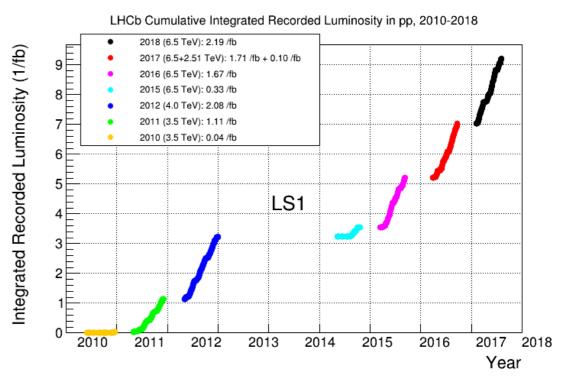

LHCb status report

Ricardo Vazquez Gomez (CERN) on behalf of the LHCb collaboration

LHCC open session 28/11/2018 CERN


Operations in 2018

- 2018 has been an exceptional year.
 - Record in delivered and recorded luminosity.
 - Thanks to the LHC for the fantastic performance.

Since the start of LHCb >10 fb⁻¹ delivered, >9 fb⁻¹ collected

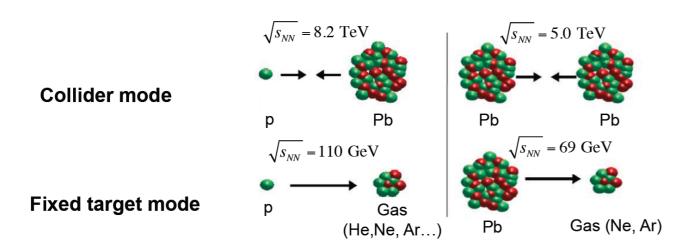
Matches the aim of the Technical Proposal (1998)

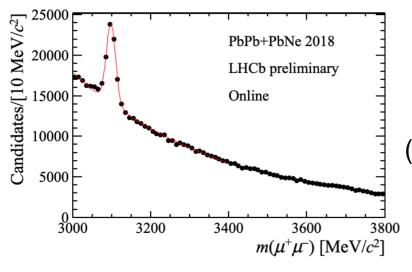
LHCb Efficiency breakdown in 2018

FULLY ON: 88.78 (%)

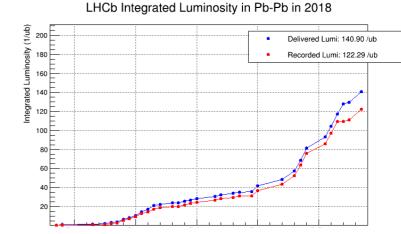
VELO Safety: 0.86 (%)

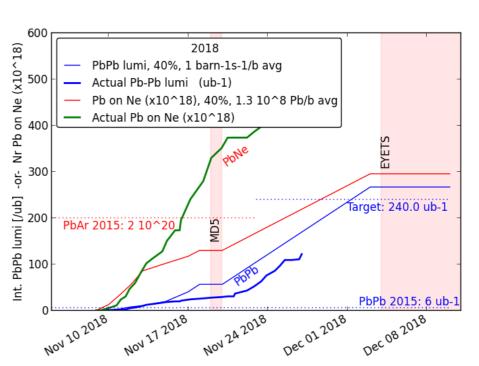
DeadTime: 6.86 (%)

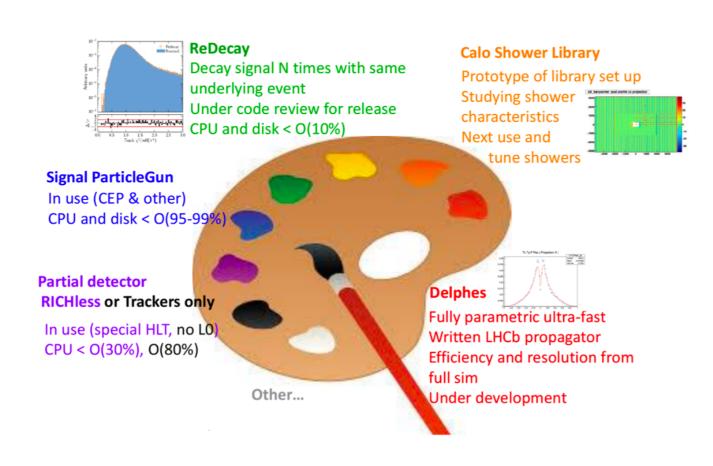

HV: 0.54 (%)

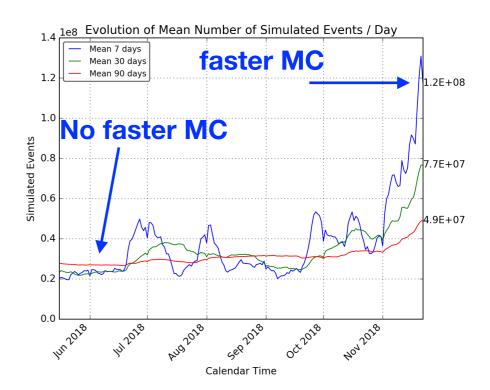

DAQ: 2.02 (%)

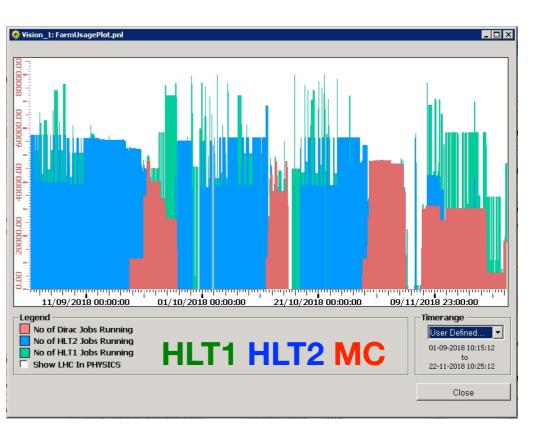
Operations in 2018


- 2018 has been an exceptional year.
 - Record in delivered and recorded luminosity.
 - Thanks to the LHC for the fantastic performance.


