Lecture 2

Scientific Programming: A
Modern Approach

1 Danilo Piparo — CERN, EP-SFT 4

Concurrency and Correctness — A Modern Approach C&

This Lecture

CERN &
School of Computing

The Goals:

1) Review C++ features usable for highly efficient and not-error-prone
implementations of algorithms and data structures

2) Understand basic commonalities and differences of elementary data
structures

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach C&
N

A Matter of Choices

CERN &
School of Computing

C++ has been chosen as the language for all examples and exercises

Python will be considered too, for its conciseness, intuitiveness and
because it can be easily interfaced with existing C++ libraries

The principles illustrated throughout the lecture are of course also valid
for programming in general!

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

CER
School of Computing

Wetting your Appetite

An incomplete selection of appealing, correctness and
performance related C++ features

Vegan alternatie

4 Danilo Piparo — CERN, EP-SFT

The auto keyword

= C++is a “strongly typed” language

Concurrency and Correctness — A Modern Approach CS:
N

CERN &
School of Computing

= Type safety enforced (at least encouraged: casts are possible) @

= The auto keyword: automatic type deduction

O

a

= Improves readability and overall maintainability (correctness first)

[...]

int a = 5;

[...]

namespace longNamel{
namespace longName2{
class myClass{[..]1};

float b = 3.3f; }
const char* c =
“my example\n”;
char *d = new char(‘c’);

}

TongNamel: : longName2: :myClass
createMyClassIQ{[..1};

TongNamel: : TongName2: :myClass instl=

createmMyClassI();

Danilo Piparo — CERN, EP-SFT

= C++is a “strongly typed” language

Concurrency and Correctness — A Modern Approach @:
N

The auto keyword

AAA Style

CERN &
School of Computing

Almost Always Auto
= Type safety enforced (at least encouraged: casts are possible) @

= The

Ke)

auto keyword: automatic type deduction P

Improves readability and overall maintainability (correctness first)

[...]

auto
auto
auto
auto

auto
error

[...]

namespace longNamel{
namespace longName2{

a = 5; class myClass{[..]1};

b = 3.3f; }

c = “my example\n”; }

d = new auto(‘c’); TongNamel: : longName2: :myClass
createMyClassIQ{[..1};

error; Wrong!

= 5+3.; (typesafety) | |auto instl = createMyClassI();

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach C&

Range-based Loops

CERN &
School of Computing

= Writing loops is fun again!
= More concise and expressive (less mistakes possible)

= Uniform approach with all collections offering a begin () and
end () methods (map, set, vector, myColl,...)

= The compiler has all the information to put in place optimisations!

#include <map> e :
#include .. C++: initialiser list

int main(Q{ ///////////
std: :map<int,std::string> myCont

{{1,"one"},{2,"two"},{3,"three"}ff/

for (auto& p: myCont){ {:i:)
std::cout << p.first << " " o

->

<< p.second << std::endl;} ﬁ

7 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @

Range-based Loops

CERN &
School of Computing

= Writing loops is fun again!
= More concise and expressive (less mistakes possible)

= Uniform approach with all collections offering a begin () and
end () methods (map, set, vector, myColl,...)

= The compiler has all the information to put in place optimisations!

, Even more powerful parsing

#include <vector> o
#include .. Same initialisation!

. T
int mainO{ Syntax for the loop: identical! /
std: :vector<std: :pair<int,std::string>% myCont .

{{1,"one"},{2,"two"}, {3, "three"}}; Focus on the
iteration and not on
for (auto& p: myCont){ @ the “bureaucracy”
std::cout << p.first << " > " R

<< p.second << std::endl;} ﬁ

8 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

Random Generation

CERN &
School of Computing

= Generating random numbers in C++ was cumbersome
= Lots of external libraries: what if you can’t use them?

0.7

= Use C srand? Normalisation? Period? NE——ry

0.6f

= Distribution: hit or miss? What else? o =0, 72

— 0.4}
x

—

A rich collection! 03 /\
0.2

o1 S AN_

Just “##include <random>”!

R S 2 4

Engines: Linear Congruential, Marsenne Twister, subtract with carFy (Ranlux)

C++ names: mt19937, mt19937 64, ranlux_ 24, ranlux 48 ...

Distributions (some of them): uniform, Bernulli, binomial, Poisson, normal,
log-normal, Cauchy, ...

Batteries
Included!

