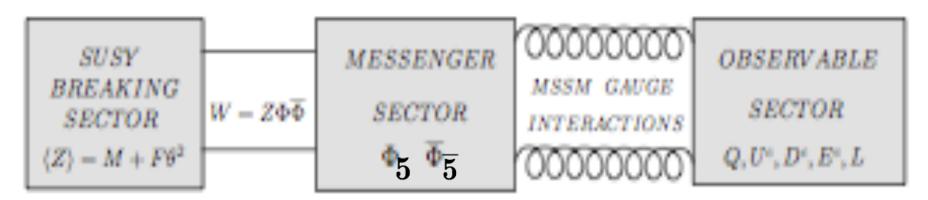
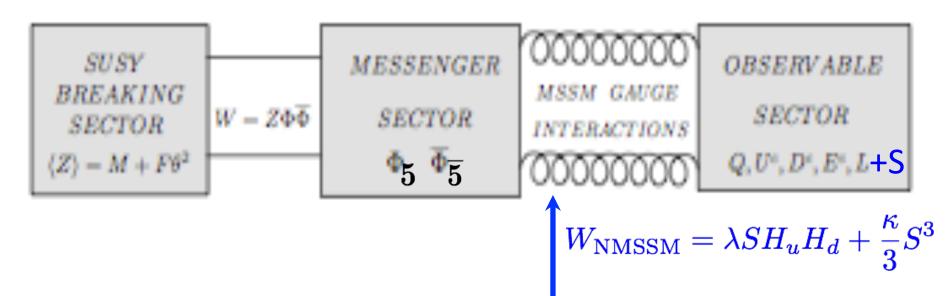
Extended Gauge Mediation in the NMSSM with Displaced LHC Signals


Marcin Badziak

University of Warsaw

Based on:
MB, N. Desai, C. Hugonie, R. Ziegler, arXiv:1810.05618
B. Allanach, MB, G. Cottin, N. Desai, C. Hugonie, R. Ziegler, arXiv:1606.03099
B. Allanach, MB, C. Hugonie, R. Ziegler, arXiv:1502.05836

Minimal GM with 125 GeV Higgs


Very predictive framework that solves SUSY flavor problem

But with other problems:

- A-terms suppressed: very unnatural sparticle spectrum with no chance to be probed at the LHC
- μ and B_{μ} typically generated at same loop order, therefore B_{μ} too large for correct EWSB (μ - B_{μ} problem)

Need to go to non-minimal models of gauge mediation \longrightarrow NMSSM

Next-to-minimal gauge mediation

- New contributions to the Higgs mass
- μ and B_{μ} generated dynamically

However: naive combination NMSSM + minimal GM does not provide correct EWSB (because singlet soft mass too small)

The minimal model of gauge mediation in NMSSM: Delgado, Giudice, Slavich '07

Main ingredient:

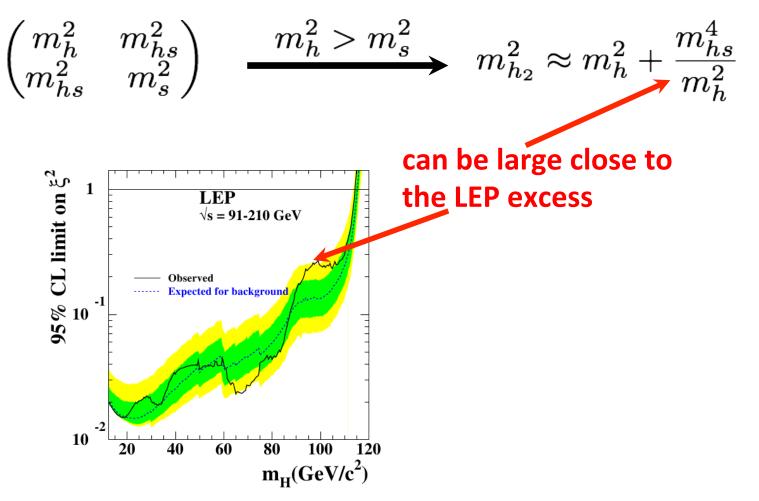
direct coupling of the singlet to (two pairs) of messengers

$$W_{\rm DGS} = S \left(\xi_D \bar{\Phi}_1^D \Phi_2^D + \xi_T \bar{\Phi}_1^T \Phi_2^T \right) \quad \xi_D(M_{\rm GUT}) = \xi_T(M_{\rm GUT}) \equiv \xi$$

