The higgsino-singlino sector of the NMSSM: Combined constraints from dark matter and the LHC

U. Ellwanger (LPT Orsay) with C. Hugonie (LUPM Montpellier)

Aim, given the absence of significant BSM excesses at the LHC:

- Derive strict limits (as general as possible) on sparticle masses, here: NMSSM
- Byproduct: Pin down dark spots in present searches

Bottom up strategy:

Start with electroweakinos, the "lower ends" of realistic decay cascades Subsequently allowed electroweakino masses and couplings can be used to constrain realistic decay cascades of squarks, stops, gluinos, ...

Assume, as promised by Supersymmetry:

A dark matter relic density in the WMAP/Planck window, consistent with constraints from direct DM detection

In the NMSSM, a light singlino-like LSP $\tilde{\chi}_1^0$ with some higgsino component allows for a dark matter relic density in the WMAP/Planck window consistent with constraints from direct detection experiments, notably from PandaX-II on spin dependent dark matter – neutron scattering

Constrained by searches at the LHC for electroweak production of charginos and neutralinos?

Note: In the NMSSM, "H" includes H_{SM} and mostly singlet-like H_1/A_1 ; due to a sum rule H_1 is automatically light if a pseudoscalar A_1 with $M_{A_1} \approx 2M_{singlino}$ reduces the singlino relic density to the WMAP/Planck value via annihilation with A_1 in the s-channel

AND: $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$ (and $\tilde{\chi}_3^0$) are higgsinos, not winos!

— Light higgsinos are natural ($\leftrightarrow \mu$ parameter not far above M_Z)

— Heavier winos are motivated by a GUT relation $M_2 \approx M_3/3$ among the wino mass parameter M_2 and the gluino mass M_3 , and lower bounds on $M_3 \gtrsim 2$ TeV

→ Higgsinos have smaller cross sections, leading to weaker bounds on cross sections × branching fractions than from wino production e.g. from CMS-SUS-17-004 (1801.03957) in the plane $M_{\tilde{\chi}_{\tau}^{\pm}} - M_{\tilde{\chi}_{\tau}^{0}}$:

After a scan over viable NMSSM parameters requiring good dark matter, we recast these limits using the resulting higgsino/singlino masses and couplings First: Simplifying (technical) assumption: Heavy sleptons (staus)

Red: Excluded for arbitrary bino mass M_1 , allowing for $M_1 < \mu$ (= $M_{higgsino}$) Blue: Excluded if $M_1 > 300$ GeV as motivated by the GUT relation $M_1 \approx M_3/6$

NUH-NMSSM

Assume universal gaugino masses, universal squark=slepton masses at M_{GUT} \rightarrow Stronger constraints,

 \rightarrow The necessary amount of finetuning can be estimated (mainly due to constraints from dark matter relic density):

 \rightarrow Relatively low finetuning for $M_{\tilde{\chi}_1^0} \sim M_Z/2$, $\sim M_{H125}/2$ or $\sim M_{\tilde{\chi}_1^{\pm}}$ where s-channel annihilation or co-annihilation is possible Otherwise: s-channel annihilation via A_1 with $M_{\tilde{\chi}_1^0} \sim M_{A_1}/2$

Reasons for the alleviated constraints from searches for $\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + W$, $\tilde{\chi}_{(2,3)}^0 \rightarrow Z + \tilde{\chi}_1^0$:

— Smaller production cross sections (although there are two nearly degenerate higgsinos)

— Decays $\tilde{\chi}^0_{(2,3)} \rightarrow H_{SM} + \tilde{\chi}^0_1$, on which limits are much weaker, have branching fractions of $\sim 30 - 50\%$ (averaging over both higgsinos)

— If decays $\tilde{\chi}^0_{(2,3)} \rightarrow Z + \tilde{\chi}^0_1$ are kinematically forbidden for Z on-shell, decays $\tilde{\chi}^0_{(2,3)} \rightarrow H_1/A_1 + \tilde{\chi}^0_1$ can be dominant where H_1/A_1 are NMSSM specific light scalars/pseudo scalars; difficult to detect! (Taking constraints on H_1/A_1 from searches at LEP/LHC and $H_{SM} \rightarrow H_1 + H_1$ into account)

Still, searches for $\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + W$, $\tilde{\chi}_{(2,3)}^0 \to Z + \tilde{\chi}_1^0$ do constrain light higgsinos/singlinos except . . .

