14.4. Readout systems for innovative calorimeters

Dirk Zerwas (LAL) and <u>Katja Krüger</u> (DESY) WP 14.4 January 10, 2019

• Deliverable 14.6: Adaptation of readout system for operation in compact LC detectors

Milestone 58: Definition of optical and electrical coupling of readout, interface functionality and DIF design

Verification: DIF data sheets Date: Months 24, delivered

MS58 Definition of optical and 14 M24 13/04/2017 Achieved Report (http://cds.cern.ch/record/2259907)
electrical coupling of readout,
interface functionality and DIF design

describes status for AHCAL DIF (produced), SDHCAL DIF (in design) and SiECAL DIF (aim for 2018)

Test bench for ASIC tests (no deliverable/milestone)

Description of subtask 14.4.2: "This activity includes test benches for front-end ASICs of highly granular calorimeters as e.g. those developed in WP4. The test bench is a prototype for mass tests for LC Experiments capable to serve experiments with similar front-end electronics."

Status: testboard for AHCAL ASIC (SPIROC2E) in BGA package built, has been used for the "mass testing" for the ASICs for the next large prototype (~600 ASICs)

Deliverable 14.5: Common running of calorimeter prototypes

Deliverable: Data acquisition system to allow for a common data taking of different highly granular calorimeter prototypes in beam tests at CERN and DESY. These tests should provide data files containing events synchronised between the subsystems.

Date: Month 36

Status: done (see talk by Katja)

D14.5	Common	WP14	M36	18/05/2018	Achieved	Report
	running of calorimeter					
	prototypes					

Deliverable 14.6: Adaptation of readout system for operation in compact LC detectors

Date: Month 44

Status: Document delivered 19/12/2018 received minor comments (most already adressed)

SiECAL

• talk by Jimmy Jeglot

AHCAL DIF:

- space constraints less stringent than for ECAL
- current generation of interfaces already designed with limited space in mind
- no further optimisation planned at the moment

SDHCAL DIF

provided by Mary-Cruz and Imad

AHCAL DIF: Use in Beam and Lab tests

50 DIFs produced and used:

- 39 layers of the large AHCAL technological prototype (2*2 HBUs, several beam periods in 2018)
- large layer: 2*6 HBUs (ongoing, full size is 3*6 HBUs)

Reliable operation, fulfilling requirements

DIF sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing

New SDHCAL DIF: capable to deal with up to 432 ASICs while having a size compatible with ILD size requirements. It has standard Ethernet bus (data & slow control) and TTC (clock & synchronization) link with possibility of GBT link.

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- HR3 slow control through I2C bus (12 IC2 buses).
 Keeps also 2 of the old slow control buses as backup & redundancy.
- Data transmission to/from DAQ by Ethernet
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors (vs 8.6 W in previous DIF)
- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- HR3 slow control through I2C bus (12 IC2 buses).
 Keeps also 2 of the old slow control buses as backup & redundancy.
- Data transmission to/from DAQ by Ethernet
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors (vs 8.6 W in previous DIF)
- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

DIF Firmware was developed and it is currently tested on several connected large SDHCAL slabs

