V3.0 CP asymmetries in the decays of charm hadrons with many-body Final States
\& short comments about strange hadrons -Impact of Non-perturbative QCD on CP Violation

Ikaros Islam Bigi, Notre Dame du Lac
LHCb WS, October 2019

When Gods speak in Riddles
? Tragic Oracles \& Tragic Mis-understanding?

Delphi
(old Delphi detector is still close

When `Gods' (=` Symmetries') speak in Riddles
? Tragic Oracles \& Tragic Mis-understanding?
LHCb \& Belle II both as a pioneer about non-pert. QCD \& weak dynamics - as a team of experimenters and HEP theorists [as before BaBar \& Belle]
experimenters

theorists

On seeing the missile shot by a catapult which had been brought then for the first time from Sicily, the king from Sparta in the fourth century B.C. cried out:
'By Heracles, this is the end of man's valor.'
Analogy of physicists with computers?

Manifestation of a divine being through something both simple \& striking: symmetries \& their tools!
Fitting the data vs. Information inside the data $1^{\text {st }}$ step: models
$2^{\text {nd }}$ step: model-independent analyses - indeed, true progress
$3^{\text {rd }}$ step: best fitted analyses often do not give the best information about the underlying dynamics; data are the referees - in the end!
crucial: collaborations of experimenters \& theorists with correlations \& judgments!

Manifestation of a divine being through something both simple \& striking: symmetries \& their tools!
Fitting the data vs. Information inside the data $1^{\text {st }}$ step: models
$2^{\text {nd }}$ step: model-independent analyses - indeed, true progress
$3^{\text {rd }}$ step: best fitted analyses often do not give the best information about the underlying dynamics; data are the referees - in the end!
crucial: collaborations of experimenters \& theorists with correlations \& judgments!
The goals for my talk here:
-- Direct CP asymmetry in $D^{0} \rightarrow K+K-/ \pi+\pi-$ is a wonderful $1^{\text {st }}$ step for a long traveling for fundamental dynamics! Next one measures indirect CP violation in $D^{0} \rightarrow K+K$-.
-- Probes many-body non-leptonic FS of charm hadrons.
-- Short comments about possible impact of ND on strange hadrons.
-- collaboration of HEP \& Hadrodynamics from different `cultures'
(I) Introduct: Wilsonian OPE, broken U- \& V-spin symmetries
(II) Consistent Parameterization of the CKM Matrix
(III) Intermezzo: $C P$ asymmetry in $D^{0} \rightarrow K+K-/ \pi+\pi-$
(IV) CP asymmetries with $\Delta C \neq O$ (\& lifetimes of charm baryons)
(V) Direct CP asymmetries for Strange Hadrons

Epilogue for the future: Collaboration of HEP \& Hadrodynamics
(VI) Summary: Impact of non-perturbative QCD on CP Violation

The slides I think are very important see the symbol

I had produced this picture; later I will explain why it is not about bragging rights.
(I) Introduction: Wilsonian OPE,broken U- \& V-spin symmetries

(I.1) Wilsonian Operator Product Expansion (OPE)

Almost all invoke OPE -- often without using Wilsonian prescription! However: "not all OPE's are created equality"!
Shifman \& collaborators had emphasized applying OPE is subtle:
the Wilsonian OPE stops at $\sim 1 \mathrm{GeV}$, not sizably lower
(I.2) broken U- \& V-spin symmetries

Does 'Lipkin rule' work for B decays? Hardly.
$1^{\text {st }}$ lesson: difference between U - \& V-spin is 'fuzzy' $2^{\text {nd }}$ lesson: we have to go well beyond 2-body FS

(II) Parameterization of the CKM Matrix

(II.1) Wolfenstein's parameterization

Wolfenstein's parameterization was very smart, easily usable, well-known \& used all the time. The SM with 3 families of quarks describes the CKM matrix with 4 parameters: λ, A, ρ, η; expansion of $\lambda=0.223$, while A, ρ, η are $O(1)$.
Fitted values give $A \approx 0.82$-- but $\eta \approx 0.35, \rho \approx 0.14$ not close to unity;
-- thus not real control over systematic uncertainties.