generates NMSSM A-terms and singlet masses (correct EWSB) very predictive model with only 4 parameters:

soft SUSY breaking scale

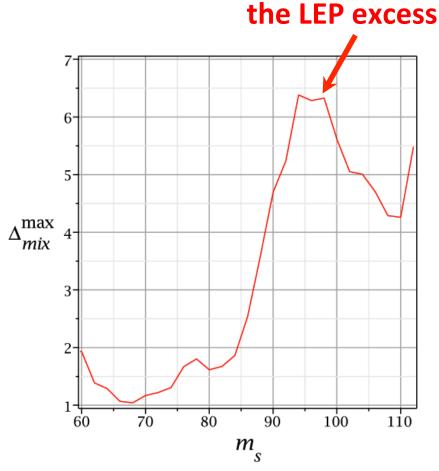
Note: $\tan \beta$ is NOT a free parameter


The minimal model of gauge mediation in NMSSM Delgado, Giudice, Slavich '07

Conclusion of the original DGS paper: sparticles are heavier than in Minimal Gauge Mediation in MSSM due to the Higgs mass constraint

Caveat:

The above assumes singlet heavier than the Higgs


Enhanced Higgs mass from mixing with a light singlet

How large the mixing contribution to the Higgs mass can be?

$$M^2 = \begin{pmatrix} M_{hh}^2 & M_{hs}^2 \ M_{hs}^2 & M_{ss}^2 \end{pmatrix}$$

MSSM Higgs mass
 $m_h \equiv M_{hh} + \Delta_{mix}$
 $\Delta_{mix} \approx rac{\overline{g}_s^2}{2} \left(m_h - rac{m_s^2}{m_h}
ight)$

5-6 GeV correction to the Higgs mass is possible when m_s close to the LEP excess MB, Olechowski, Pokorski '13

Light singlet scenario in DGS model Allanach, MB, Hugonie, Ziegler '15

Maximizing the contribution to the Higgs mass from mixing essentially fixes most model parameters

 $\begin{array}{ccc} \cos\theta \approx 0.9 & \longrightarrow \lambda \sim 10^{-2} \\ m_{h_1} \approx 90 - 100 \, \mathrm{GeV} \longrightarrow \xi \sim 10^{-2} \end{array} \end{array} \xrightarrow[]{} 100 \, \mathrm{GeV} \, \mathrm{Singlino} \, \mathrm{NLSP} \\ m_{h_2} \approx 125 \, \mathrm{GeV} \longrightarrow \tilde{m} \sim 1 \, \mathrm{TeV} \end{array}$

Only the messenger scale remains free and determines collider phenomenology

The 125 GeV Higgs mass obtained for stops and gluinos below 2 TeV

LHC Phenomenology

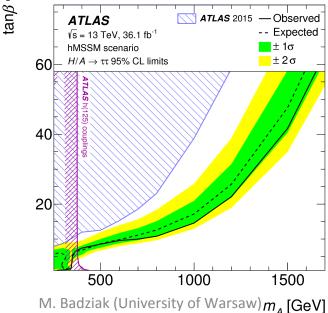
new feature is Singlino NLSP & Gravitino LSP

$$\tilde{N}_1 \to a_1 \tilde{G} \to b \bar{b} \tilde{G}$$

Messenger scale determines NNLSP (bino or stau) and singlino decay length

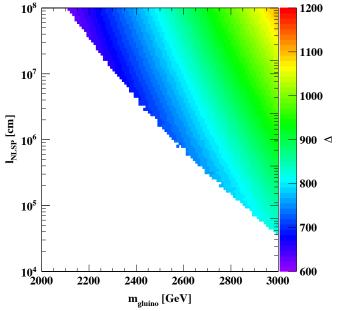
$$c\tau_{\tilde{N}_1}\approx 2.5\,{\rm cm}\,\left(\frac{100\,{\rm GeV}}{M_{\tilde{N}_1}}\right)^5 \left(\frac{M}{10^6\,{\rm GeV}}\right)^2 \left(\frac{\tilde{m}}{{\rm TeV}}\right)^2$$

Singlino and Gravitino essentially decoupled: all SUSY decay chains to LSP proceed through NNLSP and NLSP


M. Badziak (University of Warsaw)

Displaced vertices from long-lived singlino for $M < 10^7 \, \text{GeV}$

GeV 2000 + colored $\widetilde{g},\widetilde{q}$ $ilde{ au}_1$ with co-NNLSPs $ilde{\mu}, ilde{e}$ 300 **NNLSP** $+ au/\mu/e$ **NLSP** 100 displaced + $b\overline{b}$ \tilde{G} LSP


