

An effective scanning method of the NMSSM parameter space

C. Beskidt, W. de Boer, D. Kazakov

Institut für Experimentelle Teilchenphysik

Parameters MSSM vs. NMSSM

NMSSM has one additional Higgs singlet

→ additional terms in superpotential lead to more free parameters and lead to modifications in the Higgs and neutralino sector

large parameter space (7D in semi-constrained NMSSM)

parameters are highly correlated, so random scan of parameter space very inefficient without correlation matrix, which tells how to step through the parameter space in a correlated way

How to solve?

we do not know the 7x7 correlation $\frac{1}{3}$
matrix **matrix**

Idea: if there is a one-to-one relationship between Higgs masses and parameters, could we scan less correlated Higgs masses, which additionally have well known constraints from 125 GeV Higgs boson with SM-like couplings?

Analyzing the NMSSM parameter space using novel scanning technique

Scanning strategy for accepted points:

- ➢ **select 4 Higgs masses (left box)**
- ➢ **fit these masses with the 7 free NMSSM parameters (right box) using the constraints above (middle box)**
- ➢ **apply LHC and LEP Higgs mass limits**
- \triangleright Repeat the fit in a grid of all Higgs mass combinations of M_{A1} , M_{H1} , M_{H3} to **obtain a scan over all accepted NMSSM parameters in the 7D parameter space.**

* We allow also the possibility $M_{H1} = 125$ GeV and SM-like

How to cover the 7D NMSSM parameter space by scanning the 3D Higgs parameter space?

7 free NMSSM parameters can be determined from fitting the selected Higgs masses on the 3D grid with constraints (same problem as extracting parameters from a completely and perfectly measured set of Higgs masses determining uniquely the corresponding parameters) → no random scan

,-plane as an example for output from deterministic scan of 3D mass space:

 χ^2 Function $\chi^2_{tot} = \chi^2_{H_S} + \chi^2_{H_{SM}} + \chi^2_{\mu_{SM}} + \chi^2_{H_3} + \chi^2_{A_1} +$ $\chi^2_{LEP} + \chi^2_{LHC}$

$$
\sum_{H_S} \frac{(m_{H_1} - m_{grid,H_1})^2}{\sigma_{H_1}^2}
$$

- $m_{grid, H_{\texttt{1}}}$: Chosen point in the 3D mass space
- m_{H_1} : singlet-like Higgs boson, σ_{H_1} set to 1‰ m_{H_1} GeV

$$
\gamma_{H_{SM}}^2 = \frac{\left(m_{H_2} - m_{obs}\right)^2}{\sigma_{SM}^2}
$$

125.2 GeV Higgs boson with σ_{SM} set to 1‰ m_{H_2} GeV

$$
\sqrt{\chi_{H_3/A_1}^2} = \frac{(m_{H_3/A_1} - m_{grid, H_3/A_1})^2}{\sigma_{H_3/A_1}^2} \text{ as } \chi_{H_S}^2
$$

- χ^2_{LEP} : includes the LEP constraints on the couplings of a light Higgs boson below 115 GeV and the limit on the chargino mass
- χ^2_{LHC} : includes the LHC constraints as implemented in NMSSMTools

$$
\Delta \chi_{H_{SM}}^2 = \sum_i (\mu_{H_2}^i - \mu_{obs})^2 / \sigma_{\mu}^2
$$

125.2 GeV with SM couplings, $\mu_{H_2}^i$: reduced cross section of H_2 to particle $i = \tau, b, W/$ Z, γ for ggf/ttH and VBF/VH production. μ_{obs} equals 1 with σ_{μ} set to 5‰

Some more examples of correlation of NMSSM parameters

- Correlation for selected NMSSM parameters tan β, λ and μ_{eff}
- The error bars correspond to the error determined by the Minuit fit for each mass combination

Only best points after a χ^2 cut plotted. **Distribution depends on cut value (or equally: assumed error values for chosen Higgs masses)**

1D χ^2 distribution examples of $\tan\beta$, μ_{eff} , λ and κ . For larger allowed **errors the minimum around the best fit points gets flatter (dotted lines).**

Fix-point solutions for the trilinear couplings

For different Higgs mass combination, the low scale values vary, but the running from a large allowed range at the GUT scale towards a fix-point solution (meaning independent of GUT scale value) at the SUSY scale remains.

 m_0 and $m_{1/2}$ enter only in the stop corrections $\Delta \tilde{t}$, so different stop masses **lead to small shifts in the Higgs masses which can be compensated by small shifts in the optimal values of the NMSSM parameters**

The dominant contribution to the total $\Delta \chi^2$ function is coming from the **signal strength constraint. This contribution is less sensitive if the masses of the SUSY particles are getting heavier.**

Present results from novel scanning technique

For light singlet-like Higgs bosons the values for XSxBR are compatible to the SM Higgs boson but studies of efficiencies and backgrounds needed.