9 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

Random Generation

CERN &
School of Computing

#include <random>
#include <functional> // For std::bind
#include <iostream>

int main(){
std: :mt19937_64 myEngine;

std: :normal_distribution<float> myDistr(125.,12.); Bind: yet another
float oneNum = myDistr(myEngine); <—— | veryexpressive
~ and handy

// Improve clarity! construct!
auto myGaussian = std::bind(myDistr,myEngine);
for (int 1=0;1<10;++1)

std::cout << myGaussian() << std::endl;

= No global states: C++ random generation is thread safe!
= Ahuge improvement wrt rand, srand and RAND MAX

= Pre-packed, well tested and standardised random number generation
10 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @

00@ Lambda FunCtions chool of Computing

= An unnamed function inlined in code (also called “closures”) 7\'
= Easy to pass as argument to other functions
= Functor concept in C++03
= Composed by: capture specification [...], argument list (...), body {...}.
= Last two: very well known already!

= Capture specification: make available to the function variables from
the scope in which the lambda is defined

int main() {

[1 O {}; // empty lambda, a statement with no effect ©

auto f1l = [JOQ{std::cout << “Hello world!\n”;};

f10;

auto f2 = [](const char* name) {std::cout<<“Hello *“<<name<<”!'\n”;};
f2(“Bob”);

}

11 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

Lambda Functions

CERN &
School of Computing

int a=3;

auto f3 = [al(){return a*a;};// capture copy of “a” by value
auto f4 = [&](O{a*=a;};// capture reference to “a” by reference
auto 5 = [=]10{..};// capture all vars in the scope by value
auto f6 = [&1(){..};// capture all vars in the scope by reference
auto f7 = [=,&]10{..};// all vars by valued, “a” by reference

// Create a vector and fill it w/ rndm numbers
std: :vector<float> v(10);
std::generate(v.begin(),v.end() ,myGaussian); // From the rand example!

float factor = 3.14;
std: :for_each(v.begin(),v.end(),
[factor] (float x){return x*factor;});

Crucial concept for
= Concise, expressive: a veritable work item <~ the task parallelism

= Extremely important when used with stl algorithms!
12 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach (&
N

Constexpr

CERN &
School of Computing

= Constexpr: specifier for functions and variables

= Meaning: evaluate at compile time!
= Much more powerful than preprocessor macros

= Possible usecases: tabulated values calculated once at
compiletime!

// Recursion again! It could be done with

constexpr int factorial(int n) { <«—— [templates, but not that
return n <=1 7 1 : (n * factorial(n-1)); readable!
}

// Max of two values

template <typename T> _
constexpr T max(T a,T b){ Constexpr: powerful tool

return a <b ? b : a; to perform operations at
} compile time.

13 Danilo Piparo — CERN, EP-SFT

14

Concurrency and Correctness — A Modern Approach

Achieving Correctness and
Good Performance

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @

C++ and Inheritance

CERN &
School of Computing

= |nheritance: one of the most powerful features of C++
= Allow for maximum flexibility
= Separation of interface and implementations: clean code
= Unified treatment of components behind the same interface

= Comply to interfaces: easy mixing of components

= E.g. Library developer provides interfaces, user complies to them
when writing implementations

/ Spnere
Cylinder
Cube J

15 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

C++ and Inheritance

CERN &
School of Computing

fclass |Solid{)
public:

virtual bool Isinside(const Particle&) = 0;

virtual double DistanceToBoundary(const Particle&) = 0;

\J; Y
fclass Sphere: public ISolid {)

s ~N fclass Cylinder: public ISolid { Y

class Cube: public ISolid { public:

public: | bool IsInside...

bool IsInside(const Particle&)...}; double DistanceToBoundary...

double DistanceToBoundary(const Particle&){...} \}; y
\}; J Etc..

16 Danilo Piparo — CERN, EP-SFT

17

Concurrency and Correctness — A Modern Approach @
CERN

C++ and Inheritance

School of Computing

Present in basically all

= Virtual interfaces: existing codebases

= Method to call decided at runtime!

= Have a sizeable price in terms of performance (~an additional
function call per call)
= Especially visible for small functions, tight loops ...

= |ndirection is present

= Position of class subobject not known at compile time
= |Implemented with a vtable

= Can we do something about this?
= Yes, there are several approaches (“devirtualisation”)
= One of them could be using templates

= Name of the game: avoid indirection

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

Less Then Optimal Practices

CER!
School of Computing

Provides virtual methods for getting Pt, Eta, Phi, ...
Very general and clean right?
Remember the cost of indirections!!

oo |

for (auto const & particle : particles) {
auto pt = particle.Pt(Q);

}

How often in code this will happen?