(II.2) Consistent parameterization

Consistent parameterization of CKM matrix with more precision [Y.H. Ahn, H-Y. Cheng, S. Oh (2011)] through $O\left(\lambda^{6}\right)$!
Pattern is not so obvious as before:
correlations between 4 triangles, not focus 'golden one'
-- maximal $S M$ value for $S\left(B^{0}->\psi K_{s}\right) \sim 0.74$ for indirect CPV
-- SM value $S\left(B_{s}{ }^{0}->\psi \phi\right) \sim 0.03-0.05$
-- basically zero CPV for double Cabibbo suppressed (DCS) decays - hunting region for ND!

（III）Intermezzo－Direct CP asymmetry in $D^{0} \rightarrow \mathrm{~K}+\mathrm{K}-/ \pi+\pi-$ ！

Now we are just entering a new era：
for the first time $C P$ violation has been established in $\Delta C ⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 0 ！
LHCb collaboration has shown its data from the run－1 \＆run－2－－ but an achievement：

$$
\Delta A_{C P}=A_{C P}\left(D^{0} \rightarrow K+K-\right)-A_{C P}\left(D^{0}->\pi+\pi-\right)=(-1.54 \pm 0.29) \times 10^{-3}
$$

indirect $C P V$ was found first in ΔS 非 $0 \equiv \equiv B B$ ，but not yet for $\Delta C \equiv=0$ ；
SM＇paints＇the｀landscape＇for indirect CPV $\sim 10^{-4}-10^{-3}$ ．
Here talk about SCS rates［below will discuss DCS ones］：

- BR（ $\left.D^{0}->K+K-\right) \sim 4 \times 10^{-3}$ vs． $\operatorname{BR}\left(D^{0}->\pi+\pi-\right) \sim 1.4 \times 10^{-3}$ ；
- BR $\left(D^{+}->K^{+} K_{s}\right) \sim 2.8 \times 10^{-3}$ vs．$B R\left(D^{+}->\pi+\pi^{0} / \eta / \eta \prime\right) \sim(1.2 / 3.8 / 5.0) \times 10^{-3} ;$
$--\operatorname{BR}\left(D_{s}{ }^{+}->\pi+K_{s}\right) \sim 1.2 \times 10^{-3}$ vs．$B R\left(D_{s}{ }^{0} \rightarrow K^{+}+\pi / \eta / \eta^{\prime}\right) \sim(0.6 / 1.8 / 1.8) \times 10^{-3}$.
three comments：
－first one probes direct CP asymmetries in 2－body FS ：
－present data show the impact of FSI ；
－it is crucial to probe 3－\＆4－body FS；I will discuss next．
［Suggestion：LHCb \rightarrow LHCbc］

(IV) $C P$ asymmetries with $\Delta C \neq=0$

March 2019: LHCb Collaboration has established direct CP asymmetry Next steps:
-- Indirect CP violation
-- SCS decays direct CP asymmetries:
$D^{0} \rightarrow 2 \pi+2 \pi-/ K+K-\pi+\pi-; D^{+} \rightarrow \pi+\pi+\pi-/ \pi+K+K-; D_{s}{ }^{+} \rightarrow K+\pi+\pi-/ K+K+K-$

