GBAR Progress

Positrons

- $3 \times 10^5 \, e^+ / \, pulse$
- extrapolation to 300 Hz \rightarrow 7 × 10⁷ e⁺/s
- will improve moderation (x 2 ?)
- goal $3 \times 10^8 \, e^+/s$

- Today trapping few 10⁷-10⁸
- goal 10¹⁰

ortho-positronium signal

Differential signal showing oPs lifetime

01/11/2018

Ps excitation laser

CW TiSa seeder, 260 mW at 820 nm

TiSa oscillator, >5 mJ at 820 nm 01/11/2018

sample holder, MCP, mirror
P. Pérez - ECC

beam paths to Ps target

CW TiSa seeder and oscillator cavity 5 mJ @ 820 nm

after ampli 26 mJ

goal 10 mJ @ 410

nm

<u>Plan 2018</u>: look for 1S-3S transition

Beam distribution

01/11/2018 P. Pérez - ECC

H Lamb shift

 $\overline{H}(2S)$ $\overline{H}(2S)$

detect those γ s

Measure quenched fraction as a function of microwave frequency

4 months data → 100 ppm on line center

$$\Delta E = \frac{1}{12} \alpha^4 m_r^3 r_p^2 \rightarrow 10\% \text{ on } \bar{p} \text{ radius}$$

microwave cavity

CS₂ coated MCPs

GBAR Progress

Our goal for 2018 is to produce antihydrogen

All beam lines, are installed to this aim

Linac is working (1/3 nominal power, commissioning to be achieved before end 2018)

We get presently 10^8 positrons trapped, not yet focused to the intersection region with \bar{p}

With 3 10^6 antiprotons going through the positronium target, we should get $^{\sim}$ 1 $\overline{\rm H}$ per pulse

Extracting beam from ELENA and focusing to GBAR in progress ← SEM start working

But... we have no more beam time allocated ...