 Heavy ion run still ongoing. Take data in PbPb and PbNe configuration simultaneously thanks to the SMOG system.

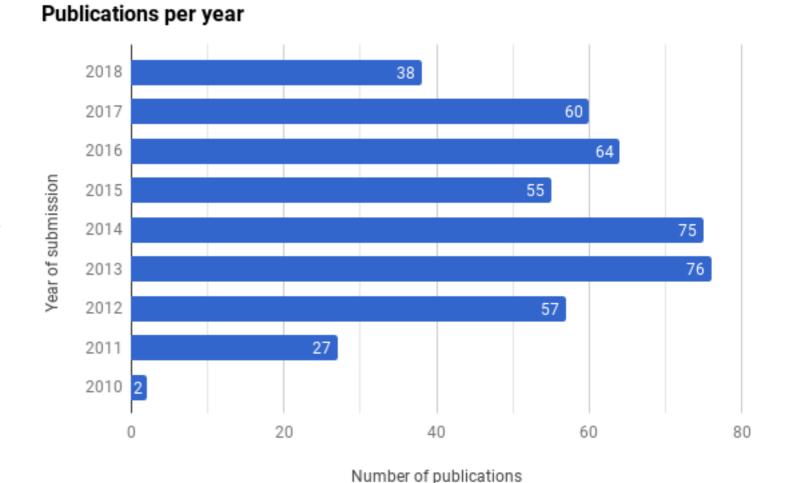

J/ψ→μμ candidates from PbPb and PbNe after HLT1 (only a fraction of data)

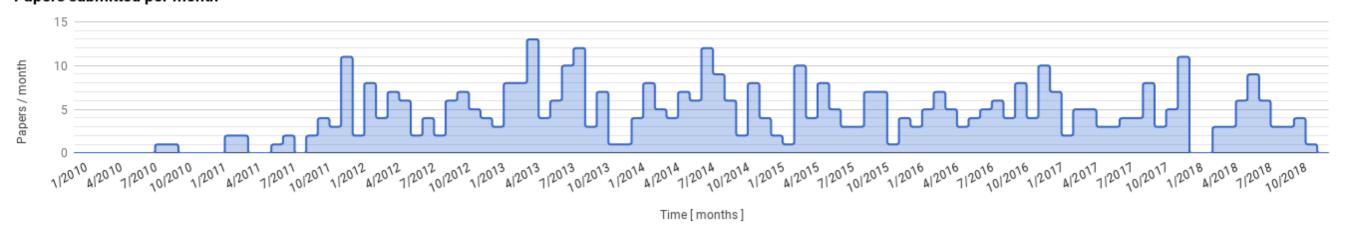




Operations in 2018

- Very stable running conditions through the year.
- Extensive palette of faster simulation options.
 - Current MC productions are heavily using them.
- Gain a factor 6 in number of produced events when used.





Physics analysis

- 454 papers in total
 - 38 published in 2018
- Additional 34 analyses in review

Papers submitted per month

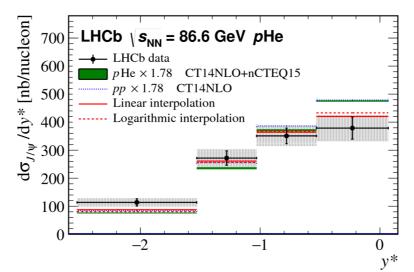
Physics papers and conference reports since last LHCC

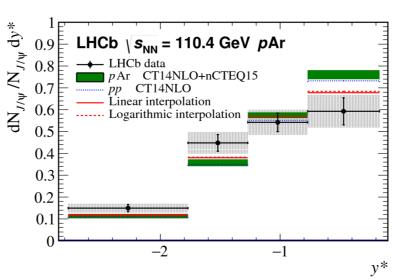
Published

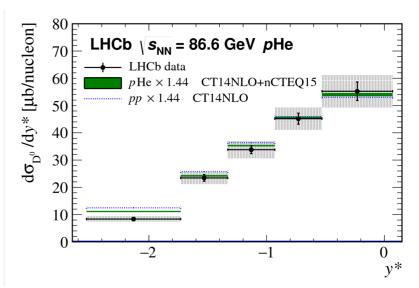
PAPER-2018-023	First measurement of charm production fixed-target configuration at the LHC.
PAPER-2018-032	Observation of two resonances in the $\Lambda^0{}_b\pi^\pm$ systems and precise measurement of $\Sigma^_b$ and $\Sigma^{*\pm}{}_b$ properties.
PAPER-2018-033	Measurement of the branching fractions of the decays D+→K-K+K+, D+→π-π+K+ and D+ _s →π-K+K+.
PAPER-2018-034	Evidence for an η _c (1S)π- resonance in B ⁰ →η _c (1S)K+π- decays.
PAPER-2018-035	Study of Y(nS) production in pPb collisions at √s _{NN} =8.16 TeV.
PAPER-2018-038	Measurement of the charm-mixing parameter y _{CP} .
PAPER-2018-041	Search for CP violation through an amplitude analysis of $D^0 \rightarrow K^+K^-\pi^+\pi^-$ decays.

Preliminary

	DADED 0040 006	Macourement of the branching fraction and CD corresponding in Du Village decays
	PAPER-2018-036	Measurement of the branching fraction and CP asymmetry in B+→J/ψρ+ decays.
	PAPER-2018-037	Search for the rare decay B+→μ+μ-μ+ν _μ .
	PAPER-2018-039	Dalitz plot analysis of the D+→K-K+K+ decay.
	PAPER-2018-042	Study of the $B^0 \rightarrow \rho(770)^0 K^*(892)^0$ mode and amplitude analysis of $B^0 \rightarrow (\pi\pi)(K\pi)$ decays.
1	PAPER-2018-043	Model-independent evidence for exotic contributions to B ⁰ →J/ψK ⁺ π ⁻ decays.