Heavy Higgs searches hurt DGS model

- The DGS model in a light singlet scenario predicts large $\tan \beta \gtrsim 30 \div 40$
- The MSSM-like Higgses are strongly constrained by the LHC searches

Heavy Higgs searches hurt DGS model

 Correlation between MSSM-like Higgs and sparticle masses results in a strong lower limit on gluino mass

Gluino mass is pushed above 3 TeV for singlino lifetimes leading to displaced vertices

Extended gauge mediation in NMSSM MB, Desai, Hugonie, Ziegler '18

For direct Higgs-messenger couplings e.g.

$$\Delta W = \lambda_{ij} Q_i U_j \Phi_{H_u}$$

Sparticle masses may not be correlated with MSSM-like Higgs mass

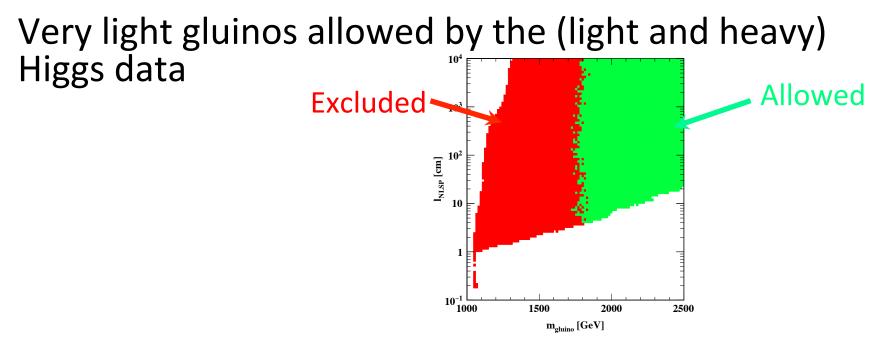
The Higgs mass may be additionally enhanced via stop mixing due to contribution to A-terms

The U model

One pair of messengers: 5 free parameters (1 more than DGS): $W_{\rm U} = \lambda_t Q_3 U_3 \Phi_u + \lambda_{S_d} S \Phi_u H_d$ $\lambda, \tilde{m}, M, \lambda_t, \lambda_{S_d}$

 \succ Large λ_t makes the MSSM-like Higgs heavier:

 $m_{a_2}^2 \approx -m_{H_u}^2 \supset 9 y_t^2 \lambda_t^2 \tilde{m}^2$


> allows for stop-mixing correction to the Higgs mass

 $A_t \supset -3\lambda_t^2 \tilde{m}$

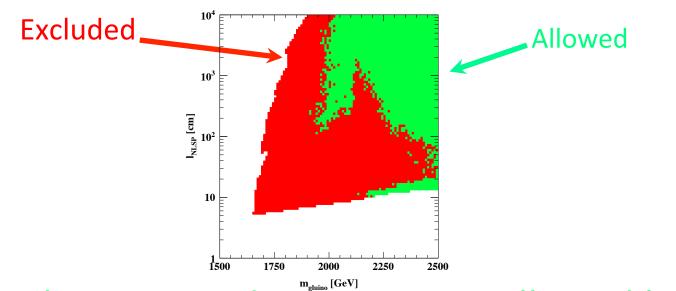
 \succ supresses aneta (e.g. due to RG effect of A_t on A_λ)

Heavy Higgs searches no longer constrain SUSY spectrum!

The U model

- Gluino mass down to 1.7 TeV allowed by SUSY searches at the LHC
- singlino decay length as small as O(1 cm)

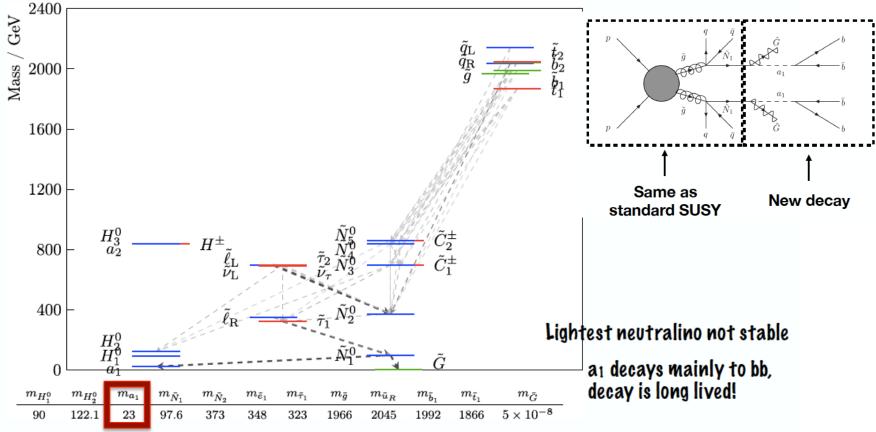
The DGSU model


Combines U model with DGS model (2 pairs of messengers):