- Averaged CPV: SM ~ 0.001
- Regional CPV: large impact of re-scattering like ~ 0.01 or more
-- DCS decays direct CP asymmetries:
$D^{0} \rightarrow K+\pi-\pi+\pi-/ 2 K+K-\pi-; D^{+} \rightarrow K+\pi+\pi-/ K+K+K-; D_{s}{ }^{+} \rightarrow K+K+\pi-$
- Averaged CPV: basically zero for the SM
- Regional CPV: hunting region for ND with no SM background when one has large data plus refined tools plus novel lessons about non-perturb. QCD
- Maybe the main challenge: confused by true CF transitions
(IV.1) CP asymmetries with singly Cabibbo suppressed (SCS) ones $B R\left(D^{+}->\pi+\pi+\pi-\right)=(3.27 \pm 0.18) \times 10^{-3}, B R\left(D^{+}->\pi+K+K-\right)=(9.93 \pm 0.24) \times 10^{-3}$;
$B R\left(D_{s}^{+} \rightarrow K+\pi+\pi-\right)=(6.6 \pm 0.4) \times 10^{-3}, B R\left(D_{s}^{+}->K+K+K-\right)=(0.218 \pm 0.021) \times 10^{-3} ;$
$B R\left(D^{0} \rightarrow 2 \pi+2 \pi-\right)=(7.56 \pm 0.20) \times 10^{-3}, B R\left(D^{0} \rightarrow K+K-\pi+\pi-\right)=(2.47 \pm 0.11) \times 10^{-3} ;$
LHCb collaboration is probing CPV in many-body FS 'now'!
Remember:
do not ignore the impact of broad (scalar) resonances
like $f_{0}(500) /$ sigma, $K^{*}{ }_{o}(700) /$ kappa etc. etc.
Furthermore, broad resonances in the region ~ 0.5-1.5 GeV cannot been described with Breit-Wigner parameterization.

The landscapes of hadrons

'effective' (?!) operator

Re-scattering is crucial to understand the underlying dynamics!

'effective' (?!) operator
need 'judgment' about applying resonances, threshold enhancements etc. with tools like dispersion relations

(IV.1) CP asymmetries with singly Cabibbo suppressed (SCS) ones

Analyses with dispersion relations!
The idea came from theorists.
However, it pointed out one needs `good' data to analyze with a team of experimenters \& theorists;
amplitude $f(s)=(1 / \pi) \int d s^{\prime} \operatorname{Im} f\left(s^{\prime}\right) /\left(s^{\prime}-s-i \varepsilon\right)$
amplitude $f(s)=f(0)+(s / \pi) \int d s^{\prime} \operatorname{Im} f\left(s^{\prime}\right) / s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)$
Dispersion relations are above models, but below QFT; both experimenters \& theorists need judgments to apply i.e. dispersion relations are 'Protestant', not 'Catholic'.
(IV.2) CP asymmetries with doubly Cabibbo suppressed ones PDG2018 for DCS decays:

```
BR(D+ -> K+K+K-)/BR(D+ -> K-\pi+\pi+) = (0.95 \pm0.22) × 10-3
BR(D+ -> K+\pi+\pi-)/BR(D+ -> K-\pi+\pi+) = (5.77 \pm0.22) \times 10-3
BR(Ds+
```

LHCb for DCS decays, arXiv:1810.03138 [hep-ex] about 8 TeV (not run-2) published in JHEP 03 (2019) 176
$B R(D+->K+K+K-) / B R(D+->K-\pi+\pi+)=(0.6541 \pm 0.0025 \pm 0.0042) \times 10^{-3}$
$B R(D+->K+\pi+\pi-) / B R(D+->K-\pi+\pi+)=(5.231 \pm 0.009 \pm 0.023) \times 10^{-3}$
$B R\left(D_{s}{ }^{+}->K+\pi-K+\right) / B R\left(D_{s}{ }^{+}->K-K+\pi+\right)=(2.372 \pm 0.024 \pm 0.025) \times 10^{-3}$
what a progress in this experiment!

