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2Outline
 Multi-body decays: motivation and common features
 CPV in multi-body from beauty decays

● B+→h+h-h+ decays [arxiv:1905.09244],[arxiv:1909.05212]
● B0→KSh+h’- decays [PRL. 120, 261801 (2018)][JHEP 06 (2019) 114]
● B0→VV decays [JHEP 05 (2019) 026][JHEP 07 (2019) 032]

 CPV in multi-body from charm decays
● D0→KSπ+π- [PRL. 122 (2019) 231802]
● D0→h+h-h+h- [JHEP 02 (2019) 126][Phys.Lett. B769 (2017) 345]
● D+→h+h-h+ decays
● D0→h+h-μ+μ- [PRL. 121 (2018) 091801]

 Conclusion and perspectives
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CPV in multi-body decays



4CPV in multi-body decays: the theory side
 Does the Standard Model account for all observed CPV?

● Predictions are difficult because of limited knowledge of the strong phases.
 Model-dependent approach
 Or model-independent → depends on external input

 Multi-body decays help in two ways here:
● Several quasi-two-body amplitudes interfering → access to strong and weak phases.
● CPV needs interfering amplitudes with different weak and strong phases.
● Generally, many isospin partner decays → some observables are way better controlled that way.

 Integrated CP asymmetries generally smaller than localised
● Example: 2011 analysis of B+→π+π-π+ yields ~5% (integrated), ~45% in the f2(1270) region.

Amplitude dependence both a plus and a minus: analyses are more complicated and possibly model-dependent, but many more observables.



5CPV in multi-body decays: the experimental side
 Efficiencies vary across the phase space in a way that is oftenmodelled using MC

● Systematics that decrease with simulation statistics and reliability.
 In general, detector response is not uniform in particle types andcharges.
 Magnet reversal cancels most of the asymmetries, but not all ofthem.
 Production and detection asymmetries have to be carefully modelled using simulation and data-driven techniques.

PHYS. REV. D95 (2017) 052005

Phys. Lett. B 713 (2012)
Adetection(π) ~ 0.1%Adetection(K) ~ 1%

Orders of magnitude:

https://doi.org/10.1103/PhysRevD.95.052005
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CPV in multi-body beauty decays



7B+→h+h-h+: status and common features
 LHCb had reported large localised CPV  [Phys. Rev. D90 (2014) 112004] in both B+→π+π-π+ and B+→π+K+K-.

● B+→π+π+π-: rich structures from tree- and penguin-level contributions
● B+→π+K+K-: smaller branching fraction, fewer resonances.
● … but the two are related by ππ ↔ KK rescattering.

 Coincidentally, accumulation of events (incompatiblewith a ϕ resonance) seen in the rescattering region ofπKK, associated with a large CPV.



8B+→π+K-K+: model and results with 3fb-1
 Isobar model analysis. Amplitude described as coherent sum of:

● Resonances: K*(892), K0*(1430), ϕ(1020), f2(1270), ρ(1450).
● Nonresonant πK contribution: single-pole form factor from [PhysRevD.92.054010]
● Rescattering amplitude taken from Pelaez and Yndurain [PhysRevD.71.074016]

 Observed CPV in rescattering is the largest oneobserved in a single amplitude to date. 
● It is also the only significant CPV in allcomponents.
● Most of previously observed CPV could originate fromthis contribution.

 Larger ρ(1450) contribution than expected.
 ACP is statistically limited.
 Main systematics arise from modelling of resonance contributions. Alternative models not included.

, Λ = 1 GeV/c2

https://doi.org/10.1103/PhysRevD.92.054010
https://doi.org/10.1103/PhysRevD.71.074016


9B+→π+π-π+: dealing with the S-wave
 Large contribution, both direct and through interference, of the (ππ) S-wave.

