HPCs in Europe

Andrej Filipcic

Existing EU HPCs

- All that are tagged HPC in dashboards (some US, RU)
- Usage since last October
 - 10k cores on average with peaks up to 30k cores
- Many HPCs participated but none stands out with large resource allocation
- Missing IT4I with 2k cores on average

CPU consumption

- In total, ~30 Mhours in 5 months
 - But >50% is on pledged HPCs
- About 15% wallclock in failed jobs

DE

- SuperMuc @ Munich
 - Phase-1 gone
 - Phase-2 no significant allocation yet, single node testing for now expected to use resources again since April
 - Charliecloud for containers
 - https://hpc.github.io/charliecloud/
- Draco @ Munich
 - Full simulation on up to 50 nodes
- Maxwell @ DESY:
 - Mostly used by XFEL
 - Running ES in backfill mode, preemptive
 - Likely to use more resource when not in datataking mode

ES

- MareNostrum4:
 - Successfully running in 2018, offline now
 - New allocation of 700k Mhours to continue this year
 - Under discussion to use it continuously without allocation
- IFIC Lusitania
 - Successful in 2018
 - Offline now
 - 2M hours allocation

CZ

- IT4I Salomon and Anselm (to be extended)
 - Running steadily up to 2k cores
 - Access to cvms and local squid

CH

PizDaint

- a week ago, the Phoenix cluster was completely decommissioned
- All the CPU resources for ATLAS and other VOs are now on Cray
- No opportunistic mode
- 40% of 10k cores pledged to ATLAS, soon to be extended

- Marconi @ Cineca
 - Waiting for approval of the ATLAS application (20Mhours)
 - No resources yet

FR

- IDRIS
 - o successful tests in 2018
 - But now offline

EU/PRACE HPC allocations and usage

- Nordugrid: Abisko, Abel, NSC pledge ~5k cores
 - Many more used on Abisko (opportunistic) and Abel (preemptive mode)
 - o But Abel is end of life this year, resources will move to cloud
- SuperMuc, Hydra
 - opportunistic/preemptive usage on ~6000 cores, or ~50M hours/year
- MareNostrum4:
 - 700k hours allocated
- IT4I:
 - Backfill usage of 2k cores
- Cineca: 20M hours planned per year

Integration in ADC

- SW distribution:
 - Cvmfs normal mode on pledged, with custom squid on IT4I
 - Cvmfs with parrot (DE)
- All have ARC-CE
 - CE moves data on most
 - Some can run truepilot or pull mode (Maxwell)
- aCT, migrating to Harvester+aCT
 - All tested with harvester
 - Some connectivity issues to CEs with firewall opened to specific aCT machines
- Pledged HPCs run all jobs
 - Analysis, all production types

Prospects with existing HPC centers

- Many were successfully tested in the past, but were not put into steady production
 - Some are small
 - Many cannot provide significant resources without approved allocation
- Allocations in PRACE are limited in time and scope mostly tuned for single scientists or small groups
 - PRACE allocated 16B hours in total in 10 years, ATLAS uses 3B/year
 - We cannot expect large allocations in near future

EuroHPC Joint Undertaking

- Goals till end of 2020:
 - Build two pre-exascale machines with ~200PFlops each, ~500 Meuro per machine
 - Build 2-4 petascale machines (10-20PFlops), EU budget 30M euro for all
- 25 EU countries are members of the Governing Board
- Exascale: starting 2021
 - Total budget ~2.7B euro for 6 years

Calls for HPCs

- Both pre-exascale and peta-scale calls are out
 - Deadline 4.4 (pre-exa), 14.4 (peta)
 - Selection Q2 2019
- Likely applicants for pre-exa:
 - Finnish consortium: all Scandinavian states + some continent states
 - Italian consortium
 - Spanish consortium
- Applicants for peta-scale
 - ~7 countries will likely apply
 - Some extending already planned centers (LX, SI)

Horizon2020 Research & Innovation calls

- Total budget ~400M euro, 50% contribution from member states, some coming out Q1-Q3 2019
- Extreme Scale Technologies and Applications (90M)
 - Extreme scale computing technologies (hardware, software, methods and algorithms for key applications)
 - HPC applications to ensure European leadership
- Widening HPC skills and use (30M)
 - increase the knowledge and human capital and upraise HPC capabilities, including through the creation of national HPC Competence Centres and their networking and coordination across the Union
 - Federating European supercomputing resources
 - Support to SMEs
- European Processor Initiative (40M)
- Competence centers (2M/country)

Architecture

- Significant funding from most members states
 - Some in procurement
 - Some in-kind, manpower
 - WLCG funding will be affected
- Not clear yet what architecture, possibly a mixture of
 - CPU partitions
 - GPU + FPGA partitions
 - To address intense CPU compute, Al and BigData processing
- The HPC machines need to be on top of TOP500 list
 - Uniform CPU+GPU machines are not at all excluded (Summit), although the CPUs will likely be x86_64

Opportunities

- HPCs will be connected with each other:
 - Big machines will be built by consortia of many countries
 - Opportunity for ATLAS distributed computing institutions to participate in R&I calls, especially data management
- 50% of resources will be managed by JU, 50% by participating countries
 - Participating countries could grant a significant allocation to ATLAS

Conclusions

- HPC resources in EU have steady contribution, but not much growth
- With current resources, the contribution is not expected to grow significantly
- EuroHPC pre-exascale and peta-scale computers will be available end of 2020
 - Some resources even in 2019
- EuroHPC machines might bring
 - More resources for ATLAS
 - Projects for ATLAS software & computing development
 - Some sites might provide the pledge through HPCs