(IV.2) CP asymmetries with doubly Cabibbo suppressed ones

PDG2018 for DCS decays:
BR $(D+\rightarrow K+K+K-) / B R(D+\rightarrow K-\pi+\pi+)=(0.95 \pm 0.22) \times 10^{-3}$
$\operatorname{BR}\left(\mathrm{D}^{+} \rightarrow \mathrm{K}+\pi+\pi-\right) / \mathrm{BR}(\mathrm{D}+\rightarrow \mathrm{K}-\pi+\pi+)=(5.77 \pm 0.22) \times 10^{-3}$
$\operatorname{BR}\left(D_{s}{ }^{+} \rightarrow K+\pi-K+\right) / B R\left(D_{s}{ }^{+}->K-K+\pi+\right)=(2.33 \pm 0.23) \times 10^{-3}$
LHCb for DCS decays, arXiv:1810.03138 [hep-ex] about 8 TeV (not run-2) published in JHEP 03 (2019) 176
$B R(D+->K+K+K-) / B R(D+\rightarrow K-\pi+\pi+)=(0.6541 \pm 0.0025 \pm 0.0042) \times 10^{-3}$
$B R(D+\rightarrow K+\pi+\pi-) / B R(D+\rightarrow K-\pi+\pi+)=(5.231 \pm 0.009 \pm 0.023) \times 10^{-3}$ $B R\left(D_{s}{ }^{+} \rightarrow K+\pi-K+\right) / B R\left(D_{s}{ }^{-}->K-K+\pi+\right)=(2.372 \pm 0.024 \pm 0.025) \times 10^{-3}$ what a progress in this experiment!
However, look at Feynman diagrams in Figs. 1(a), 1(b) \& 1(c) on page 1 of this article:
-- Figs. 1(b) \& 1(c) are okay, but incomplete.
-- however, my main problem comes from Fig. 1(a):

Connections of HEP \& Hadrodynamics

 One example in arXiv:1902.05884v3 [hep-ex] published in JHEP 04 (2019) 063 The world of hadrons

Nice 'painting' !

Figure 10. Diagrams contributing to the amplitude T for the decay $\mathrm{D}+\rightarrow \mathrm{K}-\mathrm{K}+\mathrm{K}+$: (a) the final state kaons are produced directly from the weak vertex; (b) a bare resonance is produced directly from the weak vertex; (c) particles produced at the weak vertex undergo final state interactions; (d) final state interactions endow finite widths to the resonances. The full circle represents the unitary $\mathrm{ab} \rightarrow \mathrm{K}+\mathrm{K}-$ scattering amplitude with angular momentum J and isospin I , and $\mathrm{ab}=\mathrm{KK}, \pi \pi, \eta \pi$ and $\eta \eta$.

Connections of HEP \& Hadrodynamics

 One example in arXiv:1902.05884v3 [hep-ex] published in JHEP 04 (2019) 063 The world of hadrons

Nice 'painting' !

Figure 10. Diagrams contributing to the amplitude T for the decay $\mathrm{D}+\rightarrow \mathrm{K}-\mathrm{K}+\mathrm{K}+$: (a) the final state kaons are produced directly from the weak vertex; (b) a bare resonance is produced directly from the weak vertex; (c) particles produced at the weak vertex undergo final state interactions; (d) final state interactions endow finite widths to the resonances. The full circle represents the unitary $\mathrm{ab} \rightarrow \mathrm{K}+\mathrm{K}-$ scattering amplitude with angular momentum J and isospin I , and $\mathrm{ab}=\mathrm{KK}, \pi \pi, \eta \pi$ and $\eta \eta$.

The world of quarks \& gluons

(a)

(b)

Figure 9. Diagrams representing the two quark-level topologies for the $\mathrm{D}+\rightarrow \mathrm{K}-\mathrm{K}+\mathrm{K}+$ decay. In the Triple-M [3], diagram (a) is assumed to be the domınant mechanısm of the decay, bhereas diagram (b) is suppressed since the production of a $K+K$ - pair trom a dd pair requires rescatterıng.