● Difficult to model: channel openings, many broad, badly known contributions.
 Vector and tensor resonances are well isolated → modelled by isobar contributions.
 Three approaches used simultaneously to model the S-wave

ARXIV:1909.05212

http://arxiv.org/abs/1909.05212


10B+→π+π-π+: isobar model
 Large contribution, both direct and through interference, of the (ππ) S-wave.

● Difficult to model: channel openings, many broad, badly known contributions.
 Vector and tensor resonances are well isolated → modelled by isobar contributions.
 Three approaches used simultaneously to model the S-wave
 Isobar model: 

● Masses, widths of resonances fixed, except for consistency checks; magnitudes and phases free.
 Rescattering modelled using a form-factor from [Phys.  Rev.  D89, 094013 (2014)]

 Need modelling for phase shifts δππ(s) and δKK(s),and the inelasticity η(s).
● J.R. Pelaez and F.J. Yndurain, [Phys. Rev. D 71, 074016 (2005)]

 Σ contribution included, modelled as:

ARXIV:1909.05212

mlow2(ππ) [GeV2/c4]m high2 (ππ
) [Ge

V2 /c4 ]
[Phys. Rev. D.71.054030]

http://arxiv.org/abs/1909.05212


11B+→π+π-π+: K-matrix approach
 Large contribution, both direct and through interference, of the (ππ) S-wave.

● Difficult to model: channel openings, many broad, badly known contributions.
 Vector and tensor resonances are well isolated → modelled by isobar contributions.
 Three approaches used simultaneously to model the S-wave
 K-matrix approach:

● S-wave modelled in its entirety (including channel openings) using:

● Unitarity in scattering and 3-body interaction enforced in the formalism.
● Pole parameters in the K matrix fixed to scattering data → “masses and widths”.

 Natural interface with scattering data.
● Production vector left free to float → “couplings to poles”.

ARXIV:1909.05212

http://arxiv.org/abs/1909.05212


12B+→π+π-π+: quasi-model-independent
 Large contribution, both direct and through interference, of the (π+π-) S-wave.

● Difficult to model: channel openings, many broad, badly known contributions.
 Vector and tensor resonances are well isolated → modelled by isobar contributions.
 Three approaches used simultaneously to model the S-wave
 Quasi-model-independent approach:

● Vector and tensor resonances are well isolated→ usual isobar model.
● S-wave modelled as uncorrelated bins with floatingmagnitude and phase.

 Binning is chosen according to event density
● 17 bins in m(ππ).

 This fit method is implemented using another fitter than the two others → additional crosscheck.

ARXIV:1909.05212

http://arxiv.org/abs/1909.05212


13B+→π+π-π+: results with 3fb-1
 All three approaches converge to a similar description of the amplitude, dominated by:

● ρ(770) (fit fraction: ~55%)
● S-wave (~25%, mostly σ in the isobar model)
● f2(1270) (~10%).

 Clear ρ-ω mixing, consistent with the models.
 Fit not describing the f2(1270) region well. Can be solved by

● floating the parameters → models disagree with PDG and each other.
● including another f2 resonance → new state found consistent withspeculative f2(1430) but inconsistent between themselves.

 Large disagreement between S-waves in the low m(π+π-) interval.

ARXIV:1909.05212

f2(1270) region

http://arxiv.org/abs/1909.05212


http://arxiv.org/abs/1909.05212


15B+→h+h-h+: prospects
 Huge leap forward: from “there is localised CPV” to pinpointing rescattering and tensor contributions, as well as S-P interferences.
 Current analyses offer possibilities to test theoretical understanding of amplitudes.

● Largest sample available in the rescattering region.
 Open topics, e.g. contribution of ρ(1450) larger than expected in B+→π+K-K+, possible f2(1430) contribution to B+→π+π-π+, S-wave discrepancies between models.
 Current systematics are dominated by:

● Modelling of signal and backgrounds in the invariant-mass fit
● Efficiency modelling
● Fixed parameters of resonances (masses, widths), model refinement

 Work ongoing on B+→K+K-K+ and B+→K+π+π-.
 Even depends on the technique, e.g in B+→π+π-π+(first is statistical, second experimental, third is model).