Charm production in fixed-target mode


LHCb-PAPER-2018-023 (7.6 nb⁻¹)


- First measurement of heavy flavour production in fix target mode at the LHC.
- Measurement of the production of J/ψ and D⁰ mesons at √s_{NN}=86.6 GeV and √s_{NN}=110.4 GeV in pHe and pAr collisions.
 - Reconstructed as J/ψ→μ+μ- and D⁰→K+π-

 $\sigma_{J/\psi} = 1225.6 \pm 100.7 \text{ nb/nucleon}$ $\sigma_{D^0} = 156.0 \pm 13.1 \text{ }\mu\text{b/nucleon}$

- Theory predictions underestimate measured cross-sections.
 - In the plot, predictions are rescaled by 1.78 (1.44) for $J/\psi(D^0)$ to check the shape.
- At large Bjorken-x (up to 0.37 for D₀) intrinsic charm contribution can be large.
- No deviations with respect to theoretical predictions (that do not include charm contribution) are observed.

Y(nS) production in pPb collisions

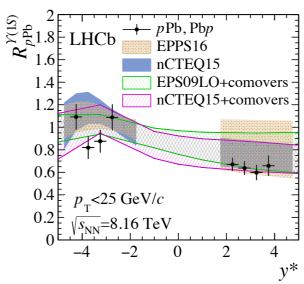
_HCb-PAPER-2018-035 (31.8 nb⁻¹)

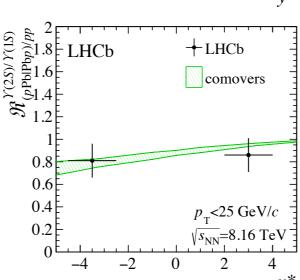
 Measure suppression of Y(nS) due to cold nuclear matter effects in pPb collisions at √s=8.16 TeV. Use nuclear modification factor. Should be unity in absence of modifications.

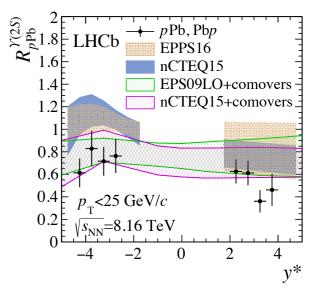
$$R_{p\text{Pb}}(p_{\text{T}}, y^*) = \frac{1}{208} \frac{\mathrm{d}^2 \sigma_{p\text{Pb}}(p_{\text{T}}, y^*) / \mathrm{d}p_{\text{T}} \mathrm{d}y^*}{\mathrm{d}^2 \sigma_{pp}(p_{\text{T}}, y^*) / \mathrm{d}p_{\text{T}} \mathrm{d}y^*}$$

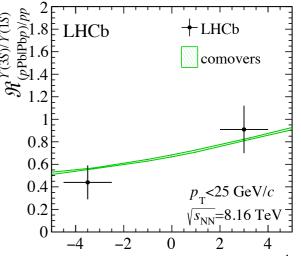
 Suppression can be due to collision with comoving particles (comovers) with similar rapidities.

For Y(1S):

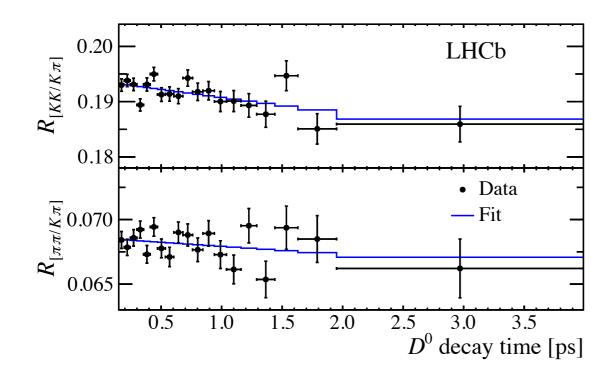

 R_{pPb} is consistent with unity in the Pbp region. Suppression in the pPb region.


For Y(2S):


Same behaviour as for Y(1S) with smaller values of R_{pPb} .


Measure the double ratio of excited to ground state in pPb vs pp.
Stronger suppression for higher n compared with ground state.

Well described by the comovers models.

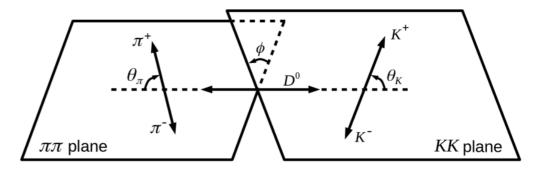


Measurement of charm-mixing

LHCb-PAPER-2018-038 Run1 (3fb⁻¹)

- Mixing in D⁰ mesons works as for other neutral mesons, **but it's tiny.** (x=Δm/Γ, y=ΔΓ/2Γ).
- Effective D⁰ lifetime to CP-even eigenstates (Γ_{CP+} from D⁰→π⁺π⁻, D⁰→K⁺K⁻) is different from lifetime to CP-mixed states (Γ from D⁰→K⁺π⁻)
- If no CP is present the mixing parameter $y = \frac{\Delta \Gamma}{2\Gamma}$ is equal to $y_{CP} \equiv \frac{\Gamma_{CP+} \Gamma}{\Gamma}$
- Measurement using time-dependent ratio between CP-even (D⁰→π⁺π⁻(K⁺K⁻)) and CP-mixed (D⁰→K⁺π⁻) final states.
- Use D⁰ mesons from semileptonic B decays: B→D⁰μνX. Reduce selection biases.
- First publication using faster simulation options.

