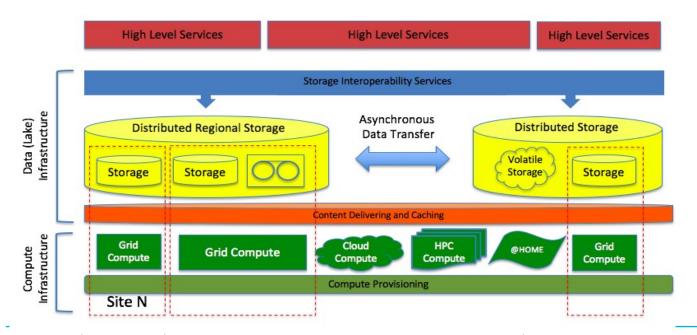


DOMA ContentDeliveryCaching : Cache

S. Jézéquel, I. Vukotic

ADC Jamboree

7 March 2019



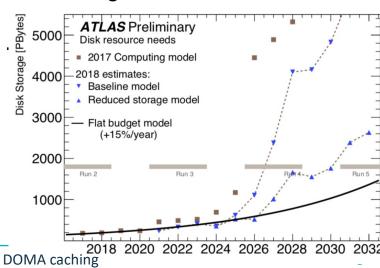
DOMA ContentDeliveryCaching

- * Twiki : https://twiki.cern.ch/twiki/bin/view/LCG/ContentDeliveryCaching
- * R&D for HL-LHC
 - With smooth transition over Run3 to validate and correct options
 - Computing TDR ~2022
 - General DOMA-Access meetings : each 2nd tuesday (agendas)
 - ATLAS-DOMA Access meetings on friday afternoon (agendas)

CAPP

Interest of caching technology

- * Simpler technology to copy/access files
 - Minimal maintenance by site admins (could be even delegated)
 - Deletion is handled locally
 - Adapt hardware to match speed access requests (SSD, HD)
- * Keep popular files
 - Optimise data reuse by Grid or local batch without WAN trafic
 - Standalone process to decide files to delete and do it
 - Data potential reusage evaluated through simulation of data access
 - Accessible through past access pattern stored in Elastic Search (U. Chicago) (more in Analytics presentation)
- * Speed up remote access
 - Use read ahead mechanism optimal for long distance
 - Partially hide possible network issues (keep fraction of file already transfered)


Not solving all problems

- * Not used to write job output
 - → Request 'standard' storage (Grid or other) to export data (trafic 5 times less than input transfer rate)
- * Current evaluated model assumes no publication of content to Rucio
 - Job brokering should be smart to adapt to potential location (example :
 Scheduling with Virtual Placement DDM')

Interest of caching technology: Dream

- * Host permanent files on high latency (= cheap) storage (nowdays=TAPE)
 - Less pressure to permanently identify files to clean
- * Host small and popular datasets for analysis on cache
 - Unused datasets are cleaned automatically replaced by recently accessed data
- * Would avoid the complain that, in some sites, only small fraction of stored files on DISK are used over 6 months (M. Schulz presentation)
- * Could fit with large amount of HL-LHC data with flat budget
- Compatible with acceptable data availability?

Data access popularity: Central production

- Permanent copy of input files only hosted in nucleus sites (except PU)
- * Reusage on the Grid
 - Triggered by different campains using same datasets
 - EVNT for simulation: Many times per year (fullsim, fastsim for syst. studies)
 - HITS for digi+reco : Different PU conditions (Ex : mc16c and mc16d)
 - Derivation : Process AOD each month
 - Within same production campain
 - EVNT: 5-10 times (single job too short to process all events)
 - AOD → DAOD : 10-15 times
 - Aim to make fat train to reduce nb of accesses to 1-2

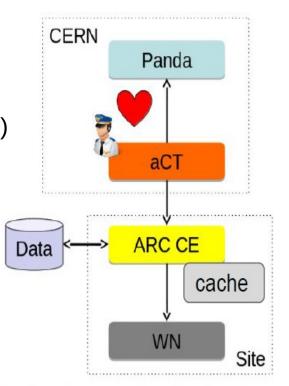
Data access popularity: Grid analysis

- Compiled library : Input panda*.lib.tgz
 - Specific to the site → always stored on local/associated Grid storage
 - Small size (O(MB))
 - Usage restricted to few days (created with lifetime)
- * Input datasets (AOD or DAOD) local (mandatory in the past) or remote:
 - Popularity depends on the user
- * Question : Optimal way to migrate datasets on high latency but cheap storage and automatically keep only usefull data on disk (à la cvmfs)
 - Could be done with Grid SE for sites keeping storage

Data access popularity: DAOD?

