

Diamond membrane detectors GSI, 7.2.2019

Miha Červ, CIVIDEC Instrumentation

CVD diamonds

- CVD = Chemical Vapor Deposition
- Little impurities
- High temperature, low pressure
- Ionized hydrogen, methane gas
- 0.1 μ m to 10 μ m per hour

Why diamond detectors

- Radiation resistant
- Low noise
- Low leakage current
- No cooling required
- Fast response sub nanosecond

Applications for diamond detectors

- Beam instrumentation and spectroscopy
- Neutron spectroscopy and flux monitoring
- X-ray and gamma beam position and beam intensity monitoring

pCVD and sCVD

- Polycrystalline (pCVD)
 - Cheaper per area
 - Can be up to 75 cm²
- Single crystal (sCVD)
 - Smaller sizes up to 8mm * 8mm
 - For spectroscopy, particle recognition

pCVD diamond detector

Ionization

Particle detection

Drift velocity

- Electrons and holes have different mobilities
- Holes have higher mobility
- Shockley-Ramo theorem :

$$I = \frac{q * v}{d}$$

Electron drift

Hole drift

Amplifiers

- Current amplifiers
 - Counting
 - Pulse shape analysis
- Charge amplifiers
 - Spectroscopy

f_{BW} = 2000 MHz f_{BW} = 500 MHz

f_{BW} = 80 MHz

f_{BW} = 31 MHz

f_{BW} = 7 MHz

Time [ns]

Current amplifier

Charge amplifier

Particle Identification

Particle Identification

Particle identification

My measurements

- Grace beam line at AEgIS at CERN
- Low energy antiprotons

Measurement setup

- Knopf detector
- C2 current amplifier
- ROSY readout system

Knopf detector

- sCVD diamond
- 500 µm thickness
- 4mm * 4mm sensor area
- Fits directly onto the SMA connector

Measured waveforms

Annihilation

Second measurement

- Repeat measurements with thinner electrode
- Expected more annihilation in the sensor

Thin electrode Knopf detector

Energy histogram

Measurements from 2018

Energy over time plots

Measurements from 2017

Measurements from 2018

FWHM over time plots

Measurements from 2017

Measurements from 2018

Nonlinearities

- Amplifier nonlinearity
- Pulse height defect

C2 amplifier nonlinearity

Pulse height defect

Thin diamond detectors

- Maximum thickness 500 um
- Standard sizes 140 um and 50 um
- Experiments with 20 um diamonds
 - Limit for producibility
 - Extremely fragile

Effects of thinning detectors

• Higher output signal

$$I = \frac{q * v}{d}$$

• Higher capacitance

Crystal bending

$50 \ \mu m$ and $20 \ \mu m$ crystal comparison

50 µm crystal

 $20 \ \mu m \ crystal$

Bent crystal

www.cividec.at

