

Data Access with HPC

DOUG BENJAMINArgonne National Lab

ARC Data Access

- Local storage on HPC is essentially a cache managed by ARC code
 - Cache is configured with watermarks deleting last recently used files from cache
 - Jobs typically run from scratch space which is cleaned up when job finishes
- Data In
 - aCT pulls jobs from PanDA and sends them ARC-CE with required input files
 - ARC CE queries Rucio for files and downloads them
 - Data is copied with gridftp, xrootd to ARC-CE with what ever is preferred protocol
- Data out
 - ARC CE uploads the job output files to preferred grid storage in Event Service case – CERN Object Store, Grid RSE otherwise

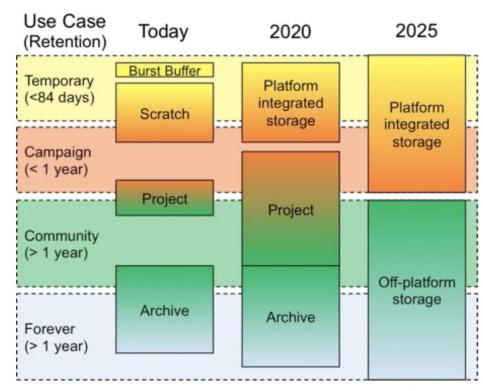
Harvester Data Access

- All Large HPC's (DOE and NSF) in US have multi Data Transfer Nodes
 - Globus is available at all HPC centers https://www.globus.org/
- Data In/Out
 - PanDA instructions Rucio to transfer files to/from RSE (Datadisk) associated with HPC PanDA queue
 - Titan (BNL-OSG2_DATADISK) , NERSC ALCF (SLACXRD_DATADISK)
 - Harvester running on an edge node uses plugins used to transfer data to HPC local shared storage
 - Harvester plugins clean up old space (sweeper)
 - At Titan (soon to be decommissioned) Harvester run edge node use
 Rucio client code
 - ALCF and NERSC Harvester run on login node and use Globus Python SDK to trigger transfer via Globus

Going forward

- Is the one dual use Globus Endpoints/Rucio Storage Element robust enough for our current use?
 - We are working on second one at BNL.
 - We are also testing using OSRIS Object Store for Event Service output.
- Do we want to integrate the HPC Data Transfer Nodes into Rucio?
- When Event Streaming Service goes into production, how will the data flow into the HPC disks?
- What about when the HPC's change the storage system?

NERSC roadmap: Design goals

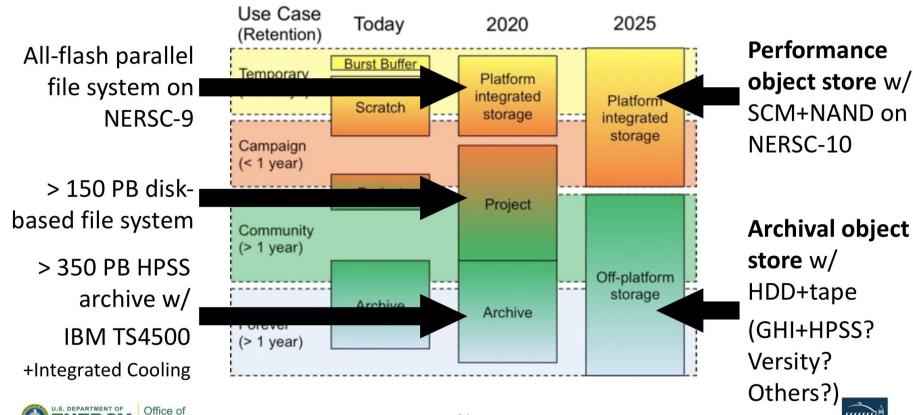


Target 2020

- Collapse burst buffer and scratch into all-flash scratch
- Invest in large disk tier for capacity
- Long-term investment in tape to minimize overall costs

Target 2025

- Use single namespace to manage tiers of SCM and flash for scratch
- Use single namespace to manage tiers of disk and tape for long-term repository



Glenn Lockwood (NESC)

NERSC roadmap: Implementation

Science