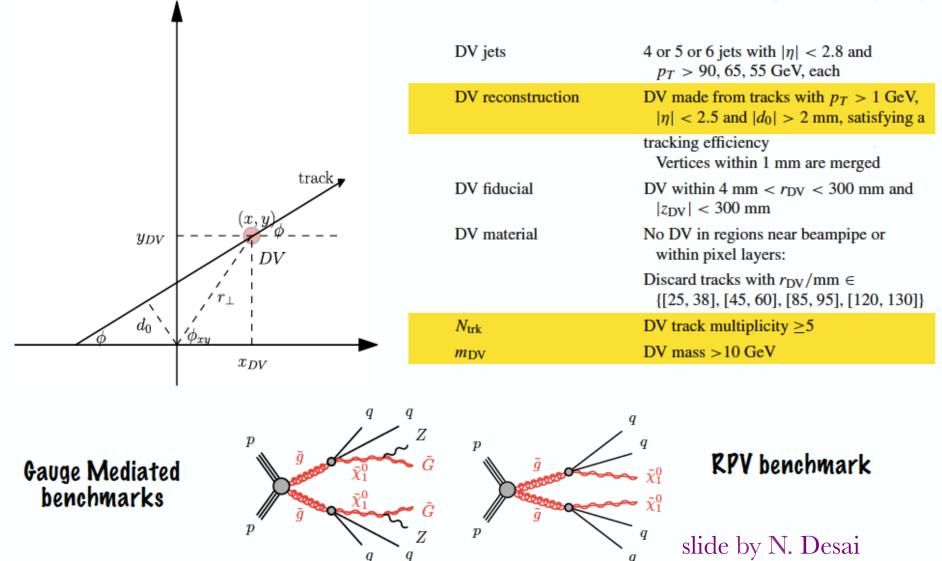
 $W_{\text{DGSU}} = S \left(\xi_D \Phi_u^{(1)} \Phi_d^{(2)} + \xi_T \Phi_T^{(1)} \Phi_{\overline{T}}^{(2)} \right) + \lambda_t Q_3 U_3 \Phi_u^{(2)} + \lambda_{S_d} S \Phi_u^{(2)} H_d$ $\xi_D(M_{\text{GUT}}) = \xi_T(M_{\text{GUT}}) \equiv \xi \qquad \lambda_{S_d}(M) y_t(M) = \lambda_t(M) \lambda(M)$ Higgs-messenger mixing condition

> Very predictive (5 free parameters)

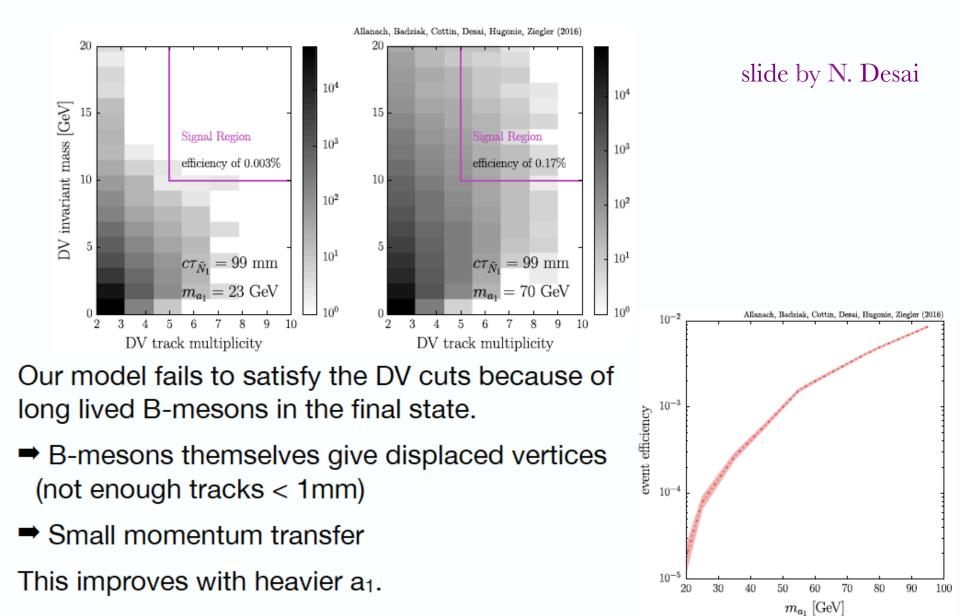
The same singlino/singlet sector leading to displaced pheno as in the DGS model but with much lighter colored sparticles!