18 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

Less Then Optimal Practices

CER!
School of Computing

Provides virtual methods for getting Pt, Eta, Phi, ...
Very general and clean right?
Remember the cost of indirections!!

oo |

for (auto const & particle : particles) {
auto pt = particle.Pt(Q);

}

How often in code this will happen?

All the time!

19 Danilo Piparo — CERN, EP-SFT

20

Concurrency and Correctness — A Modern Approach C&

What’s a template

CERN &
School of Computing

An abstraction above the concept of classes and functions
= Example: std::vector<int>

Templates: “family of classes/functions”

= Create concrete entities specialising a “model” (the template) with
data types, booleans or integers

Objective: Re-use code
= (Generic programming: same code valid for all types

New types, called “template instantiations” created at compile time
= Catch mistakes early
= Runtime budget unaltered

Can be used as alternative to runtime techniques

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach

What’s a template

template <typename T>
class MyClass{
public:

MyClass(T i):_i(i){};

T& getI () const { return
private:

T _1;
s

1;

}

21 Danilo Piparo — CERN, EP-SFT

MyClass<int> myI(3);
MyClass<float> myF(3);
MyClass<doubTle> myD(3);
[...]

es

ERI
Scho

ol of Computing

Concurrency and Correctness — A Modern Approach

What’s a template

CER
Scho

ove

ol of Computing

template <typename T>
class MyClass{
public:

MyClass(T i):_i(i){};

T& getI () const { return
private:

T _1;
s

1;

}

Class MyNonCopiable{
public:

[...]

MyNonCopiable(const MyNonCopiable &) = delete;

[...]
}s;

22 Danilo Piparo — CERN, EP-SFT

Error! It does not even

compile

/

MyClass<int> myI(3);
MyClass<float> myF(3);
MyClass<double> myD(3);

[...]

MyNonCopiable a;
MyClass<MyNonCopiable> myNC(a);

Concurrency and Correctness — A Modern Approach @
N

Template Metaprogramming

CERN &
School of Computing

= Principle: move operations from runtime to compile time

= Can also gain performance!

= Can increase compile time (by very little, very affordable price anyway!)
= De facto, a veritable “language in the language”

template <typename T, int SIZE> class MyColl{
public:

MyCol1(Q):_arr(new T(SIZE)), _index(0){}
void unsafePushBack(const T& Vv)

{ _arr[_index++] =
T unsafeAt(unsigned int i){ return _arr[i];

~MyCol11() { delete[] _arr;}
private:

T* _arr,
unsigned int _index; };

v;
}

}

[...]

MyColl<float, 5> a;
MyCol1l<MyColl<bool,3>,7> b;

[...]

23

Danilo Piparo — CERN, EP-SFT

Templates: powerful
strategy to achieve
reusability and
performance

Concurrency and Correctness — A Modern Approach @

A Note

= Must we avoid virtual inheritance at all costs everywhere?
= No.

= Use a grain of salt: understand what is the code you write in
the design phase

= Will the virtual methods be called often?
= How much will be the performance penalty if at all?

= Do the advantages of the abstraction outweigh the
performance degradation, if any?

24 Danilo Piparo — CERN, EP-SFT

25

Concurrency and Correctness — A Modern Approach

Interlude: Let the compiler Help you

Vegan alternative

Danilo Piparo — CERN, EP-SFT

26

= Compiler technology is steadily evolving since years |

1)GCC: GNU Compiler Collection

Concurrency and Correctness — A Modern Approach C&

Let the Compiler Help You

Open source: two excellent competing products

2)Clang: Based on LLVM

= Leverage compiler features to achieve peak

performance, e.g.:

Functions inlining

Optimisation flags

Autovectorisation, super word parallelism (SLP)
Dare to use “the latest greatest” version

Prefer compile-time to dynamic (runtime)
mechanisms

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @:

Let the Compiler Help You

= Most powerful tool at disposal when targeting peak
performance

= Knowledge of its capabilities and the flags necessary to steer
them always rewards with performance, e.g.

