
Lightweight WLCG Sites:
Remote DevOps with

SLATE
 Rob Gardner

University of Chicago

ATLAS Sites Jamboree
March 4-8, 2019

1

Outline

● Goal
● What is SLATE
● SLATE Architecture
● Provisioning Options
● Deploying services (e.g. XCache)
● Developing with MiniSLATE
● Getting Started
● Extras

2

Goal

● Remotely manage edge services at sites (e.g. squid,
xcache, ...) with central expert teams

● Deploy updates more quickly
● Introduce new services more easily
● Save time and effort for the local admins

3

Create a federation of edge clusters

● SLATE: Services Layer At The Edge
● Distributed service orchestration platform
● Kubernetes-based
● Start with a single server and scale as needed
● Loosely federated, share

projects/users/applications across institutions
● Good for any site but "lightweight" sites might find

it particularly useful
4

Basic SLATE Architecture
● Lightweight federation and application

catalog layer on top of Kubernetes
○ Security-conscious, site autonomous
○ Sites retain administrative control

● Single entrypoint using institutional
identity

● Simple UNIX-like permissions model
(Users + Groups)

● Application catalog provides natural
boundary between configuration knobs
users actually want to change and
complex Kubernetes configurations

● SLATE is an infrastructure and software 5

Create & manage your own
federation over independently
managed Kubernetes clusters

● SLATELite (for a quick evaluation using Docker):
○ https://github.com/slateci/slatelite

● Zero to k8s+SLATE script on a bare edge server:
○ Installs everything necessary starting from a fresh CentOS system

http://jenkins.slateci.io/artifacts/scripts/install-slate.sh

● "Managed" install
○ We will SSH to your site, set it up, and hand you the configured machine.

● Full install
○ You install Kubernetes, download SLATE client and register your cluster

SLATE provisioning options

6

https://github.com/slateci/slatelite
http://jenkins.slateci.io/artifacts/scripts/install-slate.sh

Registering a cluster

$ slate cluster create atlas-t2-xyz \

 --group atlas-xyz-admins \

 --org "ATLAS Tier 2 XYZ"

$ slate cluster allow-group atlas-xcache

7

● Join a kubernetes cluster to a SLATE federation
○ Specifying the group which will administer it and the organization which

owns the resource
● Grant users access to deploy applications on the cluster

○ In this case, just the atlas-xcache group

Deploying Services ("Applications" in k8s)

● A "central" service expert deploys & operates many
sites

● Helm charts and Docker images
● Command line or web interface (in dev)

8

Deployment experience in ATLAS

● Goal: build an XCache-based caching network as part
of the DOMA activity

● SLATE-based deployment will simplify operations and
allow for rapid development and debugging

● SLATE services already operational at MWT2, AGLT2,
LRZ

● XCache application already in SLATE catalog
○ Ilija is developing & testing daily

9

XCache deployment process
● Register a cluster with SLATE and allow the atlas-xcache group
● Apply a few special extra steps for XCache:

○ Node labeled in Kubernetes (xcache-capable=true)
○ One or more storage volumes mounted (e.g. /xcache) & communicated to Ilija
○ Endpoint protocol registered in AGIS

● Test suite containerized
○ Launch a very realistic stress test from Google Compute Engine in minutes

10

< 5 min 5-10 min

XCache Container Download
Kubernetes objects
instantiated

SLATE creates secrets and
XCache deployment on cluster

Pod starts up, registers
itself in AGIS

5-10 min < 5 min XCache fully
deployed in less
than 20 minutes.

XCache Deployment & Upgrade Cycle:

Upgrades are as simple as re-deploying.

XCache deployment process (more details)

● As XCache requires special resources this has to be communicated between Ilija
and the site but is done only once:

○ Dedicated node labeled in K8s.
○ Storage should be JBODs organized.
○ Endpoint protocol registered in AGIS.

● Ilija takes over and creates secrets, server, reporting, monitoring, activates protocol in AGIS.
○ All of that is two commands and takes 30 seconds.