The DGSU model

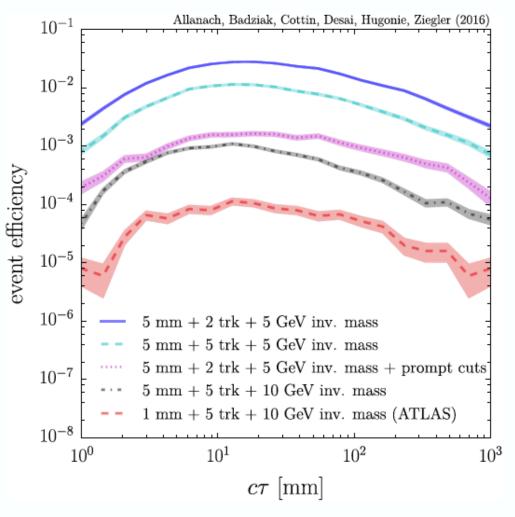
- Gluino mass down to 2 TeV allowed by SUSY searches at the LHC (the limit is stronger than in the U model due to lighter squarks)
- singlino decay length as small as O(1 m)


Looking for the displaced signature at the LHC: benchmark spectrum

Allanach, MB, Cottin, Desai, Hugonie, Ziegler '16



The displaced vertex search


ATLAS Coll. Phys. Rev. D (2015)

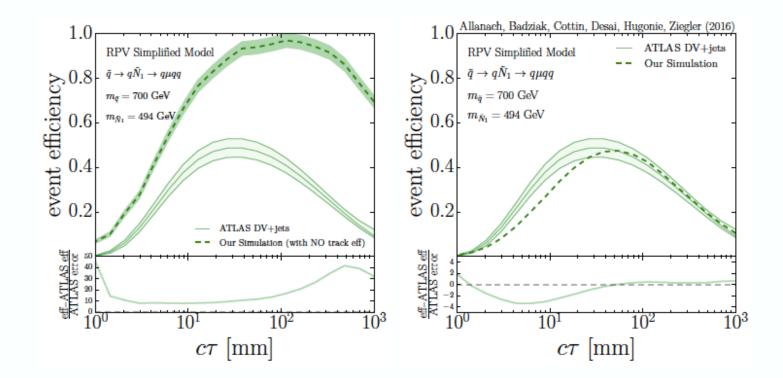
Dependence on DV mass and N_{trk}

Modifying the displaced vertex criteria

- It is possible to significantly improve efficiency by relaxing cuts
- Not easy to estimate background for these changes
- Our solution: combine prompt cuts + DV cuts & use prompt background estimate as a conservative upper limit

 Much better sensitivity possible with better estimate of background slide by N. Desai

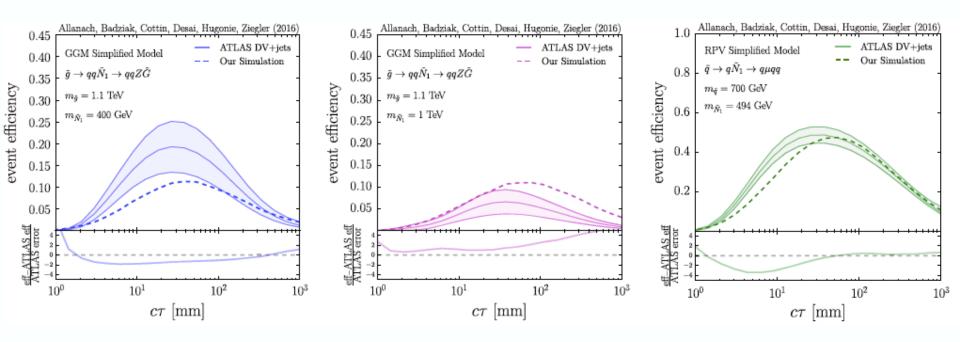
Summary


- Light NMSSM singlet (which explains the LEP excess) solves the problems of minimal gauge mediation in MSSM
 - Direct singlet-messenger couplings is crucial for correct EWSB
 - Sparticle masses close to present experimental bounds thanks to Higgs-messenger couplings
- Novel signatures from decays of long-lived singlino NLSP to displaced b-quarks
 - Displaced vertex signature with hard prompt cuts improves sensitivity of analysis + points to underlying model
 - Much more optimisation of this search possible with a dedicated background estimate