- * DAOD: Perfect candidate for heavy data usage BUT
 - Many formats in Run2 : ~100 formats
 - → single format accessed by small community
 - Actions under way
 - Run 3 : Strong reduction of DAOD format
 AMSG-R3 report
 - HL-LHC: Reduction to DAOD_phys (50 kB/evt) and DAOD_Lite (10 kB/evt) currently favored
 ATLAS-DOMA talk
 - Users typically transform them into
 - NTUP (filtered events and variables) to data+MC on their local analysis farm
 - Another format to be processed by Machine Learning

Data access popularity: Local analysis


- * Would avoid LOCALGROUPDISK to collect data from Grid storage
 - Could even complement long term archival to avoid to micro-manage quotas per user
 - But request to publish hosted data in Rucio
- * Gives transparent access to remote data (scalability issue with network connection ?)

Caching technology

* Arc-cache:

- Sites with Arc-CE and
 no Grid storage (Presentation in DOMA Access)
- Running in production over many years
 in NDGF computing sites and many HPC in Europe
- R&D:
 - Integration in Rucio
 - Arc-cache in a pilot model (without Arc-CE)

Caching technology (2)

* Xcache:

- Many presentations from ATLAS and CMS in DOMA Access meetings
- Stress tested in US, Germany, UK and evaluated in Italy
- Tested in production environment in US and Germany
 - Reliability under load to be consolidated before being ready for production
- Evaluation of cache on internet backbone
- Possibility to install/manage remotely : Positive feedback from LRZ/ US sutes
- Includes read-ahead for root format
- → Possibility to access fraction of files
- → Optimise read access for remote files (beyond Ttreecache optimisation)
- Potential interface with Eos

Caching technology (3)

- Caching as extension of Grid storage (dcache, DPM,..) :
 - Potential interest for sites already hosting Grid storage
 - Ex : DPM presentation in DOMA Access : Link
 - Tested in Italy and similar test expected in France
 - Limitations:
 - File access possible only when full file is fully transfered
 - Current cleaning algo based replica creation date

Message to sites

- * One of DOMA mandate is to evaluate caching : Computing model and technology
 - Bonus in case of data reusage which strongly depends on experiment workflow (production, analysis) and data format (single for all phys groups or not)
 - Potentially reduce network bandwidth and sensitivity to network unstability/congestion
 - Possibility to optimise remote access (read ahead)
 - Different caching technologies under evaluation (xcache most popular)
 - 2019 : Still R&D activity
 - Enough sites for the moment for a first evaluation
 - More volunteering/reactive sites could be called (especially to validate deployement model)
 - 2020 : If interest/reliability confirmed, general deployment could start

Backup

Current data pre-placement policy

* Production

- Input/Output files transfered between source and local Grid SE through
 Rucio+FTS
- Similar preplacement withing NorduGrid (ARC-CE cache)
- Files kept 2 weeks
- Over last 10 years
- Few diskless sites which read/write to remote Grid SE

* Analysis

- Historically : Brokering jobs close to data
- Recently: Input files are transfered to Grid location with free CPU
- Few diskless sites (Italy)

Caching vs FTS

Caching:

- Good : Caching mechanism ensures that file will be transfered even in chuncks → All transfers will go through
- Optimal in a model with temporary copies
- Requires (remote) Grid storage to write output

* FTS:

- Transfer files between Ses (requires SE with some Grid components)
- Should have the global picture of all transfers to be done
- Transfers always restared from scratch