
Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

1

Lecture 2

Scientific Programming: A
Modern Approach

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

2

This Lecture

The Goals:

1) Review C++ features usable for highly efficient and not-error-prone
implementations of algorithms and data structures
2) Understand basic commonalities and differences of elementary data
structures

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

3

A Matter of Choices
§ C++ has been chosen as the language for all examples and exercises

§ Python will be considered too, for its conciseness, intuitiveness and
because it can be easily interfaced with existing C++ libraries

§ The principles illustrated throughout the lecture are of course also valid
for programming in general!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

4

Wetting your Appetite
An incomplete selection of appealing, correctness and

performance related C++ features

Vegan alternative

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

5

The auto keyword
§ C++ is a “strongly typed” language

§ Type safety enforced (at least encouraged: casts are possible)

§ The auto keyword: automatic type deduction

§ Improves readability and overall maintainability (correctness first)

[…]
int a = 5;

float b = 3.3f;
const char* c =
“my example\n”;
char *d = new char(‘c’);

[…]

namespace longName1{
namespace longName2{

class myClass{[…]};
}

}
longName1::longName2::myClass

createMyClassI(){[…]};

longName1::longName2::myClass inst1=
createMyClassI();

?!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

6

The auto keyword
§ C++ is a “strongly typed” language

§ Type safety enforced (at least encouraged: casts are possible)

§ The auto keyword: automatic type deduction

§ Improves readability and overall maintainability (correctness first)

[…]
auto a = 5;

auto b = 3.3f;
auto c = “my example\n”;
auto d = new auto(‘c’);

auto error;

error = 5+3.;

[…]

namespace longName1{
namespace longName2{

class myClass{[…]};
}

}
longName1::longName2::myClass

createMyClassI(){[…]};

auto inst1 = createMyClassI();
Wrong!
(typesafety)

AAA Style
Almost Always Auto

?!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

7

Range-based Loops
§ Writing loops is fun again!

§ More concise and expressive (less mistakes possible)
§ Uniform approach with all collections offering a begin() and

end()methods (map, set, vector, myColl,…)

§ The compiler has all the information to put in place optimisations!

C++: initialiser list#include <map>
#include …

int main(){

std::map<int,std::string> myCont
{{1,"one"},{2,"two"},{3,"three"}};

for (auto& p: myCont){
std::cout << p.first << " -> "

<< p.second << std::endl;}
}

?!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

8

Range-based Loops
§ Writing loops is fun again!

§ More concise and expressive (less mistakes possible)
§ Uniform approach with all collections offering a begin() and

end()methods (map, set, vector, myColl,…)

§ The compiler has all the information to put in place optimisations!
Even more powerful parsing

#include <vector>
#include …

int main(){

std::vector<std::pair<int,std::string>> myCont
{{1,"one"},{2,"two"},{3,"three"}};

for (auto& p: myCont){
std::cout << p.first << " -> "

<< p.second << std::endl;}
}

Focus on the
iteration and not on
the “bureaucracy”

Same initialisation!
Syntax for the loop: identical!

?!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

9

Random Generation
§ Generating random numbers in C++ was cumbersome

§ Lots of external libraries: what if you can’t use them?
§ Use C srand? Normalisation? Period?
§ Distribution: hit or miss? What else?

Just “#include <random>”!

Engines: Linear Congruential, Marsenne Twister, subtract with carry (Ranlux)

C++ names: mt19937, mt19937_64, ranlux_24, ranlux_48 …

Distributions (some of them): uniform, Bernulli, binomial, Poisson, normal,
log-normal, Cauchy, …

Batteries
Included!

A rich collection!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

10

Random Generation

§ No global states: C++ random generation is thread safe!

§ A huge improvement wrt rand, srand and RAND_MAX

§ Pre-packed, well tested and standardised random number generation

#include <random>
#include <functional> // For std::bind
#include <iostream>

int main(){
std::mt19937_64 myEngine;
std::normal_distribution<float> myDistr(125.,12.);

float oneNum = myDistr(myEngine);

// Improve clarity!
auto myGaussian = std::bind(myDistr,myEngine);

for (int i=0;i<10;++i)
std::cout << myGaussian() << std::endl;

}

Bind: yet another
very expressive
and handy
construct!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

11

Lambda Functions
§ An unnamed function inlined in code (also called “closures”)

§ Easy to pass as argument to other functions

§ Functor concept in C++03

§ Composed by: capture specification […], argument list (…), body {…}.

§ Last two: very well known already!

