

Low-energy Electron Cooling and Detection Methods at the Cryogenic Storage Ring

Max Planck Institute for Nuclear Physics,

Heidelberg, Germany

for the CSR team

Low energy facility design and optimization through diagnostics

Outline

- Reminder: The electrostatic Cryogenic Storage Ring (CSR)
- CSR Detectors
- The CSR low-energy electron cooler
- Cooling Observation and Optimization
 - Longitudinal
 - Transverse
- · Lifetimes of electron cooled ion beams

The CSR – Motivation

Cold molecular clouds in the ISM: Astrochemistry

	CSR	interstellar clouds
Temperature	< 10 K	~ 10 – 150 K

Rotationally resolved collision studies are possible

- \rightarrow storage times ~ **1000 s**
- \rightarrow electrostatic: mass-independent storage of ion beams
- \rightarrow molecular ions in well-defined quantum states
- → velocity-matched merged-beam experiments: low collision energies

The CSR - Overview

Outline

- Reminder: The electrostatic Cryogenic Storage Ring (CSR)
- CSR Detectors
- The CSR low-energy electron cooler
- Cooling Observation and Optimization
 - Longitudinal
 - Transverse
- · Lifetimes of electron cooled ion beams

Cold Movable Particle Counter (COMPACT)

CSR Detectors - COMPACT

Fragmentation Parameter

$$\eta = \frac{q_d/m_d}{q_p/m_p} - 1$$

Detection Range

 $-1.4 \leq \eta \leq +1.1$

- Manually movable to desired fragment position
- Movement in cryogenic and UHV environment

CSR Detectors - NICE

- Multi-coincidence imaging detector
- 3D fragment imaging under development

Outline

- Reminder: The electrostatic Cryogenic Storage Ring (CSR)
- CSR Detectors
- The CSR low-energy electron cooler
- Cooling Observation and Optimization
 - Longitudinal
 - Transverse
- Lifetimes of electron cooled ion beams

The CSR – Electron Cooling

Liouville's theorem:

Ion beam emittance is constant in absence of external forces

BUT :

- Low beam emittance desired
- Diffusion processes increase emittance

Benefits of electron cooling at CSR :

- Narrow beam profile \rightarrow defined collision geometry
- Low energy spread $\rightarrow\,$ defined collision energies
- Increased beam lifetimes

The CSR – Electron Cooling

$$E_{e} = \frac{m_{e}}{m_{i}} \cdot E_{i}$$

$$E_{e} [eV] \quad ion$$

$$163 \quad \text{for 300 keV } p^{*}/\overline{p}$$

$$1 \quad \text{for } M_{\text{ion}} = 160 \text{ u}$$

$$\vec{u} := \vec{v}_{i} - \vec{v}_{e}$$

$$\frac{du}{dt} = \frac{F}{M_{i}} \quad \stackrel{1}{\longleftarrow} \quad \tau_{cool} \sim \frac{M \cdot T_{e}^{3/2}}{Z^{2} \cdot n_{e}}$$

Challenge:

- assure $\tau_{cool} << \tau_{store}$
 - → electron beam with
 high density & low temperature
 (@ low kinetic energy)

Outline

- Reminder: The electrostatic Cryogenic Storage Ring (CSR)
- CSR Detectors
- The CSR low-energy electron cooler
- Cooling Observation and Optimization
 Longitudinal
 - Transverse
- Lifetimes of electron cooled ion beams

06.02.2019

F ⁶⁺	June 2017		
•	lon energy:	1.34 MeV	
•	lon current:	300 nA	
•	Cooling energy:	38.7 eV	
•	Electron current:	14.5 μA	
•	Electron density:	1.7 ⋅10 ⁵ cm ⁻³	

06.02.2019

06.02.2019

AVA Workshop

May 2018				
He	H⁺			
•	lon energy:	250 keV		
•	lon current:	300 nA		
•	Cooling energy:	27.4 eV		
•	Electron current:	27.0 µA		
•	Electron density:	3.7 ·10⁵ cm ⁻³		
•	Revolution Frequency:	88.28 kHz		

Ø

Bunch Widths over Time

AVA Workshop

Theoretical cooling rate estimated from temperature relaxation time in an isotropic Maxwellian plasma

$$r_{cool,bunchsize} = \frac{1}{4 \cdot \tau_{cool,plasma}} \cdot \frac{L}{C_0}$$

$$\tau_{cool,plasma} = \frac{3(4\pi\epsilon_0)^2 m_e}{8\sqrt{(2\pi)}e^4} \frac{m_i}{z^2} \frac{1}{n_e L_C} \left(\frac{k_B T_e}{m_e}\right)^{3/2}$$

L. Spitzer, Physics of Fully Ionized Gases

Coulomb logarithm:

Impact parameters:

$$L_{\rm C} = \int_{b_{\rm min}}^{b_{\rm max}} \mathrm{d}b/b = \ln(b_{\rm max}/b_{\rm min}) \qquad b_{\rm max} = \lambda_{\rm D} \equiv \sqrt{\frac{\varepsilon_0 k_{\rm B} T_{\rm e}}{n_{\rm e} e^2}} \qquad b_{min} = \frac{Z e^2}{4\pi\varepsilon_0 3k_B T_e}$$