= Treatments of FP numbers
= Optimisation levels
= Link time optimisation

27 Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach @
N

An Example From CMS

CER!
School of Computing

=®=Improvement %

Percentual improvement
(o))

Number of Pileup interactions

CMS reconstruction improvements for the tracking

D Giordano and G Sguazzoni 2012 J. Phys.: Conf.
in large pile-up events

Ser. 396 022044 doi:10.1088/1742-

6596/396/2/022044

10 20 30 40 50

Increasing event occupancy, instantaneous luminostiy, track combinatorics.

“Event Complexity”
e CMSSW reconstruction

e gcc4.3 > gced.6
» Autovectorisation enabled
28 Danilo Piparo — CERN, EP-SFT

http://dx.doi.org/10.1088/1742-6596/396/2/022044

Concurrency and Correctness — A Modern Approach

Data structures and Algorithms

LDy

29 Danilo Piparo — CERN, EP-SFT

30

Concurrency and Correctness — A Modern Approach @
CER!

Foreword

= Not a lecture on algorithms and data structures
= Tons of books (since >50y out there)
= We would need a semester (at least)

= Rather a "pragmatic primer” about algorithms and data
structures natively offered by C++

= A reasonably good initial choice of algorithm and data
structures always rewards with performance!

= The wrong choice would kill performance

= Changing algorithms and data structures after the
application is released is hard

Danilo Piparo — CERN, EP-SFT

31

Concurrency and Correctness — A Modern Approach C&

The STL Containers

= STL in C++03 offers efficient containers, among which:

CERN &
School of Computing

vector<T>: consecutive in memory. A powerful class!

11st<T>: double linked list

map<T,K>: associative container (red-black tree)

set<T>: unique elements

we

[Wikipedia / GFDL]

= Try to make use of those: a combination of efficient
Implementation and generality

= Gift of meta programming!

Danilo Piparo — CERN, EP-SFT

32

Concurrency and Correctness — A Modern Approach @
N

Containers in Real Life

CERN &
School of Computing

= List and vector: almost the same, right?
= A sequence of ordered elements

= List offers a couple of goodies like push_front, sort,
erase..

_ _ N N NN
= Wrong! For example, iteration: BN RN) SR) SN) S
Logically, this is what happens

Actually, the
elements may

}:\ be scattered in

the virtual N\ (
/ (é memory like AN
[‘:; this!

w b

GigaBytes
N

.

—

J
N

o

J o

And on a NUMA architecture, like this!

Danilo Piparo — CERN, EP-SFT

33

Concurrency and Correctness — A Modern Approach C&
CERN

School of Computing

STL Containers: some C++11 goodies

std: :array: safer re-incarnation of the C array
= std::array<int,12> intArraySize12 {1,2,3,4};

New containers: unordered_{map, multimap, set}

= Hashed key containers: C++11 offers efficient hashing for many classes
natively. Can be expanded (template specialisation)

= Efficient lookups in presence of complex objects as keys (e.g. strings)

Initialiser lists: std::vector<int> v {1,2,3,4};

= |Less code, less mistakes, more correctness!
Move semantics

Not only inserting, but emplacing. E.g.:

= template< class... Args >
void std::vector<T>::emplace_back(Args&&... args);

= Avoid copies and moves: always prefer emplace_back to push_back

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach C&
N

Move Semantics in a Nutshell

= One issue with C++: unintentional triggering of copies
= Memory churn - serious performance loss
= Modern C++ offers new ways of coping with this

CERN &
School of Computing

|
(] _— Temporary!
std::vector<int>
timesTwo(const vector<int>& v)
{
std: :vector<int> tmp; Would'n it be nice to “move” (rather
;mp- reserve(v.size()); than copying) the content of the tmp
or (?,'élfo,lt\'; :n‘c’lig’?glig; Y out of the function scope and
tmp.push_back(2 * *itr); “move” it then within v (rather than
} assigning)?
return tmp;
I \ Copy back the full vector
int mainQ{ - and throw away the
std::vector<int> v; v.reserve(100); temporary!
for (int i = 0; 1 < 100; i++)
v.push_back(1);
v = timesTwo (v‘?r—————______________
} [Not accessible anymore!

34

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach

ove

CERN &
School of Computing

A Copy which is not a Copy

Copy Constructor

template <class T>
class avector {

[...]
public:
avector(const vector & tmp){
clear();
reserve(tmp.size());
for (auto& 1:tmp)

}

T * fBegin;
T * fEnd;

push_back(i);

Copy elements

Move Constructor

template <class T>
class avector {

T * fBegin;
T * fEnd;
[...]
public:

avector(vector && tmp)
: fBegin (tmp.fBegin)

}

tmp.fBegin = nullptr;
tmp.fEnd = nullptr;

fEnd(tmp.fEnd){

/

Transfer ownership!