● Full update of all the caches in SLATE should take less than 20 min.
○ 10-15 minutes for dockerhub to rebuild image
○ 1 minute to stop running instances
○ 1 minute to start them again
○ 3 minutes to check everything worked
○ Even stress testing is containerized and Ilija can run a very realistic stress test against any

xcache in matter of minutes (from Google Computing Engine)
11

XCache updates

● Even simpler
● Completely transparent to site admin.

12

$ slate instance list

$ slate instance delete <instance name>

$ slate app install --group atlas-xcache --cluster uchicago-prod --conf MWT2.yaml xcache

Additional benefits:

● Automatic core dump collection
● Containerized environment makes it easier to debug

Monitoring

Wealth of information collected even
without any direct XRootD monitoring
(summary or detailed stream).

Node state (load, mem, network).

Per pod/container event and
resource usage.

Logs. Fully searchable.

All info shipped to Elasticsearch at
UChicago.

WIP - Prometheus-based monitoring 13

Monitoring - ES & Kibana

14

Monitoring continued

15

Really convenient logging
● No need to contact anyone
● No need to log in anywhere
● Powerful search
● All the services logs in the same

place.
● Kept for 10 days.

Get a feel for it - SLATE "Sandbox"

https://sandbox.slateci.io:5000/

16

● Starts a tutorial
environment inside a
kubernetes pod with
the slate client
○ Runs an instance of

the SLATE API and
exposes the cluster

● Anyone can make a
temporary account,
try out the command
line interface, and
deploy a simple web
server application

https://sandbox.slateci.io:5000/

SLATE portal (in dev)

17

● A convenient
graphical interface
for most functions of
SLATE

● For example,
managing the users
who belong to a
group

18

19

20

deployed
xcaches

MiniSLATE
A development environment for SLATE

21

● Create a stand alone, miniature SLATE
federation for development

● Follows an Infrastructure as Code pattern

● Enclosed within Docker
○ Little dependency clutter

■ Python, Docker, Docker-Compose
○ Environment consistency

● Completely Destructible
○ Destroy and recreate at will
○ Mount code from host safely

● Batteries Included
○ Full development kit
○ All required software and useful tools are

installed when the Docker image is built

Installing MiniSLATE (https://github.com/slateci/minislate)

$ git clone https://github.com/slateci/minislate.git

Cloning into 'minislate'...

$ cd minislate

$./minislate init

(...)

DONE! MiniSLATE is now initialized.

$./minislate slate app install nginx --group ms-group --cluster ms-c

Installing application...

...

Successfully installed application nginx as instance ms-group-nginx-default with ID

instance_tey72YzGYuw

22

https://github.com/slateci/minislate

State of SLATE for ATLAS

● Three sites operational (AGLT2, MWT2, LRZ)
○ Deployment in development at Innsbruck (OpenStack)

● API server and client relatively stable at this point
○ Adding features as needed by use-case

● Web portal under development
● Platform monitoring under development
● Application catalog starting to gel

○ XCache, HTCondor CE, Squid, various other apps stabilizing

● Best practices evolving and being documented
23

If you'd like to try out SLATE

● Homepage: http://slateci.io
● Slack: http://bit.ly/slate-slack-03
● Discussion list
● Or just email robert.w.gardner@cern.ch

24

http://slateci.io
http://bit.ly/slate-slack-03
https://groups.google.com/forum/#!forum/slateci-discuss
mailto:robert.w.gardner@cern.ch

Acknowledgements

● SLATE team members in particular who did the work and provided input
○ Lincoln Bryant
○ Ben Kulbertis
○ Chris Weaver
○ Jason Stidd

● SLATE dashboard
○ Ilija Vukotic

● SLATE portal
○ Jeremy Van

● SLATE website
○ Shelly Johnson

25

Extra slides

26

SLATE Hardware - example ATLAS edge server

Standard SLATE config:
http://slateci.io/docs/slate-hardware/atlas-node.html

● (2) Xeon Silver 4110 (32 HT cores)
● (12) 16GB RDIMMs (192 GB RAM)
● (4) 2TB NVMe + NVMe holder/adapter
● (12) 12TB disks (144TB raw storage)
● (1) 240GB BOSS card
● (1) 2x10Gb NIC