06.02.2019

AVA Workshop

44

Longitudinal Cooling – Coasting Beam

Charge fluctuations

Longitudinal Cooling – Coasting Beam

Charge fluctuations

Outline

- Reminder: The electrostatic Cryogenic Storage Ring (CSR)
- CSR Detectors
- The CSR low-energy electron cooler
- Cooling Observation and Optimization
 - Longitudinal
 - > Transverse
- Lifetimes of electron cooled ion beams

Transverse Cooling – Detection Principle

Center-of-mass distribution of two-body events
 → transverse emittance of stored ions

Fragmentation processes

Dissociative Recombination:

Residual gas charge transfer:

$$HeH^+(v, J) + e^- \rightarrow He + H$$

$$HeH^+ + H_2 \rightarrow He + H + H_2^+$$

Transverse Cooling – Coasting Ion Beam

06.02.2019

Transverse Cooling – Coasting Ion Beam

Plasma Model

$$\tau_{cool} \sim \frac{M \cdot T_e^{3/2}}{Z^2 \cdot n_e}$$

- Ion energy: 250 keV
- Ion current: 182 nA
- Cooling energy: 45.7 eV

Plasma Model

- Ion energy: 250 keV
- Ion current: 182 nA
- Cooling energy: 45.7 eV

Plasma Model

- Ion energy: 250 keV
- Ion current: 182 nA
- Cooling energy: 45.7 eV

Plasma Model

$$\tau_{cool} \sim \frac{M \cdot T_e^{3/2}}{Z^2 \cdot n_e}$$

- Ion energy: 250 keV
- Ion current: 182 nA
- Cooling energy: 45.7 eV

Outline

- Reminder: The electrostatic Cryogenic Storage Ring (CSR)
- CSR Detectors
- The CSR low-energy electron cooler
- Cooling Observation and Optimization
 - Longitudinal
 - Transverse
- Lifetimes of electron cooled ion beams

Lifetimes of electron cooled Ion Beams

06.02.2019

Outlook - Different Ion Species

20 keV, n_{e} similar to O⁺

Summary

- CSR electron cooler as prototype low-energy cooler for electrostatic storage rings.
- lons undergo only small, easily correctable distortions.
- Longitudinal & transverse cooling proven for low ion masses.
- Search for cooling energy and overlap done fast (within < 1 h for O⁺ beamtime)
- Cooling times: ~s to ~min
- Electron cooled ion lifetimes: up to 1000 s

Summary

- CSR electron cooler as prototype low-energy cooler for electrostatic storage rings.
- Ions undergo only small, easily correctable distortions.
- Longitudinal & transverse cooling proven for low ion masses.
- Search for cooling energy and overlap done fast (within < 1 h for O⁺ beamtime)
- Cooling times: ~s to ~min
- Electron cooled ion lifetimes: up to 1000 s

Next beamtime:

March 2019

Thanks for your attention!

Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Stored Ions / Atomic and Molecular Physics

O. Novotny, C. Krantz, S. George, J. Göck,
A. Kalosi, C. Meyer, D. Paul, S. Saurabh, V. Schmidt,
D. Schwalm, P. Wilhelm,
A. Wolf, K. Blaum,
Alumni: S. Vogel, P. Mishra, A. Becker, K. Spruck,
S. Menk, M. Lange, H. Buhr, A Shornikov,
C. Breitenfeldt, B. Yang, J. Stutzel, M. Mendes,
A. Petrignani, D. Orlov, S. Lohmann, J. Lion,
J. Karthein

Cryogenic Storage Ring

M. Grieser, R. Repnow, **R. von Hahn** Alumni: F. Fellenberger, F. Berg

Molecular lons and Astrophysics (ASTROLAB)

- F. Grussie, A. O'Connor, D. Müll, S. Kumar S.,
- E. Guerin, P. Herwig, H. Kreckel

Collaborators

X. Urbain (UCL Louvain-la-Neuve)

D. W. Savin (Columbia University)

S. Schippers (University of Giessen)

W. D. Geppert (Stockholm University) A. S. Terekhov (Rzhanov Institute)

O. Heber, D. Zajfman (Weizmann Institute)

O. Trapp, C. Enss, A. Fleischmann (Heidelberg University)

L. Schweikhard (University of Greifswald)

Funding: MPG, DFG, GIF, ERC (ASTROLAB), NASA, NSF (O.N., D.W.S.), etc.

AVA Workshop

Backup Slides

æ

• structure must be contained in CSR cryostat: \rightarrow 10 K, 10⁻¹³ mbar & bakeable to 100-200°C

Longitudinal Cooling – Coasting Beam

Charge fluctuations

Estimate of ion beam momentum spread:

$$\frac{\Delta p}{p} = \frac{1}{\eta} \frac{\Delta f}{f} \approx 1.7 \cdot 10^{-4}$$

The CSR Electron Cooler – Temperature Spreads

Outlook – Electron induced (de-)excitation

$$ABC^{+}(J) + e^{-} \rightarrow ABC^{+}(J') + e^{-}$$

internal cooling/heating by inelastic electron collisions

Collaboration: C. Greene, S. Kokoouline, R. Curik, arXiv:1705.10153

Absolute measurement of the electron energy distribution

AVA Workshop

Transverse Cooling – Dispersive cooling effects

Measured Cooling Rates

Corrected Cooling Rates

Outlook – Dissociative Recombination Experiments

Outlook – Dissociative Recombination Experiments

Outlook – Dissociative Recombination Experiments

