VH - HXSWG VH(bb) CMS & ATLAS

Signal strength parameter	Signal strength	p	Significance		
Signal strength parameter	Signal suchgui	Exp. Obs.		Exp.	Obs.
0-lepton	$1.04^{+0.34}_{-0.32}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	$8.7 \cdot 10^{-3}$	$4.9\cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38^{+0.46}_{-0.42}$	$4.0 \cdot 10^{-3}$	$3.3\cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16^{+0.27}_{-0.25}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

Significance (σ)								
Data set	Expected	Observed	Signal strength					
2017								
0-lepton	1.9	1.3	0.73 ± 0.65					
1-lepton	1.8	2.6	1.32 ± 0.55					
2-lepton	1.9	1.9	1.05 ± 0.59					
Combined	3.1	3.3	1.08 ± 0.34					
Run 2	4.2	4.4	1.06 ± 0.26					
Run 1 + Run 2	4.9	4.8	1.01 ± 0.22					

(13TeV data)

Source of u	ncertainty	σ_{μ}		
Total	0.259			
Statistical		0.161		
Systematic		0.203		
Experiment	al uncertainties			
Jets		0.035		
$E_{ m T}^{ m miss}$		0.014		
Leptons		0.009		
	<i>b</i> -jets	0.061		
<i>b</i> -tagging	c-jets	0.042		
	light jets	0.009		
	extrapolation	0.008		
Pile-up	-	0.007		
Luminosity		0.023		
Theoretical	and modelling un	certainties		
Signal		0.094		
Floating nor	rmalisations	0.035		
Z + jets		0.055		
W + jets		0.060		
$t\bar{t}$		0.050		
Single top q	0.028			
Diboson	0.054			
Multijet	0.005			
•				
MC statistical 0.070				

(2017 data)

Uncertainty source	Δ	μ
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

(13TeV data)

(2017 data)

Uncertainty source	Δ	μ
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

Process	Normalisation factor
$t\bar{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

(13TeV data)

Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({\rm V})$	2-lepton high- $p_{\rm T}({ m V})$
W0b	1.14 ± 0.07	1.14 ± 0.07	_	_
W1b	1.66 ± 0.12	1.66 ± 0.12	– 20)16 –
W2b	1.49 ± 0.12	1.49 ± 0.12	_	
Z0b	1.03 ± 0.07	_	1.01 ± 0.06	1.02 ± 0.06
Z1b	1.28 ± 0.17		0.98 ± 0.06	1.02 ± 0.11
Z2b	1.61 ± 0.10		1.09 ± 0.07	1.28 ± 0.09
tī	0.78 ± 0.05	0.91 ± 0.03	1.00 ± 0.03	1.04 ± 0.05

Process	$Z(\nu\nu)H$	$W(\ell\nu)H$	$Z(\ell\ell)$ H low- p_{T}	$Z(\ell\ell)$ H high- p_{T}
W + udscg	1.04 ± 0.07	1.04 ± 0.07	-	
W + b	2.09 ± 0.16	2.09 ± 0.16	- 20	17 –
$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21	_	_
Z + udscg	0.95 ± 0.09	_	0.89 ± 0.06	0.81 ± 0.05
Z + b	1.02 ± 0.17	_	0.94 ± 0.12	1.17 ± 0.10
$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
tī	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

56

VH Signal Model

ME generator

- qq/qg→ZH = Powheg-Box v2 + GoSam + MiNLO
- $gg \rightarrow ZH = Powheg-Box v2 (LO)$

Parton Shower = Pythia8

Electroweak NLO differential correction $f(p_T^V) = HAWK$

Cross-section - from HXSWG

	ZH→I ⁺ I ⁻ H						ZH→vvH									
m _H (GeV)	Cross Section (pb)	+QCD Scale %		±(PDF+α _s) %	±PDF %	±α _s %	gg→ZH (pb)	σγ	Cross Section (pb)	+QCD Scale %	-QCD Scale %	±(PDF+α _s) %	±PDF %	±α _s %	gg→ZH (pb)	σγ
125.00	2.982E-02	+3.8	-3.1	±1.6	±1.3	±0.9	4.14E-03	1.10E-04	1.776E-01	+3.8	-3.1	±1.6	±1.3	±0.9	2.457E-02	0.00E+00

	W ⁺ H→I ⁺ vH						W⁻H→I⁻vH							
m _H (GeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	±(PDF+α _s) %	±PDF %	±α _s %	σ_{γ}	Cross Section (pb)	+QCD Scale %	-QCD Scale %	±(PDF+α _s) %	±PDF %	±α _s %	σ_{γ}
125.00	9.426E-02	+0.5	-0.7	±1.8	±1.6	±0.9	3.09E-03	5.983E-02	+0.4	-0.7	±2.0	±1.8	±0.8	2.00E-03

qq/qg→ZH NNLO QCD(VH@NNLO) + NLO EW(HAWK) including photon-induced contribution gg→ZH NLO+NLL QCD(VH@NNLO)

PDF set: PDF4LHC15_nnlo_mc (QCD part) and NNPDF2.3QED (EW part).