Outlook:

Many more detailed studies possible, e.g. possible signal strength deviations from SM predictions (see next talk)

Additional promising channels in the NMSSM for heavy Higgs H3 boson like A1Z and H1H2 in contrast to MSSM

Summary

- **Novel scanning technique avoiding random scan of strongly correlated 7 NMSSM parameters**
- Instead: scanning 7 Higgs mass space, which becomes only 3D in **decoupling limit in which all heavy masses are identical and the known 125 GeV Higgs mass.**
- **3D Higgs mass space can be scanned by probing all mass combinations on a grid, so no random scan. This guarantees complete coverage.**
- **Using the novel scanning technique we determined the allowed range of the BR x XSs for light and heavy Higgs bosons and provided benchmark points and discovery channels which allow a detailed simulation and studies of the background and efficiencies**

Backup

Is there a unique solution for the SM Higgs mass?

$$
M_H^2 \approx M_Z^2 \cos^2 2\beta + \Delta_{\tilde{t}} + \lambda^2 \nu^2 \sin^2 2\beta - \frac{\lambda^2}{\kappa^2} (\lambda - \kappa \sin 2\beta)^2
$$

CMSSM-like (small λ , κ , large tan β) NMSSM specific (large λ , κ , small

Region II

NMSSM specific (large λ , κ , small tan β) **Region I**

Is the 125 GeV SM-like? → couplings/signal strengths

Almost in the whole $\lambda - \kappa$ **plane 125 GeV Higgs mass fulfilled (green region)**

Higgs mass (H_1) **too light. Stop mass corrections not enough to reach 125 GeV similar to MSSM. Can be compensated by larger** value of $m_0/m_{1/2}$

Couplings and reduced XSs/signal strengths

Reduced XS proportional to Higgs couplings which include the Higgs mixing elements S_{ij} and the Yukawa couplings

 χ^2 includes 8 signal strengths $\mu = \frac{\sigma \times BR}{\sigma \times BR}$ $\sigma_{SM}{\times}BR_{SM}$

Are deviations of reduced couplings from SM really 0?

Signal strengths of observed Higgs equal SM in Region I.

In Region II small deviations preferred.

In intermediate regions larger deviations, only allowed if errors are enlarged.

Allowed range of signal strengths/couplings allows determination of BRs and BR x XSs for all Higgs bosons.

Are larger deviations from SM allowed?

Couplings of singlet like Higgs to fermions and allowed range for Higgs mixing elements

 S_{11} (\sim H₁bb) large and positive in Region I

 S_{11} (~ $H_1 bb$) almost zero due to zero crossing in Region II $\rightarrow tan\beta$ enhancement small compared to small S_{11} values

SM Higgs mixing elements and heavy Higgs boson fixed by SM Higgs couplings constraint \rightarrow allowed range of singlet Higgs mixing matrix elements

Couplings of singlet like Higgs to fermions and allowed range for Higgs mixing elements

 S_{11} (~ H_1 bb) large and positive in Region I

 S_{11} (~ $H_1 bb$) almost zero due to zero crossing in Region II $\rightarrow tan\beta$ enhancement small compared to small S_{11} values

BRs for light (singlet-like) Higgs boson

Large coupling to down-type fermions \rightarrow dominant decay into b quarks as in the SM.

BRs for light (singlet-like) Higgs boson

CMSSM-like region BRs different from SM due to zero crossing of S_{11} leading to broad allowed bands for BRs for all channels.

Discovery potential for tau final states @14TeV

Discovery potential for tau final states @14TeV

Region II: XS has large allowed range because of zero crossing of S_{11} .

Discovery potential for final states @14TeV

- τ : in both Regions
- $|\gamma\gamma|$ in both Regions
- $Z\gamma$: for $m_{H1} > 95$ GeV
- WW/ZZ : for $m_{H1} > 80/90$ GeV, small because of phase space
- Double Higgs Production
- $A_1A_1/\tilde{\chi}^0_1\tilde{\chi}^0_1$: XS x BR compatible to SM decay $\mathrm{H}\to\gamma\gamma$

For more details see backup slides and *PLB782 (2018) 69-76*.

Other final states are small and $A_1A_1/\,\tilde{\chi}^0_1\,\,\tilde{\chi}^0_1$ are only possible in a restricted parameter space where $m_{A1/\widetilde X_1^0} < 0.5 m_{H1}$

NOTE: A_1 and $\tilde{\chi}^0_1$ masses are correlated, so both signatures happen in the same region of parameter space (see backup slides)

Upper bound for NMSSM double Higgs production BRs (if kinematically accessible)

See backup slides for corresponding BR plots Dominant A_1 decay modes in bb, $\tau\tau$ and MET see backup slides

Reduction of the 6D Higgs mass space

- H_3 , H^\pm and A_2 are considerd to be degenerate in mass
- One observed 125 GeV Higgs with SM couplings

→ 3 undetermined free Higgs masses in the NSSM (3D)

- Provide 3D grid for unknown m_{H1} - m_{H3} m_{A1} masses
- For each mass combination MINUIT* is used to determine corresponding NMSSM parameters

Efficient sampling of the parameter space and determination of the couplings

* F. James and M. Roos, Comput.Phys.Commun. 10 (1975) 343-367

Efficient sampling of Parameter Space - Example

- Dividing the axis of the 3D space into X~100 bin require a total of X^3 Minuit fits, which is quite feasible instead of random sampling in the 6D parameters of the Higgs parameters
- E.g. efficient sampling of parameter space allows to find points in parameter space which will elude the future searches for dark matter at the Darwin experiment

Scenario I (large λ , κ , small tan β)

Scenario II (small λ , κ , large tan β)

Light Higgs production cross section

Light Higgs production cross section

No $tan\beta$ enhancement for bbH XS and large spread \rightarrow Coupling not only proportional to $tan\beta$ but also Higgs mixing matrix elements S_{11} and S_{12}

BRs x XS for light Higgs Boson

(in comparison with 125 GeV Higgs Boson)

 Zy : in both Regions the mass range above 95 GeV is accessible

ZZ: for mass range above the maximal ratio is 1 ‰ because of phase space