Scales down with dataScales down with MC statDoes not necessarily scale down



16B→KSh+h’-: current status with 3fb-1 and plans
 Another way of understanding hadronic amplitudes better → through symmetries.

● From “Physics case for an LHCb Upgrade II” [CERN-LHCC-2018-027]: B→3h decays may help constrain rescattering info and reduce systematics.
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= 3.48 ± 0.38 (this work)≠ 16.4 ± 5.2 (theory)

B0→VV: latest results with 3fb-1
 Both analyses performed using isobar model, including angular dependencies.

● See Katia’s talk for the ϕsss implications.
 B→(π+π-)(K-π+):

● Small longitudinal polarisation fraction & > 5σ significance on direct CPV in B0→K*0ρ
 Hint of colour-allowed EW penguin contribution

● Phase differences between parallel and perpendicular polarisations found to be close to π (CP-averaged) and 0 (CP-difference) → good agreement with QCDf and pQCD.
 B(s)→K*0K*0:

● Observed B0→K*0K*0 and confirmed strong polarisation:
● Confirmed small polarisation of the Bs decay: 
● Tension with theory:
● Statistically dominated.

JHEP 05 (2019) 026

JHEP 07 (2019) 032
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CPV in multi-body charm decays



19Specificities of charm multi-body
 Compared to beauty decays, specific problems:

● Lower momentum, transverse momentum, smaller lifetimes→ lower trigger efficiency/harder cuts
● Secondary production by B decays non negligible

 However:
● Very large production rates
● Possibility to tag with a D* or a semi-leptonic decay (μ tag)
● Possibility to reject background only using semi-leptonic B decays.

 Much smaller phase space than beauty decays.
● Right: comparison of Dalitz from B and D, same amplitude model

 D* and semileptonic taggings complementary as they coverdifferent kinematic ranges, lifetimes, and purity rates.
● Different dominant systematics.

Int. J. Mod. Phys. A 30, 1530022 (2015)

Software trigger (HLT1) 



20D0→KSπ+π-: results with 3 fb-1
 Includes both Cabibbo-favoured & doubly Cabibbo-suppressed in the same decay → allows to measure x, y, |q/p| and ϕ to be measured without external input.
 Analysis on Run 1 using bin-flip (model independent) [Phys. Rev. D 99, 012007 (2019)], D*- and μ-tagged.

● Phase-space binned in regions of quasi-constant strong phase difference between D0 and D0.
 One part dominated by oscillated D mesons(flavour known at production)

● Evolution of ratio top/bottom with time related to oscillation parameters
 Robust against efficiency estimations

● Relies on external input for strong phases [Phys. Rev. D 82, 112006 (2010)].

PHYS. REV. LETT. 122 (2019) 231802



21D0→h+h-h+h-: results with 3fb-1 and plans

 Plan to add Run 2 statistics to a dedicated analysis to look for CPV using the energy test (see next slide)
●  Already applied to D0→π+π-π+π- [Phys.Lett. B769 (2017) 345], plan to be updated and extended to D0→K+K-π+π-.

 See also Tommaso Pajero’s talk about D0→K+π-π+π- (mind the sign!).

https://indico.cern.ch/event/769902/timetable/


22Model-independent searches for CPV in charm
 Charm analyses often have to deal with huge datasets → need fast methods to probe for CPV.
 Binned methods:

● For instance used in [Physics Letters B 728 (2014) 585]
● Can be corrected for global asymmetries.

 Unbinned methods:
● For instance used in [Physics Letters B 728 (2014) 585]
● Calculate p-values in regions

 Energy test: model-independent, unbinned, sensitive to local asymmetries [Phys. Rev. D 84, 054015 (2011)]
● Can be applied to probe P-even CPV or P-odd, using triple product. 
● Based on closest neighbour approach D0D0

Aprod+Adet!