Suitable for hosting multiple edge services for ATLAS (e.g. Squid, XCache)

Currently testing with XCache 27

http://slateci.io/docs/slate-hardware/atlas-node.html

Developing for the SLATE platform

28

Application Security for the Edge

● We have considered
the question of
meeting sites’
cybersecurity policies

● Discussions with
community started:
http://bit.ly/app-sec-edge

● Feel free to directly
comment

29

http://bit.ly/app-sec-edge

Dedicated Development Environments

Pros

● No setup for developers

● Little sysadmin experience required for
developers, even for advanced configs

● Consistent for all developers

Cons

● Consistency issues with production
(especially without IaC)

● Volatility (single bad deploy brings down
environment for all developers)

● Maintenance (OS management,
“refreshes”, etc.)

● Security / IAM requirements

● Requires dedicated resources

30

Local Development Environments

Pros

● Limited volatility (one developer, one
environment)

● No maintenance (environments are
codified and destructible)

● Developer flexibility (reset environment
at will, modify environment as needed)

● Ease of use (less security barriers, no
need to push code remotely)

Cons

● Environment variability (high
configurability required)

● Limited resources (software must run on
local machines)

● Machine clutter (local machine can
easily become a dedicated
development machine when many
dependencies are required)

31

Best of Both Worlds

32

● Little setup for developers

● Little sysadmin experience required for developers

● Consistent for all developers

● Limited volatility (one developer per environment)

● No maintenance (environments are codified and destructible)

● Flexible (reset environment at will, modify environment as needed)

● Easy to use (less security barriers, no need to push code remotely)

● Runs wherever developers want to develop

YAML deployments

● Very verbose

● Not terribly human readable or
writable

● No templating capabilities

● Requires knowledge or
extensive documentation
reference of Kubernetes object
types

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "1"
 creationTimestamp: null
 generation: 1
 labels:
 app: nginx
 chart: nginx-1.0.0
 instance: default
 release: ms-group-nginx-default
 name: ms-group-nginx-default

...

33

Why Helm?

● Kubernetes is complex
○ Application developers write once for users
○ End-users require less deep Kubernetes knowledge

● Environments are different
○ Take advantage of templating for configuration variables
○ Developers need not worry about exact deployment details

● Package management
○ Keep a curated catalog of charts
○ “Push button” deployment and deletion of apps

● This results in improved productivity
○ Improved efficiency for core and application developers

34

Helm charts
Chart.yaml Values.yaml

name: nginx

description: A basic NGINX HTTP server

version: 0.1.0

kubeVersion: ">=1.2.0"

keywords:

 - http

 - nginx

 - www

 - web

home: https://github.com/helm/helm

sources:

 - https://hub.docker.com/_/nginx/

maintainers:

 - name: technosophos

 email: mbutcher@deis.com

replicaCount: 1

restartPolicy: Never

index: >-

 <h1>Hello</h1>

 <p>This is a test</p>

image:

 repository: nginx

 tag: alpine

 pullPolicy: IfNotPresent

35

SLATElite
A lightweight k8s cluster federated with SLATE

36

● Create a single-node k8s cluster in
Docker at your site and register it with
SLATE

● Enclosed within Docker
○ Little dependency clutter

■ Python, Docker, Docker-Compose
○ Environment consistency

● Deploy in Minutes
○ SLATElite will do the heavy lifting
○ Full SLATE node with tooling

● Try SLATE on your infrastructure
○ Little investment to get started

37

MiniSLATE / SLATElite
SupportMiniSLATE / SLATElite run on:
● Linux with DockerCE
● MacOS with “Docker for Mac”

More Info
MiniSLATE - https://github.com/slateci/minislate

SLATElite - https://github.com/slateci/slatelite

37

https://github.com/slateci/minislate
https://github.com/slateci/slatelite