= All stl containers have move ctors and assignment implemented!!

35

&& is the notation for an “rvalue reference”

Beyond the scope of this lecture

Some classes are move only: e.g. std::thread

Danilo Piparo — CERN, EP-SFT

Useful reading:
The C++ programming Language,
4t ed. B. Stroustrup

36

Concurrency and Correctness — A Modern Approach @
N

The STL Algorithms

STL provides a variety of useful pre-packed algorithms
= #include <algorithm>

CERN &
School of Computing

find, find_if, shuffle, rotate, copy_if, sort,
stable_sort ..

General purpose low-level functionalities, often used in
programs of all kinds

Performant and correct:
= Hard to reach the same quality implementing from scratch

Can replace the stl implmentation behind, user code
unchanged!

= STLXXL: huge collections (~TB!), http://stxxl.sourceforge.net

= Parallel mode STL:
http://gcc.gnu.org/onlinedocs/libstdc%2B%2B/manual/parallel mode.html

Danilo Piparo — CERN, EP-SFT

http://stxxl.sourceforge.net
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

37

The STL Algorithms

#include <algorithm>
std::vector<int> v={1,2,3,4,5};
// Randomise content
std: :shuffle(v.begin(), v.end(),

std: :default_random_engine(seed)) ;

// Sort and reverse sort

std::sor't(v.beg'in(), V-end());/’

std::sort(v.begin(),v.end(),
[1CGint i, int j){return j<i;});

// contains
decltype(v) vv={1,2,3};
bool incl = std::includes(v.begin(),v.end(),

L~

Concurrency and Correctness — A Modern Approach C&
N

CERN &
School of Computing

Internally, moves
are used not to
imply huge
overheads!

The predicate can
be changed!

A

vv.begin,vv.end());
Great synergy!

// Apply function to range
std: :for_each(v.begin(), v.end(), é(/////////
[1JGint i) {return i*2;})

Danilo Piparo — CERN, EP-SFT

38

Concurrency and Correctness — A Modern Approach CS:

Take Away Messages

CERN &
School of Computing

C++ evolve{s,d}! High throughput applications can take advantage of it:
= Clearer, more modern syntax
= Lots of building blocks available: don’t reinvent the wheel

= Metaprogramming has even more potential

Move whatever you can to compile time

= Templates, constexpr

New STL: containers, algorithms and their interplay with other language
features (like lambdas)

Danilo Piparo — CERN, EP-SFT

39

Concurrency and Correctness — A Modern Approach

Backup

Danilo Piparo — CERN, EP-SFT

CER!
Scho

fove

ol of Computing

Concurrency and Correctness — A Modern Approach @
N

Example: Visitation

CERN &
School of Computing

= Problem It works, but the performance
= A big data structure (“S”) would be less than ideal

= Need to visit all of its nodes ~ Pecause ofindirections ©
= Need to perform small (user defined) operations on some
= Skeleton for the “visitor” class provided

At run time, the call is

40

= Solution 1: abstract interface forwarded to the right method!
class visitor{ class Myvisitor: publ 1'Z/V1's1'tor{
public: public:
int scaneDSO{ virtual bool visitNodeTypel(){
return callAllvisitNodes()}; dowork():} Take advantage from
_ o [.] the interface offered
virtual bool visitNodeTypel() = 0; }'" /
mvirtua1 bool visitNodeTypeN() = 0;
}; MyVisitor scanner; scanner.scanBDS();
Provided by the developer of “S” Provided by the user using the “S”

Danilo Piparo — CERN, EP-SFT

Concurrency and Correctness — A Modern Approach C&
CERN

School of Computing

Curiously Recurring Template Pattern

= Solution 2: templates! At compile time, the
call is forwarded to the
Provided by the developer of BDS / right method!

template<class Derived>

class VisitorCTRD {

public:

bool visitNodeTypel(){(static_cast<Derived>(this))->visitNodeTypel();}
[..1};

Inherits from

Provided by the user of the BDS - something templated
— with itself. Recursion!
class Myvisitor: public VisitorCTRD<MyVisitor>{
public: _
bool visitNodeTypel() {dowork();} Still take advantage

__— from the interface

MyVisitor scanner; scanner.scanBDS();

Danilo Piparo — CERN, EP-SFT