 $y_{CP} = (0.57 \pm 0.13(stat) \pm 0.09(syst))\%$ consistent and as precise as world average.


Result is consistent with $y=(0.62\pm0.07)\%$

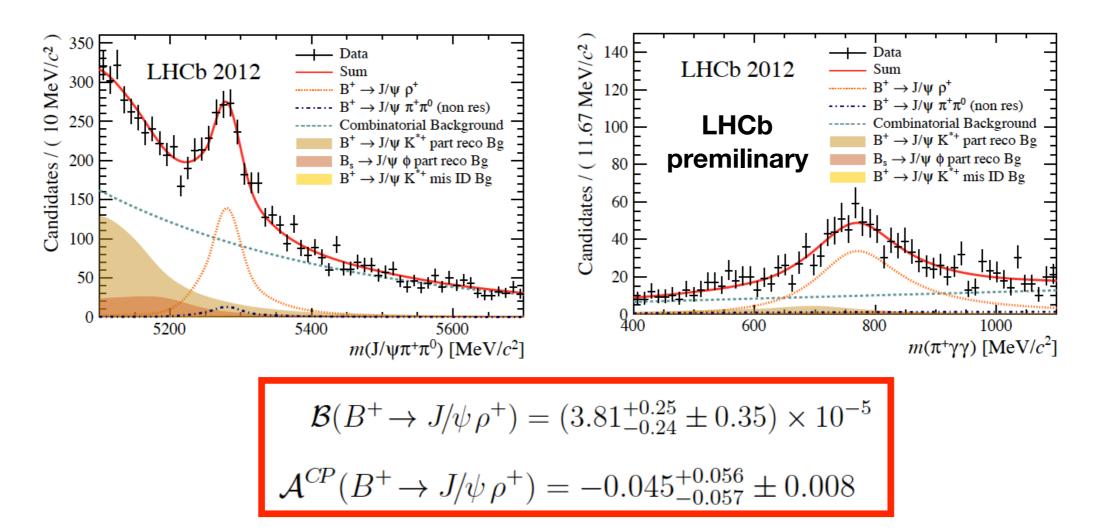
This shows no evidence of CP violation in charm mixing.

CP violation in $D^0 \rightarrow K^+K^-\pi^+\pi^-$

LHCb-PAPER-2018-041 Run1 (3fb⁻¹)

- Multibody decay with rich resonant structure. May provide enhanced sensitivity to CP violation due to variation of the strong phases→ requires amplitude analysis.
 - Use isobar formalism to describe the amplitudes. Each amplitude is built as a series of two-body decays.
- Use D⁰ from semileptonic B decays: D⁰μνΧ. The muon charge tags the flavour of the D⁰.
- Decay described by 5 dimensions.
 - $m(\pi^+\pi^-)$, $m(K^+K^-)$, θ_{π} , θ_{K} , ϕ

26 amplitudes have been identified to contribute. Most precise description of the decay.

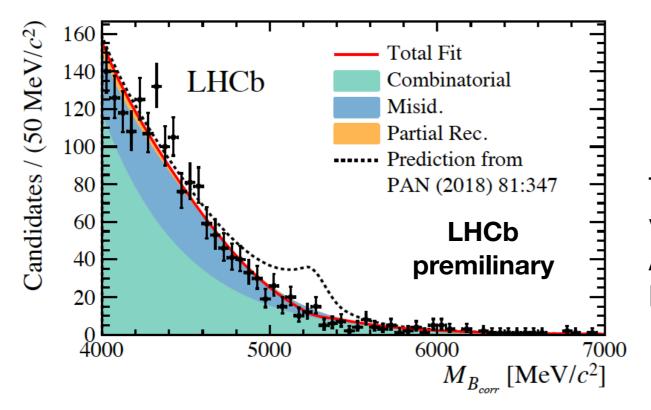

Fit CP asymmetries for each of the contributing amplitudes. None of them show CP violation. Large non-SM effects are ruled out.

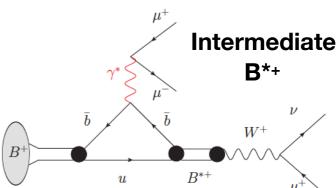
	KK	$\pi\pi$	$K\pi$	$KK\pi$	$K\pi\pi$
$J^P = 0^+$	$a_0(980)$ $f_0(980)$ $f_0(1370)$	$f_0(980) \\ f_0(1370)$	$K_0^*(1430)$		
$J^P = 1^+$				$a_1(1260)$	$K_1(1270)$ $K_1(1400)$
$J^{P} = 1^{-}$	$\phi(1020)$	$ \rho(770) \omega(782) \rho(1450) $	$K^*(892)$ $K^*(1680)$		$K^*(1410)$ $K^*(1680)$
$J^P = 2^+$	$f_2(1270) \\ a_2(1320)$	$f_2(1270)$	$K_2^*(1430)$		$K_2^*(1430)$

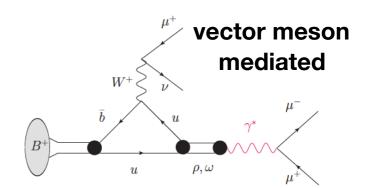
BR and CP asymmetries in B+→J/ψρ+

LHCb-PAPER-2018-036 Run1 (3fb⁻¹)

- A_{CP} in this decay can be used to place constraints on penguin pollution in measurements of φ_s from B_s→J/ψφ assuming SU(3) flavour conservation.
- Simultaneous fit to $B^+ \rightarrow J/\psi \rho^+$ and $\rho^+ \rightarrow \pi^+ \pi^0$.
- Use B+→J/ψK*+ to assess the π⁰ reconstruction efficiency from data.