(IV.2) $\Delta C \neq 0$ with 3-body FS

LHCb for DCS decays,arXiv:1902.05884v3[hep-ex] about 8 TeV (not run-2) published in JHEP 04 (2019) 063
'Dalitz plot analysis of the $\mathrm{D}+->\mathrm{K}-\mathrm{K}+\mathrm{K}+$ decay'
p. 12, 'Figure 9 (a) is assumed to be the dominant mechanism \ldots ' again

-- 'WA' no chance to be the leading source!
-- `WA' <-> re-scattering (FSI) is misleading!
-- cannot ignore $D+->K+\pi+\pi-$!

(IV.2) $\Delta C \neq 0$ with 3-body FS

LHCb for DCS decays, arXiv:1810.03138 [hep-ex] from 8 TeV: arXiv:1902.05884v3 [hep-ex] from 8 TeV:
$B R(D+->K+K+K-)=(0.587 \pm 0.002 \pm 0.004 \pm 0.018) \times 10^{-4}$ $B R(D+->K+\pi+\pi-)=(4.70 \pm 0.01 \pm 0.02 \pm 0.15) \times 10^{-4}$
$\left[B R\left(D_{s}{ }^{+}->K+\pi-K+\right)=(1.293 \pm 0.013 \pm 0.014 \pm 0.040) \times 10^{-4}\right]$
My 'painting' of the amplitudes for $D+\rightarrow K+K+K-/ K+\pi+\pi-$ [mentioned in my 2018 WS talk]

IIBigiV30
(IV.3) Lifetimes \& SL widths of charm baryons
-- PDG2018: $\tau\left(\Omega^{0}{ }_{c}\right)<\tau\left(\Xi^{0}{ }_{c}\right)<\tau\left(\Lambda_{c}^{+}\right)<\tau\left(\Xi^{+}{ }_{c}\right)$ in previous century one had expected this pattern based on HQE in a simple qualitative way.
-- PDG2019: $\quad \tau\left(\Xi^{0}{ }_{c}\right)<\tau\left(\Lambda_{c}^{+}\right)<\tau\left(\Omega_{c}^{0}\right)<\tau\left(\Xi^{+}{ }_{c}\right)$ the 'landscape' has changed: while the pattern of $\tau\left(\Xi^{0}{ }_{c}\right)<\tau\left(\Lambda^{+}{ }_{c}\right)<\tau\left(\Xi^{+}\right)$is the same, it has changed sizably for $\tau\left(\Omega_{c}^{0}\right)$; predictions depend on quark models, not QFT. Compare $\Lambda_{c}^{+}=\left[c(u d)_{j=0}\right] \quad$ vs. $\Omega_{c}^{0}=\left[c(s s)_{j=1}\right]$
-- The goal is to measure 'soon' SL widths of $\Xi^{0}{ }_{c}, \Xi^{+}{ }_{c}, \Omega^{0}{ }_{c}$. They are connected based on non-perturb. QCD.
(IV.4) CP asymmetries in weak decays of charm baryons
-- When one goes for CPV, one cannot stop at 2-body FS: crucial to probe $3-\& 4$-body FS including regional CPV.
-- On first \& second steps one goes after SCS ones where the SM predicts small CPV on the order of $O\left(10^{-3}\right)$.
-- For DCS decays the SM predicts basically zero: hunting regions for ND.
-- One has to probe CPV in charm baryons with Dalitz plots

- SCS: $\Lambda^{+}{ }_{c} \rightarrow p \mathrm{p} \pi+\pi-/ \mathrm{pK}+\mathrm{K}$ -
- DCS: $\Lambda^{+}{ }_{c} \rightarrow \mathrm{p} \mathrm{p}+\pi-$
- tiny rates are not the only challenge: compare DCS $\Lambda_{c}^{+}->p \mathrm{~K}+\pi-\mathrm{vs}$. $\mathrm{CF} \Lambda^{+}{ }_{c} \rightarrow \mathrm{p} \mathrm{K}-\pi+$
(V) Present and future lessons of $\Delta S \neq 0$
-- We know that CP asymmetries has been found \& established in the transitions of neutral strange mesons:
- indirect CPV in $\mathrm{K}^{0} \rightarrow 2 \pi$ with the scale $\sim 2.23 \times 10^{-3}$ data
- direct $C P V$ in $\mathrm{K}^{0}->2 \pi$ with $\left\{\begin{array}{l}\sim 3.6 \times 10^{-6} \text { data } \\ <2.2 \times 10^{-6} \mathrm{SM} \text { ??? } \\ \sim 1.1 \times 10^{-6} \text { "Buras team" ["LQCD"] }\end{array}\right.$
- amazing established data \& analyses
- it might be beyond the SM: "Buras team" ["LQCD"].