BACKUP

Benchmarks for U and DGSU models

	P1	P2	P3	P4	P5	P6
\tilde{m} [TeV]	1.7	1.5	1.5	0.87	1.0	1.0
M [GeV]	$2.8 imes 10^6$	$3.1 imes 10^6$	$2.5 imes 10^6$	$5.6 imes10^6$	$5.1 imes 10^6$	$1.6 imes 10^6$
λ	$4.6 imes 10^{-3}$	4.4×10^{-3}	1.1×10^{-3}	4.9×10^{-3}	5.4×10^{-3}	$2.5 imes 10^{-3}$
κ	$1.4 imes 10^{-4}$	$1.2 imes 10^{-4}$	$4.3 imes 10^{-5}$	$1.5 imes 10^{-4}$	$2.1 imes 10^{-4}$	$6.5 imes 10^{-5}$
λ_t	-0.33	-0.48	-0.73	-0.64	-0.38	0.76
λ_{S_d}	0.022	0.028	0.17	-	-	-
ξ	-	-	-	0.012	0.010	0.010
$\tan \beta$	18	11	10	9.1	17	8.7
$m_{\tilde{g}}$ [TeV]	2.0	1.7	1.8	2.0	2.3	2.2
$m_{\tilde{d}_R}$ [TeV]	2.6	2.2	2.3	2.0	2.4	2.3
$m_{\tilde{t}_1}$ [TeV]	2.1	1.7	2.2	1.8	2.0	2.2
$m_{\tilde{N}_1}$ [GeV]	95	96	200	96	97	106
$m_{\tilde{N}_2}$ [GeV]	370	320	330	380	440	430
m_{a_1} [GeV]	26	32	290	26	24	26
m_{a_2} [TeV]	1.7	1.9	2.7	1.6	1.4	2.1
m_{h_1} [GeV]	89	89	110	89	91	101
$m_{\mu L}$ [GeV]	960	830	820	710	840	790
$m_{\mu R}$ [GeV]	480	430	520	390	420	450
$m_{\chi_1^{\pm}}$ [GeV]	720	620	640	720	840	830
$\begin{array}{c} m_{H_u}^2 ~ [\text{TeV}^2] \\ m_{H_d}^2 ~ [\text{TeV}^2] \end{array}$	-2.2	-2.8	-6.8	-2.2	-1.5	-3.9
$m_{H_{\star}}^{2u}$ [TeV ²]	0.75	0.62	0.59	0.47	0.58	0.58
$m_S^{2^a}$ [GeV ²]	$-4.3 imes10^3$	-4.3×10^3	$7.8 imes 10^3$	$-4.3 imes 10^3$	$-4.5 imes 10^3$	$-5.3 imes 10^3$
A_{λ} [GeV]	64	130	180	150	52	210
A_{κ} [GeV]	-4.9	-7.2	-280	-4.8	-3.9	-4.3
$c\tau_{\tilde{N}_1}$ [cm]	200	200	10	200	200	12
Δ	530	680	37000	440	310	720


Finding the track efficiency

Tracking efficiency determined by fitting parameters of an empirical function

$$\begin{split} \varepsilon_{\rm trk} &= 0.5 \times (1 - \exp(-p_T / [4.0 \ {\rm GeV}])) & {\sf Remove \ low \ p_T} & {\rm slide \ by \ N. \ Desai} \\ &\times \exp(-z / [270 \ {\rm mm}]) & {\sf Dependence \ on \ z \ of \ DV \ (i.e. \ truth \ of \ decay \ vertex)} \\ &\times \max(-0.0022 \times r_\perp / [1 \ {\rm mm}] + 0.8, 0) & {\sf Dependence \ on \ radial \ distance \ of \ DV} \end{split}$$

Finding the track efficiency

- Fitting any one benchmark gives vary bad fit for others
 - ➡ Not the right parameters? (we tried d₀, z₀ with no improvement)
 - Hidden dependence on extra variables?

slide by N. Desai

Three benchmarks used to fit tracking parameters as a compromise