Most precise measurements and consistent with isospin symmetric channel $B^0 \rightarrow J/\psi \rho^0$


Phys. Lett. B742 (2015) 38


Search for B+ $\rightarrow \mu^+\mu^-\mu^+\nu_\mu$

LHCb-PAPER-2018-037 Run1 + Run2 (4.7fb⁻¹)

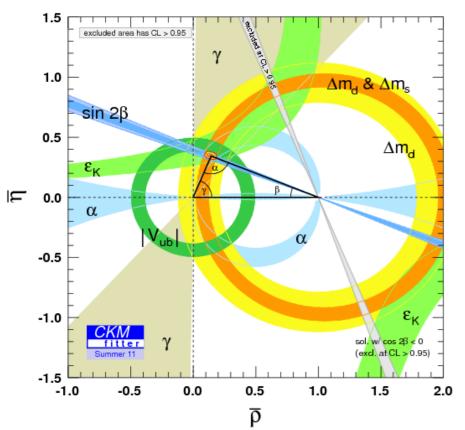
- Similar to $B^+ \rightarrow \mu^+ \nu_\mu$ but with 3 charged particles in the final state.
- Rare decay with twofold interest.
 - Helicity suppressed → sensitive to non-SM particles.
 - Purely leptonic decay → is sensitive to V_{ub}
- Only prediction available based on vector meson dominance
 - BR(B+ $\rightarrow \mu^+\mu^-\mu^+\nu_\mu$) $\simeq 1.6 \times 10^{-7}$
- Set limit as no events are observed.

BR(B+
$$\rightarrow \mu^+\mu^-\mu^+\nu_\mu$$
)<1.6 x 10-8 @ 95% CL

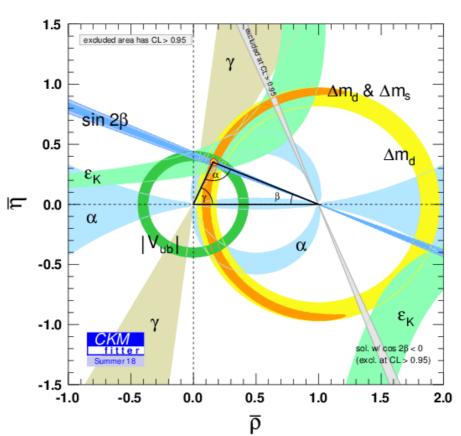
Tension with predictions based on purely vector meson dominance.

Active discussion with theory community. Expect revised calculations.

Exotic contributions in B⁰→J/ψK+π⁻


HCb-PAPER-2018-043 Run1 (3fb-1)

- Belle claimed a new exotic resonance $Z_c(4200)^-$ together with evidence of $Z_c(4430)^-$ in $B^0 \rightarrow J/\psi K^+\pi^-$ decays. PRD 90 (2014) 112009
- General concern about these broad exotic states is to disentangle contributions from non-exotic components.
- Describe full angular distribution using only K* resonances. Will help in establishing the presence of any exotic structure in a model independent way.
- Structures around 4200 and 4600 MeV cannot be described by only K* resonances.
 - Significances are >>5 standard deviations.
- A model dependent analysis is ongoing to understand their origin.



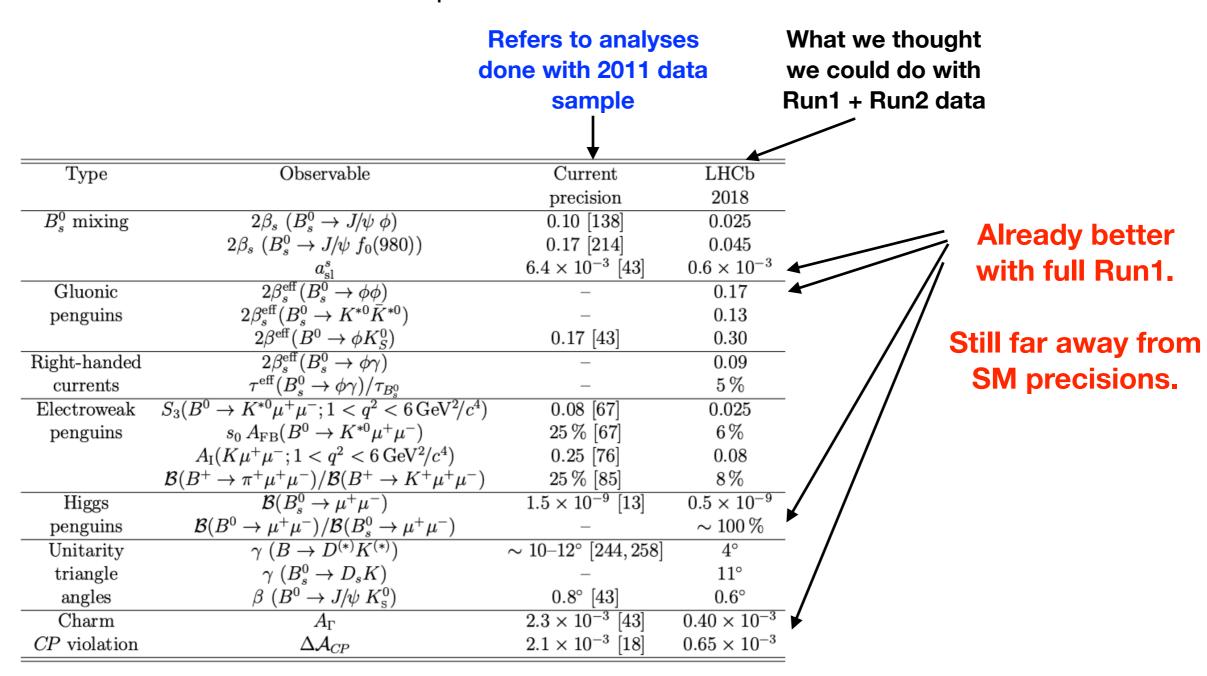
What we have achieved with Run1 + Run2 harvest

CKM unitary triangle as of summer 2018

Great reduction of parameter phase space in the CKM triangles.

