AVA Topical Workshop - Low energy facility design and optimization through diagnostics

LOW ENERGY ANTIPROTONS AND POSITRONIUM MANIPULATION, DETECTION AND DIAGNOSTICS FOR PULSED ANTIHYDROGEN PRODUCTION

Mattia Fanì CERN, INFN Sezione di Genova and Università di Genova

GSI, Darmstadt - February 7th, 2019

ANTIMATTER

Baryon asymmetry vs hadronization epoch

* No hints of antimatter in the baryonic sector

Look for fundamental sources of asymmetries

- * Test of fundamental CPT symmetry Matter and antimatter should have equal properties (masses, lifetime, |charges|, g-factor...)
- * Test of Weak Equivalence Principle (WEP) with antimatter
 "The behaviour of a body in an external gravitational field should not be affected by its composition" Inertial mass and gravitational mass are identical

Any difference between matter and antimatter will necessarily have consequences...

GRAVITY

* Normal matter: $\frac{\delta g}{g} = 10^{-13}$ [J.G. Williams et al. Phys. Rev. D 53, 6730, 1996]

Three main hypothesis for gravitational interaction with antimatter

* Normal gravity (Einstein's Equivalence Principle, EEP) EEP=Weak Equivalence Principle + Local Lorentz Invariance + Local Position Invariance

- * Antigravity
 CPT invariance combined with General Relativity [Villata M. 2011 EPL 94 20001]
 -> Would imply General Relativity not universally applicable [Cabbolet, M.J.T.F, Astrophys Space Sci (2012) 337:5–7]
- * Slight violations of the EEP

Quantum scalars and vector fields may be allowed when QFT extended to include gravitation

-> Possibility of a non-identical gravitational interaction between matter and antimatter

[Scherk J 1979 Phys. Lett. B 88 265], [Goldman T et al 1986 Phys. Lett. B 171 217], [Nieto M and Goldman T 1992 Phys. Rep. 205 221–81], and others

	Insights for quantum gravity?
>	Connection to Dark Energy?

APPROACH

Measure the gravitational acceleration for antihydrogen in Earth gravitational field

- * Pulsed antihydrogen formation via resonant charge exchange reaction with positronium (Ps)
- * Acceleration into cold pulsed antihydrogen beam
- * Direct measurement of the free fall of antihydrogen with position detector

[AEgIS proposal, http://cdsweb.cern.ch/record/1037532]

Motivations AEgIS Antiprotons Positronium Antihydrogen Next

ANTIPROTONS

- The Antiproton Decelerator at CERN
 - * Delivers 3x10⁷ antiprotons few 10 ns every 110 s
 - ★ 5.3 MeV, 100 MeV/c
- Coming soon: ELENA
 - ✤ Further deceleration to 100 keV

APPARATUS

Low energy facility design and optimization through diagnostics - GSI Darmstadt, 6-7/02/2019

Motivations AEgIS Antiprotons Positronium Antihydrogen Next

Low energy facility design and optimization through diagnostics - GSI Darmstadt, 6-7/02/2019

P CATCHING

Multiring Penning/Malmberg catching traps

- * Used for antiproton catching, cooling, storage and transfer
- * 1 m length, 15 mm radius, B= 4.46 T

Routinely catching antiprotons coming from AD

- * ~4.5x10⁵ per AD shot (~3x10⁷)
- * Strong dependence on steering and AD's general health

Accumulation and compression of several AD shots

- * Trade-off between stability and performances.
- Linear growth of antiprotons cooled and compressed with number of AD shots
 HV1
- * Best: 8 AD shots

Motivations AEgIS Antiprotons Positronium Antihydrogen Next

P COMPRESSION

- Remove significant part of the electrons
- Apply RW technique on multispecies plasma
- Use additional electron reduction
- Repeat in compression stages to reach lower radii
- Fight against electron tails!

- The MCP measures radial distribution integrated along the trap axis
- Image intensity will be proportional to the number of particles

[Aghion S. et al., 2018 Eur. Phys. J. D 72 76]

H PRODUCTION

Transport towards the production region

- * Ballistic transfer: 1.5 m, radially compressed cloud
- * In-flight dynamical centring and recatching (90% efficiency)

Cooling antiprotons in the final trap

* Prepare electron plasma (~10⁷), send to the antiproton well
 -Fast pulses (~10 ns) to open/close the trap

I I I HI I

P-trap

- * RW cloud compression for few tens of seconds
- Get the best antiproton cloud condition
 - * Reduce the number of electrons
 - * Limit the radial transport, reduce radial velocity
 - * Cannot remove all the electrons... HV3

Low energy facility design and optimization through diagnostics - GSI Darmstadt, 6-7/02/2019

T-elec.