§ Capture specification: make available to the function variables from
the scope in which the lambda is defined

l

int main() {
[] () {}; // empty lambda, a statement with no effect J
auto f1 = [](){std::cout << “Hello World!\n”;};
f1();
auto f2 = [](const char* name){std::cout<<“Hello “<<name<<”!\n”;};
f2(“Bob”);
}

?!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

12

Lambda Functions

§ Concise, expressive: a veritable work item

§ Extremely important when used with stl algorithms!

int a=3;
auto f3 = [a](){return a*a;};// capture copy of “a” by value
auto f4 = [&a](){a*=a;};// capture reference to “a” by reference
auto f5 = [=](){…};// capture all vars in the scope by value
auto f6 = [&](){…};// capture all vars in the scope by reference
auto f7 = [=,&a](){…};// all vars by value�, “a” by reference

// Create a vector and fill it w/ rndm numbers
std::vector<float> v(10);
std::generate(v.begin(),v.end(),myGaussian); // From the rand example!

float factor = 3.14;
std::for_each(v.begin(),v.end(),

[factor](float x){return x*factor;});

Crucial concept for
the task parallelism

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

13

Constexpr
§ Constexpr: specifier for functions and variables

§ Meaning: evaluate at compile time!
§ Much more powerful than preprocessor macros

§ Possible usecases: tabulated values calculated once at
compiletime!

// Recursion again!
constexpr int factorial(int n) {
return n <= 1 ? 1 : (n * factorial(n-1));
}

// Max of two values
template <typename T>

constexpr T max(T a,T b){
return a < b ? b : a;
}

It could be done with
templates, but not that
readable!

Constexpr: powerful tool
to perform operations at
compile time.

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

14

Achieving Correctness and
Good Performance

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

15

C++ and Inheritance
§ Inheritance: one of the most powerful features of C++

§ Allow for maximum flexibility
§ Separation of interface and implementations: clean code
§ Unified treatment of components behind the same interface

§ Comply to interfaces: easy mixing of components
§ E.g. Library developer provides interfaces, user complies to them

when writing implementations

ISolid

Sphere

Cylinder

Cube

…

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

16

C++ and Inheritance

class ISolid{
public:
virtual bool IsInside(const Particle&) = 0;
virtual double DistanceToBoundary(const Particle&) = 0;
};

class Cube: public ISolid {
public:
bool IsInside(const Particle&){…};
double DistanceToBoundary(const Particle&){…}
};

class Sphere: public ISolid {
public:
bool IsInside…
double DistanceToBoundary…
};

class Cylinder: public ISolid {
public:
bool IsInside…
double DistanceToBoundary…
};

Etc..

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

17

C++ and Inheritance
§ Virtual interfaces:

§ Method to call decided at runtime!
§ Have a sizeable price in terms of performance (~an additional

function call per call)
§ Especially visible for small functions, tight loops …

§ Indirection is present
§ Position of class subobject not known at compile time
§ Implemented with a vtable

§ Can we do something about this?
§ Yes, there are several approaches (“devirtualisation”)
§ One of them could be using templates

§ Name of the game: avoid indirection

Present in basically all
existing codebases

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

18

Less Then Optimal Practices

Muon

IFourVector

for (auto const & particle : particles) {
auto pt = particle.Pt();

}

Provides virtual methods for getting Pt, Eta, Phi, …
Very general and clean right?
Remember the cost of indirections!!

How often in code this will happen?

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

19

Less Then Optimal Practices

Muon

IFourVector

for (auto const & particle : particles) {
auto pt = particle.Pt();

}

Provides virtual methods for getting Pt, Eta, Phi, …
Very general and clean right?
Remember the cost of indirections!!

How often in code this will happen?
All the time!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

20

What’s a template
§ An abstraction above the concept of classes and functions

§ Example: std::vector<int>
§ Templates: “family of classes/functions”

§ Create concrete entities specialising a “model” (the template) with
data types, booleans or integers

§ Objective: Re-use code
§ Generic programming: same code valid for all types

§ New types, called “template instantiations” created at compile time
§ Catch mistakes early
§ Runtime budget unaltered

§ Can be used as alternative to runtime techniques

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

21

What’s a template

MyClass<int> myI(3);

MyClass<float> myF(3);

MyClass<double> myD(3);

[…]

template <typename T>

class MyClass{

public:

MyClass(T i):_i(i){};

T& getI () const { return _i; }

private:

T _i;

};

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

22

What’s a template

template <typename T>

class MyClass{

public:

MyClass(T i):_i(i){};

T& getI () const { return _i; }

private:

T _i;

};

Class MyNonCopiable{

public:

[…]

MyNonCopiable(const MyNonCopiable &) = delete;

[…]

};

MyClass<int> myI(3);

MyClass<float> myF(3);

MyClass<double> myD(3);

[…]

MyNonCopiable a;

MyClass<MyNonCopiable> myNC(a);

Error! It does not even
compile

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

23

Template Metaprogramming

§ Principle: move operations from runtime to compile time
§ Can also gain performance!