Not everything is due to LHCb, but it's certainly a major contributor.

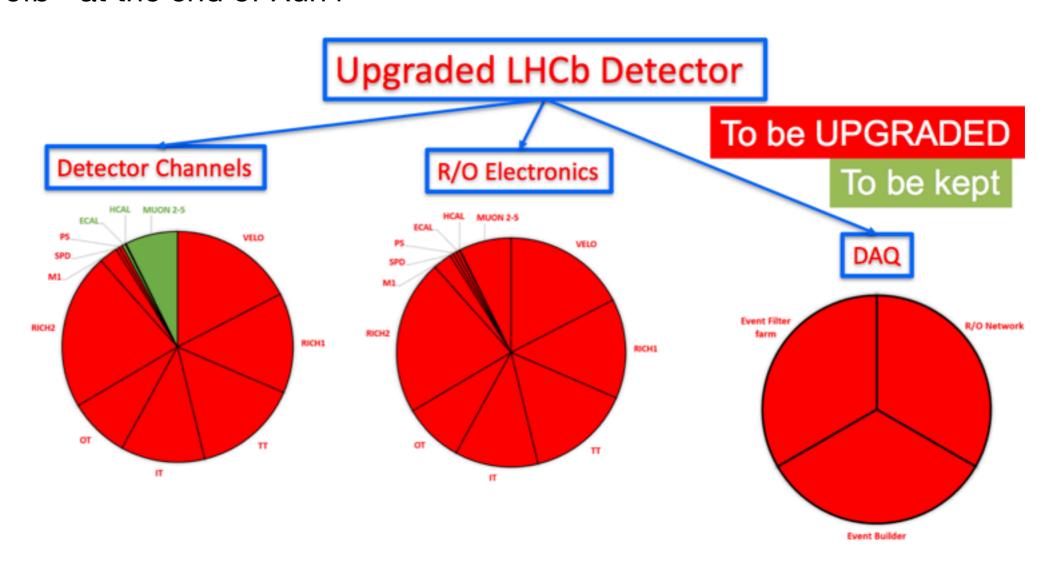
e.g: γ, Δm_{s/d}, φ_s


- On non CKM measurements.
 - Observation of B_s→µ⁺µ⁻; anomalies in EWP: R(K), R(K*); anomalies in semileptonic decays: R(D*), observation of exotic states: pentaquarks; ...

What to expect from Run1+Run2 harvest: new measurements

- More data will allow to inspect new decays and/or observables that did not offer sensitivity in the past. e.g: B_s→μ+μ- lifetime.
- More data helps in understanding better the detector. e.g: increased trigger efficiencies, improved analysis tools.
- With Run1 + Run2 data we can expect (some selected measurements):
 - Evidence for B_d→µ+µ-
 - Precision on γ of ~3 degrees
 - If central values stay, anomalies can reach 5σ
 - Precision on charm mixing few x 10-4
 - Precision on φ_s ~30 mrad (SM is less than 1 mrad).

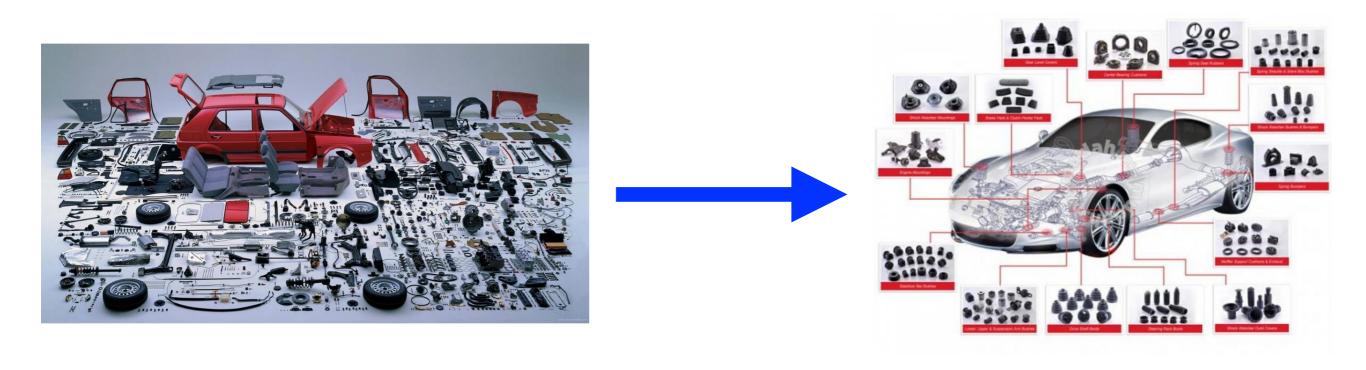
Predicting the future is not always easy


- LHCb did projections for Run1 + Run2 in CERN-PH-EP-2012-334.
- None of the anomalies were present at the time.

Upgrade I

Goals:

- $L = 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- 5 interactions per bunch crossing
- 50fb⁻¹ at the end of Run4

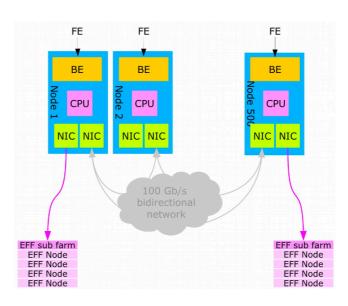

Less than 10% of detector channels will be kept 100% of R/O electronics will be replaced