H PRODUCTION

Multiple antihydrogen production cycles

- * Up to 10⁶ antiprotons available for each production cycle
- * Up to 60 production cycles per stored antiproton cloud
- * Improving time efficiency and production efficiency

Multispecies non-neutral plasma

- * Antiprotons and electrons in the same cloud
- * Accurate choice of parameters (e.g. to avoid centrifugal separation)

Antiproton plasma lifetime mainly affected by

* Radial expansion rate (plasma angular moment not conserved)

P-trap

* Control of the losses (typically ~30% in 20 cycles) HV3

Mattia Fanì

Low energy facility design and optimization through diagnostics - GSI Darmstadt, 6-7/02/2019

T-elec.

- Bound state of positron and electron
 - * Hydrogen-like pure leptonic atom
 - * Two spin configurations, different lifetimes

State	Spin configuration	Name	Lifetime	Decay
1 ¹ S	<u>↑</u> ↓−↓↑	para-positronium (p-Ps)	125 ps	2γ
1 ³ S	↑↑ , ↓↓ , ↑ ↓+↓↑	ortho-positronium (o-Ps)	142 ns	3γ

Single-Shot Positron Annihilation Lifetime Spectroscopy (SSPALS)

PS NEW DIAGNOSTICS

- Improved visibility in the target region
 - * Target region modified to allow for significantly improved diagnostics
 - * Mount the target as close as possible to the production trap
- Rework of the laser diagnostics
 - * New CMOS camera from outside vacuum for imaging of laser excitation position relative to positron implantation point
 - * Optical fibres for positioning coupled to a PMT for timing information
 + Phosphor, Macor with meshgrid
- MCP added to the Ps diagnositcs
 - * Move the MCP to add Ps cloud path to its view for imaging of released positrons and electrons

PS CHARACTERISATION IN 1T

Before: SSPALS (hundreds of shots)

Now: photoionisation (few shots)

Mattia Fanì

H DETECTION

- Antihydrogen detection is detection of antiproton annihilation on trap electrodes (Au plated)
 - * Very low energies for antiproton annihilation have been reached only recently Need for experimental data to corroborate theoretical/simulations models
 - * The cartoon:

X= nuclear recoils, p, t, n, a, ³He, ⁴He, ⁶He, ⁸He, Li...

- Several sources of background and undesirable effects
 - * Environmental
 - * Procedure-induced (e.g. antiproton losses, positron burst, etc...)
 - ***** All other possible systematics

Severely affects detectors

relatively long time needed for recovery

H DETECTORS

The Fast Annihilation Cryogenic Tracker (FACT) detector

- * 4 layers of 1 mm diameter scintillating fibres
- * Cryogenic optical coupling
- * Arrays of 1 mm diameters Hamamatsu MPPC (Multi Pixel Photon Converter)
- * 100 Geiger mode Avalanche Photo Diodes (APD) each
- * R/O via fast discriminator with TTL output to 16+1 FPGAs (48 MPPC each)
- * Challenging operating requirements
 - 4K environmental temperature
 - 1T solenoidal magnetic field

10

H DETECTORS

H ANALYSIS

- Same measurement protocol for several combinations
- Robustness check
 - * Vary scintillator array MIP threshold
 - * Several data takings campaigns dedicated to all the backgrounds and systematics

Low energy facility design and optimization through diagnostics - GSI Darmstadt, 6-7/02/2019

PS DETECTION

Look for a better precision in positronium measurements

- * New diphenylacetylene (DPAC) crystal doped with stylbene, grown at LLNL
- * Very small delayed light component
- * Allows an even better sensitivity in the interesting time region
- SSPALS technique in 1T to improve Ps diagnostics
 - * Possible modifications in the production trap

PS DETECTION

CONCLUSIONS

- AEgIS uses several classes of detectors implementing a wide range of techniques in the detection of charged particles, non-neutral plasmas, positronium and antihydrogen.
- A final procedure has been developed for the pulsed production of antihydrogen. AEgIS routinely captures antiprotons coming from AD and reaching the best compression ever. This contributes to a number of improvements in the plasma conditions which gave a substantially increase in the production rate. The introduction of a stacking procedure significantly increased the efficiency of the overall antihydrogen production procedure.
- Positronium is routinely formed both in a dedicated setup and inside the main apparatus, leading to the first Ps laser excitation to the Rydberg levels in a 1T magnetic field and to the detailed characterisation of the Ps source for antihydrogen production. A new diagnostics developed during last year allowed a precise characterisation of the travel path of the Ps cloud towards the antihydrogen production trap.
- A preliminary analysis of data taken during last year highlights a statistically significant signal compatible with pulsed formation of antihydrogen, while excluding major potential sources of background. Further analysis is under way.
- A new scintillator-based innovative detector promises a better precision in the diagnostics of positronium measurements to be implemented in the experiment during the LS2.

This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Programme under contract number 721559 AVA