§ Can increase compile time (by very little, very affordable price anyway!)
§ De facto, a veritable “language in the language”

Templates: powerful
strategy to achieve
reusability and
performance

template <typename T, int SIZE> class MyColl{

public:

MyColl():_arr(new T(SIZE)), _index(0){}

void unsafePushBack(const T& v)

{ _arr[_index++] = v; }

T unsafeAt(unsigned int i){ return _arr[i]; }

~MyColl() { delete[] _arr;}

private:

T* _arr;

unsigned int _index; };

[…]
MyColl<float,5> a;
MyColl<MyColl<bool,3>,7> b;
[…]

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

24

A Note
§ Must we avoid virtual inheritance at all costs everywhere?

§ No.

§ Use a grain of salt: understand what is the code you write in
the design phase
§ Will the virtual methods be called often?
§ How much will be the performance penalty if at all?
§ Do the advantages of the abstraction outweigh the

performance degradation, if any?

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

25

Interlude: Let the compiler Help you

Vegan alternative

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

26

Let the Compiler Help You
§ Compiler technology is steadily evolving since years

§ Open source: two excellent competing products
1)GCC: GNU Compiler Collection
2)Clang: Based on LLVM

§ Leverage compiler features to achieve peak
performance, e.g.:
§ Functions inlining
§ Optimisation flags
§ Autovectorisation, super word parallelism (SLP)
§ Dare to use “the latest greatest” version
§ Prefer compile-time to dynamic (runtime)

mechanisms

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

27

Let the Compiler Help You
§ Most powerful tool at disposal when targeting peak

performance

§ Knowledge of its capabilities and the flags necessary to steer
them always rewards with performance, e.g.
§ Treatments of FP numbers
§ Optimisation levels
§ Link time optimisation

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

28

An Example From CMS
D

 G
io

rd
an

o
an

d
G

 S
gu

az
zo

ni
20

12
 J

. P
hy

s.
: C

on
f.

S
er

.3
96

 0
22

04
4

do
i:1

0.
10

88
/1

74
2-

65
96

/3
96

/2
/0

22
04

4
C

M
S

re
co

ns
tru

ct
io

n
im

pr
ov

em
en

ts
 fo

r t
he

 tr
ac

ki
ng

in

 la
rg

e
pi

le
-u

p
ev

en
ts

• CMSSW reconstruction
• gcc 4.3 à gcc4.6
• Autovectorisation enabled

Increasing event occupancy, instantaneous luminostiy, track combinatorics.
“Event Complexity”

http://dx.doi.org/10.1088/1742-6596/396/2/022044

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

29

Data structures and Algorithms

logN
NlogN

N2

NN

Constant

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

30

Foreword
§ Not a lecture on algorithms and data structures

§ Tons of books (since >50y out there)
§ We would need a semester (at least)

§ Rather a “pragmatic primer” about algorithms and data
structures natively offered by C++

§ A reasonably good initial choice of algorithm and data
structures always rewards with performance!
§ The wrong choice would kill performance
§ Changing algorithms and data structures after the

application is released is hard

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

31

The STL Containers
§ STL in C++03 offers efficient containers, among which:

vector<T>: consecutive in memory. A powerful class!

list<T>: double linked list

map<T,K>: associative container (red-black tree)

set<T>: unique elements

§ Try to make use of those: a combination of efficient
implementation and generality
§ Gift of meta programming!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

32

Containers in Real Life
§ List and vector: almost the same, right?

§ A sequence of ordered elements
§ List offers a couple of goodies like push_front, sort,
erase..

§ Wrong! For example, iteration:
Logically, this is what happens

Actually, the
elements may
be scattered in
the virtual
memory like
this!

And on a NUMA architecture, like this!

1

2

3

4

0

G
ig

aB
yt

es

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

33

STL Containers: some C++11 goodies
§ std::array: safer re-incarnation of the C array

§ std::array<int,12> intArraySize12 {1,2,3,4};

§ New containers: unordered_{map, multimap, set}
§ Hashed key containers: C++11 offers efficient hashing for many classes

natively. Can be expanded (template specialisation)
§ Efficient lookups in presence of complex objects as keys (e.g. strings)

§ Initialiser lists: std::vector<int> v {1,2,3,4};
§ Less code, less mistakes, more correctness!

