

Sensitivity to NMSSM Signatures with Low Missing Transverse Energy at the LHC Alexander Titterton

NMSSM meeting, 12th December 2018

University of BRISTOL Southampton

Science & Technology Facilities Council Rutherford Appleton Laboratory

Sensitivity to NMSSM Signatures with Low Missing Transverse Energy at the LHC Alexander Titterton

NMSSM meeting, 12th December 2018

University of BRISTOL Southampton

Science & Technology Facilities Council Rutherford Appleton Laboratory

Motivation

- areas of parameter space.
- with low MET.
- Consider if LSP were a Singlino in the NMSSM:

Large Missing Transverse Energy (MET) searches have ruled out many

How about scenario for Lightest Supersymmetric Particle (LSP) production

Motivation

- Initial squark/gluino production decays to NLSP (X_{2}) plus hadronic jets
- <u>Decay</u>: NLSP $(X_{2}) \longrightarrow LSP(X_{1}) + Higgs(H_{125})$
- If Lightest SUSY particle very light and mass gap small, we get small MET!
- NLSP part of the cascade entirely, giving larger MET
- Final states depend on Higgs decay we are interested in H —>bb

• Singlino LSP allows this decay route to be enforced — in MSSM we could skip the

Original benchmark points

- Eight benchmark points which characterise this low-MET light-LSP scenario [1]
- LSP mass 3GeV in all cases
- BP1-2: Gluino heavier than squark
- BP3-4: Gluino lighter than squark
- BP5: BP1/2 but with stop in decay
- " sbottom in decay BP6:
- BP7: BP3/4 but with stop in decay lacksquare
- " sbottom in decay BP8:

[1] U. Ellwanger and A.M. Teixeira, "Excessive Higgs pair production with little MET from squarks and gluinos in the NMSSM" JHEP 1504, 172 (2015)

Point	$M_{\tilde{q}} \left[\text{GeV}/c^2 \right]$	$M_{\tilde{g}} \left[\mathrm{GeV}/c^2\right]$	$M_{\tilde{t},\tilde{b}} \; [\text{GeV}/\epsilon]$
BP1	1000	1010	decoupled
BP2	1400	1410	decoupled
BP3	1100	900	decoupled
BP4	1500	1300	decoupled
BP5	1400	1410	$M_{\tilde{t}} = 750$
BP6	1100	1110	$M_{\tilde{b}} = 750$
BP7	1500	1300	$M_{\tilde{t}} = 750$
BP8	1400	1200	$M_{\tilde{b}} = 750$

Original benchmark points

- Eight benchmark points which characterise this low-MET light-LSP scenario [1]
- LSP mass 3GeV in all cases
- BP1-2: Gluino heavier than squark
- BP3-4: Gluino lighter than squark
- BP5: BP1/2 but with stop in decay
- " sbottom in decay BP6:
- BP7: BP3/4 but with stop in decay lacksquare
- " sbottom in decay BP8:

[1] U. Ellwanger and A.M. Teixeira, "Excessive Higgs pair production with little MET from squarks and gluinos in the NMSSM" JHEP 1504, 172 (2015)

Point	$M_{\tilde{q}} \left[\text{GeV}/c^2 \right]$	$M_{\tilde{g}} \left[\mathrm{GeV}/c^2\right]$	$M_{\tilde{t},\tilde{b}} \; [\text{GeV}/a]$
BP1	1000	1010	decoupled
BD2	1400	1410	decoupled
BP3	1100	900	decoupled
BP4	1500	1300	decoupled
BP5	1400	1410	$M_{\tilde{t}} = 750$
BP6	1100	1110	$M_{\tilde{b}} = 750$
BP7	1500	1300	$M_{\tilde{t}} = 750$
BP8	1400	1200	$M_{\tilde{b}} = 750$
-			

Mass scans

- \bullet same for BP3/4
- Vary M_{NLSP} and M_{LSP} together, keeping mass gap fixed at (125 + 2) GeV

	$M_{\tilde{q}} \left[\text{GeV}/c^2 \right]$	$M_{\tilde{g}} \left[\mathrm{GeV}/c^2\right]$	$M_{\tilde{\chi}_1^0} \left[\mathrm{GeV}/c^2\right]$	$M_{\tilde{\chi}^0_2} \left[\text{GeV}/c^2 \right]$	$M_{\tilde{t},\tilde{b}} \left[{ m GeV}/c^2 \right]$
BP1/BP2	$1200 \rightarrow 3000$	$M_{\tilde{q}} + 10$	$3 \to \{M_{\tilde{q}} - 20\}$	$M_{\tilde{\chi}_{1}^{0}} + 127$	decoupled
BP3/BP4	$1200 \rightarrow 3000$	$M_{\tilde{q}} - 200$	$3 \to \{M_{\tilde{g}} - 20\}$	$M_{\tilde{\chi}_{1}^{0}} + 127$	decoupled
BP5	$1200 \rightarrow 3000$	$M_{\tilde{q}} + 10$	$3 \to \{M_{\tilde{t}} - 200\}$	$M_{\tilde{\chi}_{1}^{0}} + 127$	$M_{\tilde{t}} = M_{\tilde{q}} - 250$
BP6	$1200 \rightarrow 3000$	$M_{\tilde{q}} + 10$	$3 \to \{M_{\tilde{b}} - 20\}$	$M_{\tilde{\chi}_{1}^{0}} + 127$	$M_{\tilde{b}} = M_{\tilde{q}} - 250$
BP7	$1200 \rightarrow 3000$	$M_{\tilde{q}} - 200$	$3 \to \{M_{\tilde{t}} - 200\}$	$M_{\tilde{\chi}_{1}^{0}} + 127$	$M_{\tilde{t}} = M_{\tilde{g}} - 250$
BP8	$1200 \rightarrow 3000$	$M_{\tilde{q}} - 200$	$3 \to \{M_{\tilde{b}} - 20\}$	$M_{\tilde{\chi}_{1}^{0}} + 127$	$M_{\tilde{b}} = M_{\tilde{g}} - 250$