VH Signal Model

Uncertainties on the total XS from HXSWG numbers (previous slide)

Acceptance uncertainties (not coming from HXSWG prescriptions):

CMS

- QCD factorization / renormalization scale variations by 0.5 and 2.0 independently
- PDF uncertainties from NNPDF replicas
 - → uncertainties on the total rate of the signal, and on the shape of the BDT discriminating function

ATLAS

- QCD factorization / renormalization scale variations by 0.5 and 2.0 independently [avoiding (0.5,2.0) and (2.0,0.5) applied according to Stewart-Tackmann method for exclusive jet-bins
- PDF uncertainties from:
 PDF4LHC15_30 PDFs set at 68% CL interval
- UE/PS/MPI uncertainties from:
 AZNLO eigentune variations
 Powheg+Pythia8 / Powheg+Herwig
 comparison
- → uncertainties on the signal acceptance and on the shape of pTV and m(bb)

V+jets background modeling strategies

CMS (Madgraph V+0,1,2,3,4j@LO)

(DCSV2 or DNN fit in CR)

V+(heavy-flavor) modeling
 CRs defined by inverting M(jj)-window

ATLAS (Sherpa V+0,1,2j@NLO + 3,4j@LO)

V+(heavy-flavor) modeling
W: dedicated CR (large m-top, low m-bb)
- yield only, no shape
Z: no dedicated CR full m-bb spectrum included in the SRs

 $V+hf=V+(bb,\ bc,\ bl,\ cc)$

ATLAS

Background reweighting corrections for V+jets:

- f(p_TV) inclusive correction (up to 10% at 400GeV) accounting for EW corrections
- f(p_TV) dedicated 1-lepton correction on W+light, W+b(b), ttbar, single-t
- deltaEta(jj) correction from LO/NLO comparison (depending on #b-labeled jets)

W+heavy flavors - dominated by 1-lepton channel

ATLAS

- standard 1-lepton selection + m(bb) < 75GeV m(top) > 225GeV
- extrapolation uncertainties from CR to SR obtained from
 - Sherpa 2.2.1 muR, muF, ckkw, qsf scale variations
 - Sherpa 2.2.1 comparison with Madgraph_aMC@NLO 2.2.2 (merging up to four extra parton CKKW-L @ LO, Qcut = 30GeV)

	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + HF normalisation	Floating (2-jet, 3-jet)
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)
W + bc-to- $W + bb$ ratio	15% (0-lepton) and 30% (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	10% (1-lepton)
$m_{bb}, p_{\mathrm{T}}^{V}$	S

Z+heavy flavors - dominated by (0)2-lepton channel

ATLAS

- no dedicated control region for Z+hf
- no m(bb) window selection applied in the nominal analysis selection

Z + jets						
Z + ll normalisation	18%					
Z + cl normalisation	23%					
Z + HF normalisation	Floating (2-jet, 3-jet)					
Z + bc-to- $Z + bb$ ratio	30 – 40%					
Z + cc-to- $Z + bb$ ratio	13 – 15%					
Z + bl-to- $Z + bb$ ratio	20 – 25%					
0-to-2 lepton ratio	7%					
$m_{bb}, p_{\mathrm{T}}^{V}$	S					

 m(bb) and pTV shape systematic derived from data/MC in Z+hf enriched-region (2-lepton) x (1-btag)

(2-lepton) x (2-btag) x (remove events with m(jj) around mH)

(+ MET-significance cut to suppress ttbar contamination)

control over (high/low-VpT) or (sidebands/central m(bb)) normalization

Additional Material

VH @ high-pT

H(bb) boosted results by CMS sparked interest on high-pT Higgs searches/measurements

$p_T^{ m cut}$	$\Sigma_{\rm ggF}(p_T^{\rm cut}) \times { m BR} \ [{ m fb}]$	$\Sigma_{\mathrm{VBF}}(p_T^{\mathrm{cut}}) \times \mathrm{BR}$ [fb]	
$450~{ m GeV}$	$11.1^{+4\%}_{-8.9\%}$	$4.71^{+1\%}_{-1\%}$	$15.3^{+2.8\%}_{-6.3\%}$

What is the impact of VH?

Important to keep high-pT modeling under control: EW@NLO, ggZH contribution

QCD → H(bb) @ NNLO decay

G.F., Somogyi, Tramontano arXiv:1705.0304

- ► small impact on total XS (~7%)
- impact is strongly phase space dependent
- up to 80% for m(bb)<120GeV (NNLO extra FSR)

New <u>investigation</u> of interference effects between ME and decay, and **comparison to parton-showered MC prediction**

QCD → H(bb) @ NNLO decay

New <u>investigation</u> of interference effects between ME and decay, and comparison to parton-showered MC prediction (PowhegMiNLO+Pythia8 as we are using)

PS provides a good description of the NNLO shape, with more events in the more events in the m(bb) and pT(bb) tails

(Ongoing work to re-compute with massive b-quarks)

gg→ZH (loop-induced) MC modeling

EW → NLO corrections

EW Corrections from YR4:

► NLO EW differential reweighting (applied as f(p_T^V)) from HAWK

Only available for V(leptons)H processes

Now available directly from POWHEGBOX-RES code, for HV and HVJ processes (arXiv:1706.03522)

Last updates at WG1:VH

MiNLO achieves NLO accuracy for quantities inclusive (wrt the additional jet) e.g. pT(WH)

HVJ can be NLO accurate (for inclusive quantites) in QCD and EW