§ Not only inserting, but emplacing. E.g.:
§ template< class... Args >

void std::vector<T>::emplace_back(Args&&... args);

§ Avoid copies and moves: always prefer emplace_back to push_back

Move semantics

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

34

Move Semantics in a Nutshell
§ One issue with C++: unintentional triggering of copies

§ Memory churn à serious performance loss
§ Modern C++ offers new ways of coping with this

[…]
std::vector<int>
timesTwo(const vector<int>& v)
{

std::vector<int> tmp;
tmp.reserve(v.size());
for (auto itr = v.begin();

itr != v.end(); ++itr){
tmp.push_back(2 * *itr);

}
return tmp;

}

int main(){
std::vector<int> v; v.reserve(100);
for (int i = 0; i < 100; i++)
v.push_back(i);

v = timesTwo (v);
} Not accessible anymore!

Temporary!

Would’n it be nice to “move” (rather
than copying) the content of the tmp
out of the function scope and
“move” it then within v (rather than
assigning)?

Copy back the full vector
and throw away the
temporary!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

35

A Copy which is not a Copy

template <class T>
class avector {

T * fBegin;
T * fEnd;

[…]
public:
avector(const vector & tmp){
clear();
reserve(tmp.size());
for (auto& i:tmp)
push_back(i);

}
}

Copy Constructor

template <class T>
class avector {

T * fBegin;
T * fEnd;

[…]
public:
avector(vector && tmp)
: fBegin (tmp.fBegin)
, fEnd(tmp.fEnd){
tmp.fBegin = nullptr;
tmp.fEnd = nullptr;
}

}

Move Constructor

Transfer ownership!Copy elements

§ All stl containers have move ctors and assignment implemented!!
§ && is the notation for an “rvalue reference”

§ Beyond the scope of this lecture

§ Some classes are move only: e.g. std::thread

Useful reading:
The C++ programming Language,
4th ed. B. Stroustrup

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

36

The STL Algorithms
§ STL provides a variety of useful pre-packed algorithms

§ #include <algorithm>

§ find, find_if, shuffle, rotate, copy_if, sort,
stable_sort …

§ General purpose low-level functionalities, often used in
programs of all kinds

§ Performant and correct:
§ Hard to reach the same quality implementing from scratch

§ Can replace the stl implmentation behind, user code
unchanged!
§ STLXXL: huge collections (~TB!), http://stxxl.sourceforge.net
§ Parallel mode STL:

http://gcc.gnu.org/onlinedocs/libstdc%2B%2B/manual/parallel_mode.html

http://stxxl.sourceforge.net
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

37

The STL Algorithms
#include <algorithm>

std::vector<int> v={1,2,3,4,5};

// Randomise content
std::shuffle(v.begin(), v.end(),

std::default_random_engine(seed));

// Sort and reverse sort
std::sort(v.begin(), v.end());
std::sort(v.begin(),v.end(),

[](int i, int j){return j<i;});

// contains
decltype(v) vv={1,2,3};
bool incl = std::includes(v.begin(),v.end(),

vv.begin,vv.end());

// Apply function to range
std::for_each(v.begin(), v.end(),

[](int i){return i*2;});

Great synergy!

Internally, moves
are used not to
imply huge
overheads!

The predicate can
be changed!

?!

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

38

Take Away Messages

§ C++ evolve{s,d}! High throughput applications can take advantage of it:
§ Clearer, more modern syntax
§ Lots of building blocks available: don’t reinvent the wheel
§ Metaprogramming has even more potential

§ Move whatever you can to compile time
§ Templates, constexpr

§ New STL: containers, algorithms and their interplay with other language
features (like lambdas)

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

39

Backup

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

40

Example: Visitation

class Visitor{

public:

int scanBDS(){

return callAllVisitNodes()};

virtual bool visitNodeType1() = 0;

…

virtual bool visitNodeTypeN() = 0;

};

§ Problem
§ A big data structure (“S”)
§ Need to visit all of its nodes
§ Need to perform small (user defined) operations on some
§ Skeleton for the “visitor” class provided

§ Solution 1: abstract interface

It works, but the performance
would be less than ideal
because of indirections L

class MyVisitor: public Visitor{

public:

virtual bool visitNodeType1(){

doWork();}

[…]

};

MyVisitor scanner; scanner.scanBDS();

Provided by the developer of “S” Provided by the user using the “S”

At run time, the call is
forwarded to the right method!

Take advantage from
the interface offered

Danilo Piparo – CERN, EP-SFT

Concurrency and Correctness – A Modern Approach

41

Curiously Recurring Template Pattern

template<class Derived>

class VisitorCTRD {

public:

bool visitNodeType1(){(static_cast<Derived>(this))->visitNodeType1();}

[…]};

§ Solution 2: templates!
Provided by the developer of BDS

class MyVisitor: public VisitorCTRD<MyVisitor>{

public:

bool visitNodeType1(){doWork();}

[…]};

MyVisitor scanner; scanner.scanBDS();

Provided by the user of the BDS
Inherits from
something templated
with itself. Recursion!

At compile time, the
call is forwarded to the
right method!

Still take advantage
from the interface
offered!