Relaxing the "simplifying (technical)" assumption (1):

Allowing for light staus:

 \rightarrow Higgsinos $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_{2,3}^0$ prefer to decay into staus instead of the LSP $\tilde{\chi}_1^0$:

Constraints from corresponding searches by CMS in CMS-PAS-SUS-17-002, but weak for light $\tilde{\tau}$

 \rightarrow No NMSSM-points get excluded by searches for charginos and neutralinos if staus are lighter than higgsinos (of mass $\sim \mu$)

Relaxing assumption (2):

Allowing for a bino lighter than higgsinos, the neutralinos are: $\tilde{\chi}_1^0$: Singlino as before $\tilde{\chi}_2^0$: Bino $\tilde{\chi}_{(3,4)}^0$: Higgsinos $\tilde{\chi}_5^0$: wino, assumed heavy

 \rightarrow In the presence of a light singlet-like scalar H_1 (or A_1) with

$$M_{H_1} < M_{higgsino} - M_{bino}$$

the higgsinos can decay via the cascade

$$ilde{\chi}^{0}_{(\mathbf{3},\mathbf{4})}
ightarrow extsf{H}_{1} + ilde{\chi}^{0}_{2}
ightarrow extsf{H}_{1} + extsf{H}_{1} + ilde{\chi}^{0}_{1}$$

and decays ${ ilde \chi}_1^\pm o { ilde \chi}_2^0 + W^{(*)}$ become possible

 \rightarrow Constraints from existing searches for charginos and neutralinos can be circumvented

Conclusions:

- For strict constraints it seems reasonable to start with the electroweakino sector, to use subsequently for realistic decay cascades
- In the NMSSM where a singlino-like LSP can satisfy the constraints on dark matter, it is appropriate to impose these constraints; these exclude already a sizeable region in the plane $M_{\tilde{\chi}^{\pm}_{1}} M_{\tilde{\chi}^{0}_{1}}$
- If heavy staus and bino are assumed, additional regions in this plane are definitively excluded by recent searches for neutralinos/charginos
- Dark spot 1: light staus!
 (Not excluded by searches for stau pair production at the LHC)
- Dark spot 2: light bino, leading to higgsino decay cascades via light H_1/A_1 \rightarrow To include in electroweakino searches? (Difficult, of course)
- BMpoints and planes are proposed in 1806.10672

	P1	P2	P3	P4	P5	P6
$M_{\chi_1^{\pm}}$	265	261	219	286	276	193
$M_{\chi_1^0}$	3.2	40	62	85	107	150
$M_{\chi_2^0}$	250	244	206	261	257	197
$M_{\chi_3^0}$	285	278	236	306	293	205
M _{H1}	56	35	59	20	3	60
M_{A_1}	76	78	63	167	205	259
$BR(\chi_2^0 o \chi_1^0 + Z)$	0.40	0.30	0.84	0.73	0.13	0.95*
$BR(\chi_2^0 \rightarrow \chi_1^0 + H_{SM})$	0.48	0.64	0.09	0.22	0.77	0.00
$BR(\chi_2^0 \to \chi_1^0 + H_1)$	0.08	0.05	0.02	0.03	0.10	0.00
$BR(\chi_3^0 \rightarrow \chi_1^0 + Z)$	0.57	0.70	0.39	0.34	0.89	0.99*
$BR(\chi_3^0 \rightarrow \chi_1^0 + H_{SM})$	0.33	0.24	0.56	0.61	0.09	0.00
$BR(\chi_3^0 \to \chi_1^0 + H_1)$	0.06	0.02	0.03	0.05	0.02	0.00
Sect $\rightarrow \chi_1^{\pm} + \chi_2^0$ [fb]	125	139	318	85	93	295
$Xsect \to \chi_1^\pm + \chi_3^0 \; [fb]$	128	141	258	96	115	437

Table: Masses (in GeV) and branching fractions of benchmark points of the pNMSSM. Branching fractions into Z with a star indicate off-shell decays.