LS2 plans

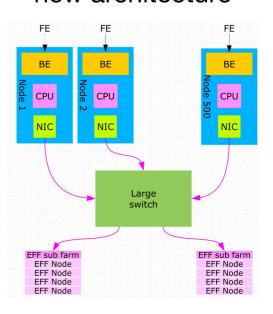
2018/2019 Dismantling current detector

2019/2020 Installation of new detector 2020 Global commissioning

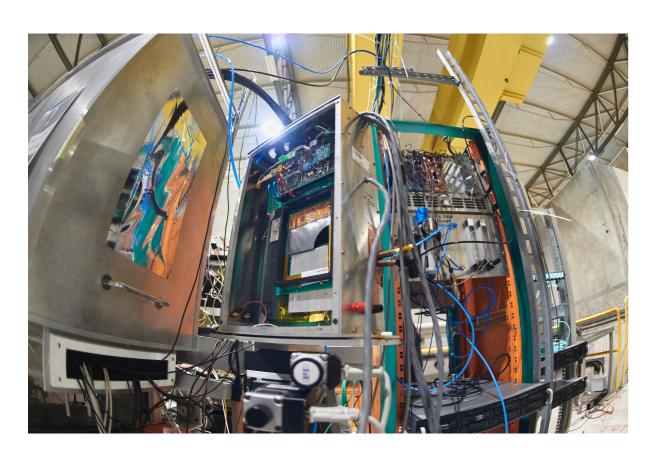
2021 Commissioning with beam and data taking



Upgrade I: Online


- First two containers for the Event Filter
 Farm were installed mid October.
 - Commissioning already started.
 - Share capacity with CERN-IT.
- 24 DAQ FPGA modules delivered.
- Production of long distance optical fibres and patch cords has been ordered.
- Alternative architecture for the event builder is being tested.

baseline architecture


new architecture

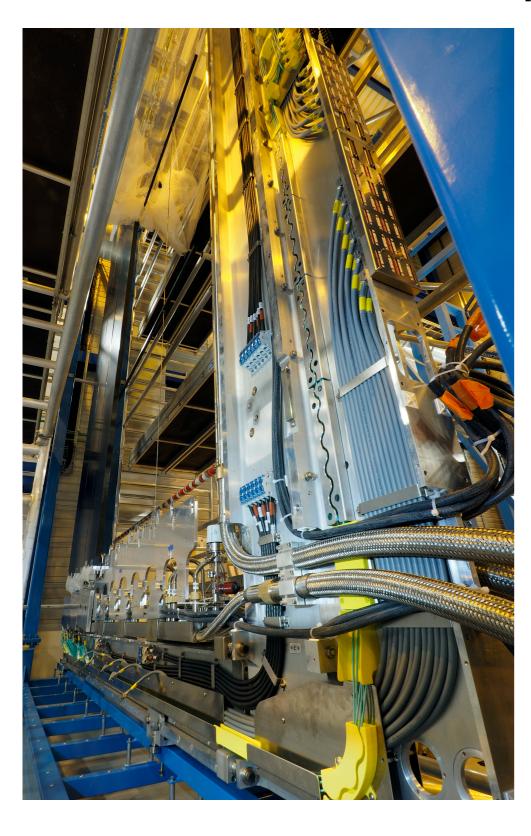
Upgrade I: Velo Pixel and Upstream Tracker

Velo Pixel

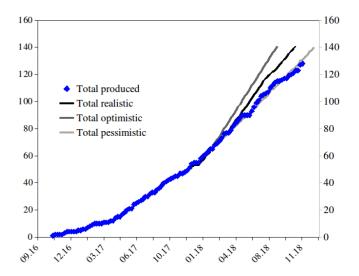
- Prototype tested in testbeam.
- 3 full electrical modules readout with complete electronic chain.
- Sensors and chips produced and tested with >90% yield.
- Project reaching end phase: module serial production is about to start.

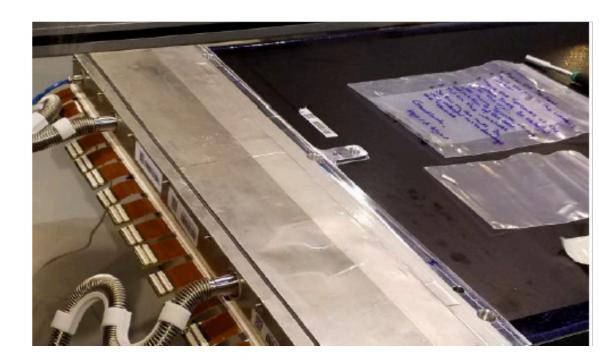


Upstream Tracker


- Front end ASIC (SALT) v3 submitted in October.
 Improved power distribution and front-end stabilisation.
 - Expect to test mid January.
- More than 50% of sensors delivered and tested.
- Test of special sensor that will surround the beam pipe done.

Upgrade I: RICH

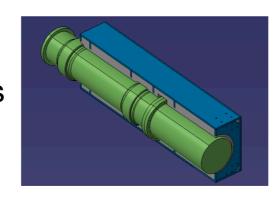

- Chassis + services ready for production. Will be first element to enter.
- Received full ASIC production.
- First serial Elementary Cells produced, column assembly to start soon.
- Preparing commissioning at ComLab@CERN with conditions as close to reality as possible.
- Test beam operation successfully achieved at SysLab@CERN
 - Includes complete DAQ/TELL40.

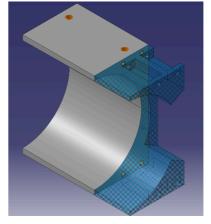


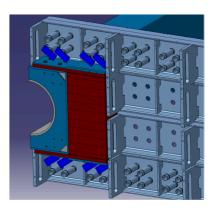
Upgrade I: SciFi

- Prototype frame partially equipped at LHCb pit.
- Bare module production is almost finished.
- First batch of cold boxes (28) has arrived to CERN.
- Started mounting module + cold-box at CERN.