[1] U. Ellwanger and A.M. Teixeira, "Excessive Higgs pair production with little MET from squarks and gluinos in the NMSSM" JHEP 1504, 172 (2015)

Eight benchmark points become six scans since BP1/2 the same except for M_{SUSY}, and

Vary Msquark and Mgluino (& M_{stop}, M_{sbottom}) together, keeping mass gap(s) fixed

Original benchmark points

Compare: MSSM-like simplified model

BP1-like without X⁰₂ decay (becomes new "LSP")

Simulation

- Compute diagrams and matrix elements using MADGraph at Leading Order, cross-sections at Next-to-Leading Order using Prospino.
- Decay/shower particles using Pythia 8.
- Simulate the detector measurements using Delphes (for phenomenology) work), later within CMSSW, CMS' detector response simulation framework.
- Read output ROOT files into dataframes (pandas/dask)
- Compare the number of events in our signal process with the Standard Model background prediction and observed yields, after applying some selections/cuts.

Current sensitivity to this type of model

Published for SISSA by \bigotimes Springer

RECEIVED: August 14, 2018 ACCEPTED: September 12, 2018 PUBLISHED: ???, 2018

Exploring sensitivity to NMSSM signatures with low missing transverse energy at the LHC

A. Titterton, a,b,c U. Ellwanger, d H.U. Flaecher, a S. Morettib,c and C.H. Shepherd-Themistocleous^c

ABSTRACT: We examine scenarios in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where pair-produced squarks and gluinos decay via two cascades, each ending in a stable neutralino as Lightest Supersymmetric Particle (LSP) and a Standard Model (SM)-like Higgs boson, with mass spectra such that the missing transverse energy, $E_{\rm T}^{\rm miss}$, is very low. Performing two-dimensional parameter scans and focusing on the hadronic $H \to b\bar{b}$ decay giving a $b\bar{b}b\bar{b} + E_{\rm T}^{\rm miss}$ final state we explore the sensitivity of a current LHC general-purpose jets+ $E_{\rm T}^{\rm miss}$ analysis to such scenarios. 16

 Pheno paper recently in JHEP shows current analyses not so sensitive to this low-MET model.

ArXiv:1807.10672

Simulation

- _{し100} づ 95% Мах Upper
- Recast a CMS general purpose jets+MET analysis to check sensitivity of existing efforts to this model.
- Example mass scan shows lack of sensitivity for very light neutralino LSP.
- LSP mass < 200GeV or so has sharp drop in sensitivity

Signal Properties: Total H_T Examples with BP1 vs QCD and tt background processes

Signal Properties: Missing- H_T Examples with BP1 vs QCD and tt background processes

- Variable designed to reduce QCD background by identifying events with spurious MET from e.g. jet mis-measurement
- Take the difference in ϕ between a jet and the Missing-H_T without that jet
- Define "min $\Delta \phi^*$ " as the minimum value over all jets in the event —> Should be the jet most likely to correspond to any mismeasurement
- Therefore if min $\Delta \phi^*$ is still large (> 0.5) then this suggests real MET

Signal Properties: $\Delta \phi^*$ Examples with BP1 vs QCD and tt background processes

BP1

Simulation

BP5

Simulation

BP6

BP7

Simulation

BP8

24

- Lower bound on gluino mass very low in many cases
- Wish to access (shaded) light-LSP region, where existing jets+MET searches lack sensitivity
- In this region MET very low, Higgs highly boosted

Where to go from here

BP3	BP5	BP6	BP7	BP8
1200	1250	1000	1250	1200
1000	1260	1010	1050	1000

- might only be able to resolve 2 "fat" double-b jets
- Standard model Higgs mass known, so can use jet mass measurement
- Analysis ongoing with CMS HiggsExo group

Where to go from here:

• Heavy squarks and light LSP means very boosted topologies, can be tricky!

Looking at two high-momentum Higgs —> bb, so rather than 4b final state

 Boosted double-b tagger: Larger radius jets formed, substructure analysed (via Boosted Decision Tree) to see whether jet contains a boosted H—>bb

• Many background processes considered: • tt + jets, QCD, W/Z + jets, Single-top, WW/WZ/ZZ, ttZ, ttW etc • tt + jets, QCD and W/Z+jets dominant

a ser

- to use data-driven background estimation methods

Where to go from here:

Control regions developed using double-b-tagged jet measurements in order

Signal: 2TeV Squarks, 3GeV LSP

QCD Background

Many background processes considered:

- tt + jets, QCD, W/Z + jets, Single-top, WW/WZ/ZZ, ttZ, ttW etc
- tt + jets, QCD and W/Z+jets dominant
- to use data-driven background estimation methods
- Talks delivered to CMS HiggsExo group in late November
- Pre-approval to follow, then eventually unblinding

Where to go from here:

Control regions developed using double-b-tagged jet measurements in order

Merci et Bonnes Vacances!

Backup

Signal Properties: # of jets Examples with BP1 vs QCD and tt background processes

0	
.9	S V J
8.0	jēţ
).7	# of
.6	vith
).5	its v
.4	Sven
.3	of E
).2	tion
).1	Fract
0	

Signal Properties: # of b-tagged jets Examples with BP1 vs QCD and tt background processes

Signal Properties: Angular separation between b-jets from Higgs decay