(V) Present and future lessons of $\Delta S \neq 0$

-- We know that CP asymmetries has been found \& established in the transitions of neutral strange mesons:

- indirect CPV in $\mathrm{K}^{0} \rightarrow 2 \pi$ with the scale $\sim 2.23 \times 10^{-3}$ data
- direct $C P V$ in $K^{0}->2 \pi$ with $\left\{\begin{array}{l}\sim 3.6 \times 10^{-6} \text { data } \\ <2.2 \times 10^{-6} \mathrm{SM} \text { ?!? } \\ \sim 1.1 \times 10^{-6} \text { "Buras team" ["LQCD"] }\end{array}\right.$
- amazing established data \& analyses
- it might be beyond the SM: "Buras team" ["LQCD"].
-- Next step for direct CP asymmetry in strange baryons

$$
e^{+} e^{-}->\dot{J} / \psi \rightarrow \Lambda \Lambda \rightarrow\left[p \pi^{+}\right]\left[p \pi^{-}\right]
$$

- maybe BESIII could probe CPV by 2019 with below 10^{-3}
- duality violation enhanced close to thresholds !?

It is a novel `road':

Giovanni Punzi: LHCb can do better with run-3/4 below 10-4 ! $J / \psi \rightarrow \Lambda \Lambda \rightarrow\left[p \pi^{+}\right]\left[p \pi^{-}\right]$
-- Some details:

$$
\mathrm{J} / \psi \rightarrow Y \mathrm{Y} \rightarrow[\mathrm{X} \pi][\mathrm{X} \pi] \text { with a dedicated trigger }
$$

- Measure T-odd moments

$$
\alpha_{y} x=\left\langle\sigma_{y} \cdot\left(\sigma_{x} \times \pi_{x}\right)\right\rangle, \alpha_{y} x=\left\langle\sigma_{y} \cdot\left(\sigma_{x} \times \pi_{x}\right)\right\rangle,
$$ based on CPT invariance probe direct CP asymmetry $\left\langle A_{C P}{ }^{x}\right\rangle=\left(\alpha_{y}{ }^{x}+\alpha_{y}{ }^{x}\right) /\left(\alpha_{y}{ }^{x}-\alpha_{y}{ }^{x}\right)$ without polarized Y \& Y due to very narrow resonance J / ψ !

"Imagination created reality" - Richard Wagner

Epilogue for the future: Collaboration of HEP \& Hadrodynamics
Need to connect the worlds of quarks \& gluons with hadrons!
Back to the history outside

San Francesco, Arezzo (Italy)

Epilogue for the future:Collaboration of HEP \& Hadrodynamics

Need to connect the worlds of quarks \& gluons with hadrons!
Back to the history outside -- \& inside

San Francesco, Arezzo (Italy)

'The Dream of Constantine' by Piero della Francesca, painter of Early Renaissance, mathematician/geometer

Kolya Uraltsev \& I had looked at this painting in person \& realized that it is symbol of collaboration.