	P7	P8	P9	P10	P11	P12
$M_{\chi_1^{\pm}}$	129	237	118	158	210	226
$M_{\chi_1^0}$	97	160	45	47	50	60
$M_{\chi^0_2}$	131	238	110	123	128	180
$M_{\chi_3^0}$	140	248	128	172	222	240
$M_{\chi_4^0}$	303	355	302	183	224	246
M _{H1}	32	25	35	43	5	62
M_{A_1}	174	290	42	37	49	21
$BR(\chi_2^0 \rightarrow \chi_1^0 + Z)$	0.00	0.00	0.10*	0.02*	0.00	0.16
$BR(\chi_2^0 ightarrow \chi_1^0 + H_{SM})$	0.00	0.00	0.00	0.00	0.00	0.00
$BR(\chi_2^0 \rightarrow \chi_1^0 + H_1)$	1.00	1.00	0.38	0.27	1.00	0.01
$BR(\chi_2^0 \to \chi_1^0 + A_1)$	0.00	0.00	0.52	0.71	0.00	0.02
$BR(\chi_2^0 \to \nu_\tau + \tilde{\nu}_\tau)$	0.00	0.00	0.00	0.00	0.00	0.81
$BR(\chi_3^0 \to \chi_1^0 + Z)$	0.96*	0.88*	0.33*	0.80	0.25	0.36
$BR(\chi_3^0 \rightarrow \chi_1^0 + H_{SM})$	0.00	0.00	0.00	0.09	0.39	0.39
$BR(\chi_3^0 \to \chi_1^0 + H_1)$	0.04	0.12	0.61	0.08	0.07	0.02
$BR(\chi_3^0 \to \chi_1^0 + A_1)$	0.00	0.00	0.03	0.01	0.00	0.00
$BR(\chi_3^0 \rightarrow \chi_2^0 + Z)$	0.00	0.00	0.03*	0.00	0.06	0.00
$BR(\chi_3^0 \rightarrow \chi_2^0 + H_1)$	0.00	0.00	0.00	0.02	0.23	0.00

$BR(\chi_3^0 \to \tau^{\pm} + \tilde{\tau}^{\mp})$	0.00	0.00	0.00	0.00	0.00	0.17
$BR(\chi_3^0 o u_ au + ilde{ u}_ au)$	0.00	0.00	0.00	0.00	0.00	0.06
$BR(\chi_4^0 \rightarrow \chi_1^0 + Z)$				0.44	0.86	0.23
$BR(\chi_4^0 \rightarrow \chi_1^0 + H_{SM})$				0.01	0.06	0.03
$BR(\chi_4^0 \rightarrow \chi_1^0 + H_1)$				0.01	0.02	0.00
$BR(\chi_4^0 \rightarrow \chi_1^0 + A_1)$				0.00	0.02	0.00
$BR(\chi_4^0 o \chi_2^0 + Z)$				0.00	0.04	0.00
$BR(\chi_4^0 \rightarrow \chi_2^0 + H_1)$				0.51	0.00	0.07
$BR(\chi_4^0 o au^{\pm} + ilde{ au}^{\mp})$				0.00	0.00	0.56
$BR(\chi_4^0 o u_ au + ilde{ u}_ au)$				0.00	0.00	0.10
$Xsect \to \chi_1^\pm + \chi_2^0 \; [fb]$	1319	186	3138	670	78	145
$Xsect \to \chi_1^{\pm} + \chi_3^{0} \; [fb]$	1759	212	2376	829	295	241
$Xsect \to \chi_1^\pm + \chi_4^0 \; [fb]$	9	7	8	437	316	164