23D(s)+→h+h-h+: plans for Run 2 analysis
 First analysis on D+→π+π-π+ looked for CPV in model-independent binned and unbinned ways→ no hint for CPV [Physics Letters B 728 (2014) 585].
 Diverse modes: Cabibbo-favoured (CF), Cabibbo-suppressed (CS) and double Cabibbo-suppressed (DCS).

 Run 2 analysis will keep using model-independent methods to check for possible CPV in these decays.
● If found, more refined analysis needed to pinpoint source(s) of CPV.
● Big challenge: dealing with nuisance asymmetries (production, detection).

D+→K-K+π+: O(108) eventsD+→K-π+π+: O(109) events D+→K-K+K+ O(106) events



24D0→h+h-μ+μ-: results with 5fb-1 and plans
 Long-distance dominated decay, BR ~ 10-7, short-distance very suppressed but can be increased by NP → would showcase resonances.

● Rarest charm decay observed to date.
● Asymmetries are a null test of the SM.

 Measured asymmetries are consistent with 0, bothintegrated and in regions of the (μ+μ-) invariant mass.
 Strongly statistically limited, but “easy” mode in LHCb (dimuon pair, charm production rates).

● O(104) h+h-μ+μ- events expected just for Upgrade I → amplitude analysis
● Poster-child for Upgrade II. From “Physics case for an LHCb Upgrade II” [CERN-LHCC-2018-027]

PHYS. REV. LETT. 121 (2018) 091801
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Perspectives and conclusion



26Future of these measurements
 B→KSh+h’-, B→VV, D0→K+K-π+π-, D0→h+h-μ+μ- are statistically limited, and have been performed on part of the full dataset → update planned, and will bring foreseeable improvements.

● Could add D*-tagged sample to D0 → K+K-π+π-.
 B+→h+h-h+ measurements start to be systematics-limited. Part of it will go down with more data, part of it needs a bit more work (e.g. leaving resonance masses free in the fit).

● Easier said than done: can lead to large timing increases and potential disagreement between methods.
 D0→K+K-π+π- was analysed in model-dependent way → update with model-independent energy test, coupled with D0→π+π-π+π-, planned.
 D0→KSπ+π- was analysed in model-independent way → update with both model-independent and model-dependent planned. Extension to D0→KSK+K-.

No cookie-cutter way of improving systematics → solution depends on modeCombination of model-dependent and model-independent is crucial to improve measurements



27The near and far future
 LHCb is still analysing Run 2 data (especially for amplitude analyses) → new results are on the way even during the Upgrade period.
 Belle 2 has started its operations.

● Large impact expected on modes withneutrals and some modes that LHCbcannot do.
● Cross-check of LHCb (very different experimental and physics environment).

 Additional data not only improves uncertainties (both statistical and some systematics), but unlocks new analysis techniques that help disentangle contributions.
For the D0→KSπ+π- analysis(From  CERN-LHCC-2018-027)



28The near and far future (systematics)

 Projected statistical uncertainties → challenge for systematics to keep up.
 Current systematic uncertainties can be broken down in several categories

● Parameterisation of backgrounds: will go down with more data.
● Control channel: goes down with luminosity.
● Efficiency estimation: rely on more MC events, more uniform efficiencies. Can have a statistical price.
● Production/Detection asymmetries: at very high precision, can be extremely difficult to deal with. Building dedicated observables more robust is the current way of dealing with it (e.g. ΔACP).
● Fixed parameters of the models (especially masses): can be freed in the fit, statistical price to be paid. Need to understand if we can do that.
● Alternative models: the more data we accumulate and the better our parameterisations become, the smaller it will be → need external input and discussions.

[Units of 10-3] Current syst Stat (Run1-2) Stat (Run1-3) Stat (Run1-5)
x(KSππ) 0.4 0.4 0.2 0.04y(KSππ) 1.1 0.4 0.2 0.04

Lots of work to not only  deliver the luminosity, but make the most of it… and we will need help!
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Thank you!
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