Upgrade I: Calo and Muon

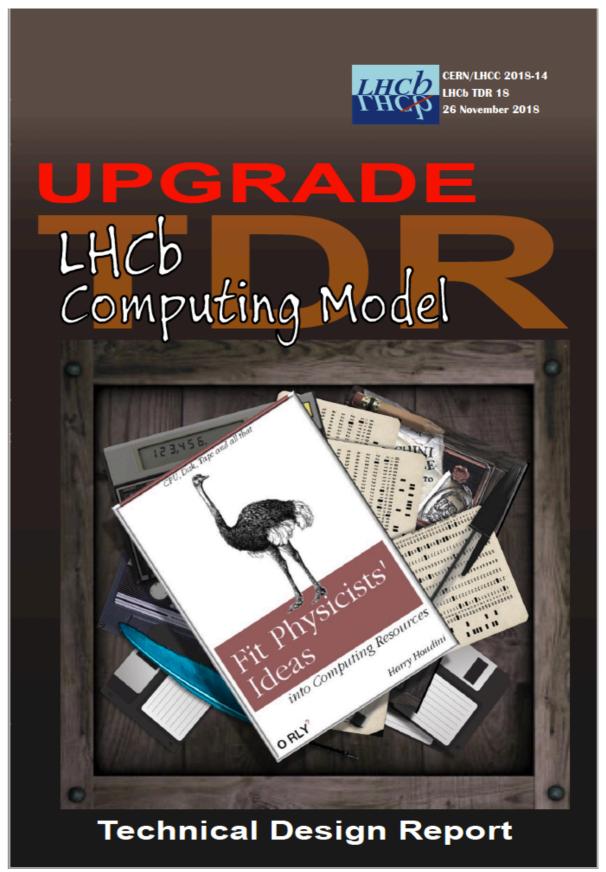

CALO


- Test of FEB production is completed.
- · FEB tested on testbeam.
- FPGAs will arrive at the end of January.



MUON

- ECR for new shielding is done. Plugs have been ordered.
- Production of electronics boards follows the schedule and will be ready for installation.



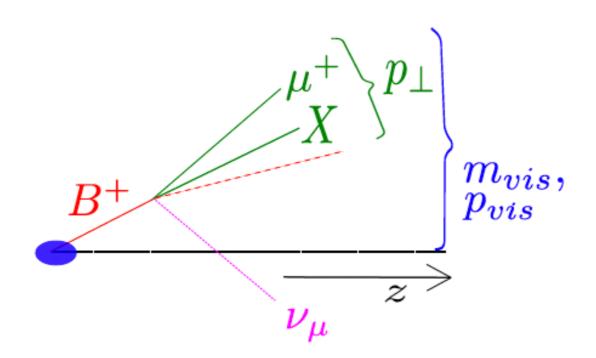
Upgrade I: Computing Model TDR

 Document describing offline computing model for LHCb from Run 3 onwards and related computing resources needs.

LHCb-TDR-018 is ready

Conclusions

- LHCb has operated extremely well in its 10 years -4 days of existence.
 - pp , pPb, PbPb, pA runs provide a unique dataset.
 - Many precise measurements of SM parameters and some anomalies.
 - Flavour structure and CP violation are still major pending questions.
- LHCb is dead (almost) retired, long live to LHCb!
 - Continue exploiting Run1 + Run2 datasets.
 - Upgrade preparations are proceeding well.
 - Extensive work in testbeams for different subsystems during the last month.
 - Computing model TDR is ready and will be discussed during this LHCC session.


BACKUP

Velo Stepper motor

- Problem in fill 7474.
 - Broken while VELO was closing, took VELO open data. Prevented next LHC injection.
 - Fuse in power card blown, replacements blown too.
 - A bridge rectifier on the board found to be shorted.
 - Rectifier from spare boards removed and replaced the broken one.
 - Another blown fuse discovered and replaced => everything back to work.
- Successfully closed/opened in the next fill.

Corrected mass at LHCb

- Recover partially the momentum loss by the neutrino using the corrected mass.
- The visible transverse momentum with respect to the B flight direction is equal to the transverse momentum carried out by the neutrino.

$$m_{corr} = \sqrt{m_{vis}^2 + |p_T'|^2} + |p_T'|$$

What to expect from Run1+Run2 harvest

Observable	Current LHCb	-
EW Penguins		-
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	From CERN-LHCC-2018-027
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	
R_{ϕ},R_{pK},R_{π}	_	
CKM tests		
$\overline{\gamma}$, with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}$ ° [136]	
γ , all modes	$\binom{+5.0}{-5.8}$ ° [167]	Many of the analysis are based on Run 1
$\sin 2\beta$, with $B^0 \to J/\psi K_S^0$	0.04 [609]	data only.
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [44]	
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	With the increase in energy, the integrated
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	luminosity of Run 2 represents an six-fold
$a_{ m sl}^s$	$33 \times 10^{-4} [211]$	
$ ec{V}_{ub} / V_{cb} $	6% [201]	increase relative to Run 1.
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$		
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	90% [264]	BEWARE: a simple scaling by sqrt(6) will
$ au_{B^0_s o\mu^+\mu^-}$	22% $[264]$	give a wrong estimate due to systematic
$S_{\mu\mu}^{s o \mu + \mu}$	_	uncertainties.
$b ightarrow c \ell^- ar{ u}_l ext{ LUV studies}$		
$\frac{B(D^*)}{R(D^*)}$	0.026 [215, 217]	
$R(J/\psi)$	0.24 [220]	
Charm		
$\frac{\Delta A_{CP}(KK - \pi\pi)}{\Delta A_{CP}(KK - \pi\pi)}$	$8.5 \times 10^{-4} [613]$	
$A_{\Gamma} (\approx x \sin \phi)$	$2.8 \times 10^{-4} [240]$	
$x \sin \phi \text{ from } D^0 \to K^+\pi^-$	$13 \times 10^{-4} [228]$	
•		
$x \sin \phi$ from multibody decays		-