<table>
<thead>
<tr>
<th>Wigner distribution $xW(x, P, b)$</th>
<th>Husimi distribution $xH(x, P, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most complete description</td>
<td>Wigner + with Gaussian smearing</td>
</tr>
<tr>
<td>No probabilistic interpretation (uncertainty principle)</td>
<td>Positive definite, probabilistic interpretation</td>
</tr>
<tr>
<td>Not positive definite</td>
<td>Dependence on the smearing parameter l</td>
</tr>
<tr>
<td>Large dipoles important</td>
<td>Large dipoles suppressed by l</td>
</tr>
</tbody>
</table>

$$xW(x, P, b) = \frac{-2N_c}{(2\pi)^2\alpha_s} \int_{r} e^{iP \cdot r} \left(\frac{1}{4} \nabla_b^2 + P^2 \right) \mathcal{N}(r, b, x) = xW_0 + 2xW_2 \cos[2\theta(P, b)].$$

$$xH(x, P, b) = \frac{1}{\pi^2} \int_{b', P'} e^{-(b-b')^2/l^2} \left[(P-P')^2 \right] xW(x, P', b') = xH_0 + 2xH_2 \cos[2\theta(P, b)].$$

Here $l = 1\text{GeV}^{-1}$ corresponds to coordinate space smearing distance $\sim 0.2 \text{ fm}$.
Wigner and Husimi distributions - to the mixed space

\[xH = xH_0 + 2xH_2 \cos 2\theta(P, b), \quad xW = xW_0 + 2xW_2 \cos 2\theta(P, b) \]

- Wigner distribution negative at small \(|P| \)
- At \(|P| \gtrsim 1/l \) matches Husimi
- Elliptic parts negative, match at \(|P| \gtrsim 1/l \)
- \(|xW_2| \gg xH_2 \) at small \(|P| \)
Husimi distribution, closer look

Study Husimi distribution and define $v^H_2 = xH_2/xH_0$, find $v^H_2 \sim 0.1 \ldots 1\% \sim$ dijet v_2

- Large ellipticity at large impact parameters
- $v^H_2 \rightarrow 0$ at large P: target smooth at small distance scales

- Generally $v^H_2 \rightarrow 0$ due to evolution
- Increasing $|v^H_2|$ at small $|P|$: proton grows, and gradients at scale $\sim l$ start to contribute