Final steps need `judgment' about applying resonances, threshold enhancements etc. with dispersion relations
-- ${ }^{\text {st }}$ step: models;
-- $2^{\text {nd }}$ step: model-independent
-- $3^{\text {rd }}$ step: best fitted analyses often do not give us the best
information about the underlying dynamics correlations \& judgments
Future lessons for LHCb/Belle II
Yes, the data are the referees, but in the end theorists should not be the slaves of the data!
One example:
IIB\&collab.: bragging rights? It goes beyond -- the power of HQE !
$\tau\left(\Lambda_{b}\right) / \tau\left(B_{d}\right)>0.9$ 1993; ~0.94 \& > 0.881996
Data: $\tau\left(\Lambda_{\mathrm{b}}\right) / \tau\left(B_{\mathrm{d}}\right)=0.77 \pm 0.051996 ; 0.81 \pm 0.05$ 2004; 0.94 ± 0.092005

I had produced this picture - correlations \& judgments are not always obvious!

Short comments in one slide just before the Summary, namely about $V(q b)$ about exclusive vs. inclusive ones:
$V(c b): B \rightarrow \mid v D / D^{*}$ vs. $B \rightarrow \mid v X_{c}$

- (a) difference ~ 2σ
- (b) data landscape is not clear about FS: D, $D^{*}, D^{* *}, D^{* * *}, \cdots$

V(ub): $\quad B \rightarrow|v \pi / \rho \quad v s . \quad B \rightarrow| v X_{u}$;
(a) difference ~3-4 σ;
(b) probe $B \rightarrow \mid v f_{0}(500) /$ sigma $\rightarrow 1 v 2 \pi$ as a bridge between exclusive \& inclusive ones using dispersion relations
(c) X_{u} vs. only π 's ?
(d) probe $B-->\left|-v K+K-\& B^{0}->\right|-v K+K-\pi+$ to help to solve this problem
(e) in general "duality" is not local close to thresholds
(VI) Summary: Impact of non-perturbative QCD on CP Violation
about fundamental dynamics:
(a) Two-body FS do not give 'royal insights' in general;
(b) diagrams give no 'royal ones';
(c) Wolfenstein's parameterization of the CKM matrix is well-known
\& used all the time, but it is not 'royal ones' for this century;
(d) even more: pole masses give no 'royal insights' !

(VI) Summary: Impact of non-perturbative QCD on CP Violation

about fundamental dynamics:
(a) Two-body FS do not give 'royal insights' in general:
(b) diagrams give no `royal ones'; (c) Wolfenstein's parameterization of the CKM matrix is well-known \& used all the time, but it is not 'royal ones' for this century: (d) even more: pole masses give no `royal insights' !
"Goals for flavor dynamics of quarks":
Probing CP asymmetries in 3-\& 4-body FS of charm \& beauty hadrons is crucial to find both existence \& features of ND. [At least it shows the impact of non-perturbative QCD.]
Theorists do not like waiting: results from run-2!
Waiting for run-3 \& run-4: that is life.
Worlds of quarks \& gluons and for hadrons are connected, but often they are not obvious (' duality' is more subtle than just looking at diagrams)!

IIBigiV30

Short summary:
-- 'We' need more data, but that is not enough -
thinking \& judgments about the impact of long distance QCD!
[-- HQET [with $\mu=0] \neq \mathrm{HQE}[\mu \sim 1 \mathrm{GeV}]$
HQET: `observables'= perturb. forces + non-perturb. forces
HQE: "observables" = "long-distance" forces +"short-distance "ones]
-- best fitted analyses do not give the best information about the underlying dynamics
-- CP asymmetries in 3- \& 4-FS is crucial to make progress about ND

$$
\Delta \gamma(a)=|T(P \rightarrow a)|^{2}-|T(P \rightarrow a)|^{2}=4 \sum_{a j=a} T_{a j, a} \text { resc } \quad \operatorname{Im} T^{\star}{ }_{a} T_{a j}
$$

-- `Challenges between Cultures' of HEP vs. Hadrodynamics like "current quarks" vs. 'pole masses of hadrons'
-- My new book will be published in the Winter 2019/20: dedicated to L. Okun

